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Abstract

The reliable detection and localization of damages in
piezoelectric materials such as Lead Zirconate Titanate
(PZT) pose significant challenges in various engineering
applications. Conventional methods for damage detection
often depend on manual inspection or basic signal pro-
cessing techniques, which are subjective, labor-intensive,
and susceptible to human error. In this paper, a novel ap-
proach for damage detection and localization in PZT mate-
rials using deep learning techniques is proposed. Leverag-
ing a convolutional neural network (CNN) in tandem with
methodologies such as class activation mapping (CAM), the
objective is to enhance the accuracy and reliability of fault
detection systems. In particular, the VGG16 architecture
is adopted as the foundation of the proposed framework
due to its simplicity and effectiveness in large-scale image
recognition tasks. By integrating CAM into the training
process, CNNs are equipped to precisely localize anoma-
lies within PZT ceramic images, facilitating improved fault
detection performance. The study demonstrates the effec-
tiveness of deep learning methods in addressing the chal-
lenges of fault detection and localization in PZT materials,
offering promising avenues for advancing monitoring and
maintenance practices in various engineering applications.

1. Introduction

Lead Zirconate Titanate (PZT) ceramics are essential in
numerous industrial and military applications. They con-
tribute to optoelectronics, telecommunication, biomedical
devices, actuators, energy harvesting devices, and structural
health monitoring (SHM) [1, 5, 20, 25, 37]. Acoustic trans-
ducers, which also utilize piezoelectric materials, have ex-
perienced rapid adoption and found applications in diverse
fields, ranging from medical diagnosis to industrial testing
and quality control [8, 19]. Conversely, the broad appli-
cation of ultrasound imaging in various fields stems from

its manifold advantages, including its affordability and its
capacity to gather information without causing damage or
requiring invasive procedures. The precise localization and
detection of damage at the micro-scale are crucial aspects
of ultrasonic-based SHM. The effectiveness of piezoelec-
tric sensors significantly influences the accuracy and consis-
tency of the diagnosis. Continuous use of the sensor, partic-
ularly in environments with humidity, temperature fluctua-
tions, and corrosive conditions, may lead to its degradation.

Surface or subsurface flaws can also be inherent to
the bulk material, occasionally introduced during the final
stages of fabrication or the early phases of device operation.
Near-surface flaws hold particular significance for various
applications, given that operational stresses often concen-
trate around the periphery of these defects. Both bulk and
surface microscale defects in PZT ceramics serve as precur-
sors to damage, imposing limitations on the strength, lifes-
pan, and performance of the sensors [9]. Before installa-
tion, it is imperative to calibrate and compensate all sensors
for errors and disturbances resulting from harsh environ-
mental conditions and temperature fluctuations. Measure-
ment errors can arise due to minor defects in degraded sen-
sors, and these are typically addressed by adjusting the ac-
quired responses using a baseline compensation factor. Im-
mediately post-installation, sensors are assumed to be in a
healthy state, but ongoing efforts should be dedicated to pe-
riodic assessments and monitoring of sensor health. How-
ever, a sensor with micro-scale cracks exhibits higher-order
effects and nonlinear piezoelectric behavior, discouraging
the use of simplified compensation factors. Hence, detect-
ing, localizing, and quantifying defects in the piezo ceramic
becomes crucial to prevent false alarms in SHM applica-
tions.

In recent decades, significant efforts have been di-
rected toward developing innovative nondestructive evalu-
ation (NDE) techniques for detecting surface and internal
damage in ceramic components [9,29,40]. Alongside ultra-
sonic imaging, various optical methods have characterized
surface defects in PZT ceramics. Common optical measure-
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ments include photoacoustic microscopy, optical coherence
tomography, and optical gating techniques [4, 34, 39, 40].
PZT ceramics exhibit high scattering behavior at optical
wavelengths, resulting in noisy measurements [3]. Re-
cently, a scanning laser Doppler vibrometer (SLDV) has
been used to visualize acoustic wave interference with in-
clusions and damages in metallic plates, piezo-ceramics,
and piezo-crystals in three dimensions [17, 32]. However,
SLDV experiments are costly and require a thin reflective
coating on the sample surface.

2. Relation to prior work
This study expands the point contact method (Coloumb

coupling) to observe the interaction of ultrasonic waves
with surface anomalies in sintered piezoelectric substrates.
A steel sphere probe serves as a Coulomb electrode for ex-
citing and detecting ultrasonic waves. These Waves experi-
ence reflections, interferences, and mode conversions when
encountering defects and material boundaries, leading to
spatial and temporal dispersion. Localizing and quantifying
defects from wave visualization in such scenarios pose chal-
lenges, emphasizing the need to extract damage-sensitive
features from the collected experimental data.

Neural networks (NNs), the foundational architecture of
deep learning, find widespread application across diverse
scientific and engineering domains [6, 14, 30, 35]. The in-
augural NN model, Neocognitron [10], shares key features
with contemporary deep neural networks, including multi-
layer structures, max pooling, convolution, and non-linear
dynamics. Notably, the universal approximation theorem
assures that an NN with sufficient hidden units and linear
output can effectively represent any arbitrary function or
dataset, including intricate waveform data [7,15,16]. A key
advantage of deep learning lies in its ability to hierarchically
extract features from data, thereby accurately approximat-
ing functions without the need for manual feature selection
or predefined user bases [11, 24].

Deep learning has garnered considerable attention in sci-
entific computing and offers numerous avenues for advanc-
ing SHM. Deep learning methodologies are extensively uti-
lized for diagnosing civil and mechanical structures, yield-
ing promising outcomes [22, 26, 27, 36]. Neural networks,
alongside other deep learning frameworks, are employed
to detect anomalies in composite structures through vibra-
tion and frequency-based techniques [2, 23]. Several stud-
ies leverage guided waves in tandem with deep learning
architectures for damage detection in composite structures
[31, 33]. Moreover, Melville et al. (2018) employ clas-
sical machine learning techniques such as support vector
machines (SVM) and deep learning algorithms for anomaly
detection in full wavefield images [28]. These images are
captured using piezoelectric actuators and a laser Doppler
vibrometer. Deep learning methods demonstrate superior
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Figure 1. The figure illustrates the overall flow of the proposed
method. The dataset is utilized to train the model for binary clas-
sification. Following the model training, the inference pipeline is
employed to create the bounding boxes.

performance in damage detection compared to SVM-based
approaches. Zhou et al. introduced class activation map-
ping (CAM) utilizing CNN feature maps to precisely local-
ize objects within images [41]. By integrating CAM into
the training process, CNNs can effectively identify relevant
features within images.

Additionally, Simonyan and Zisserman introduced the
VGG16 architecture, renowned for its simplicity and re-
markable performance in image recognition [38]. VGG16’s
uniform configuration and deep architecture enable efficient
training and hierarchical feature learning from raw image
data. Leveraging insights from these works, our research
builds upon CNN strengths for fault detection and localiza-
tion in PZT materials.

3. Materials and method

The proposed method for damage detection, as shown in
the Fig. 1, leverages the power of transfer learning by utiliz-
ing the VGG16 convolutional neural network architecture
pre-trained on the ImageNet dataset. In our approach, we
adapt the VGG16 model by replacing the conventional flat-
tening and dense layers with a global average pooling layer
followed by a single dense layer. By fine-tuning the adapted
VGG16 model on our dataset, we aim to achieve robust and
accurate detection of damage in various industrial and med-
ical imaging applications.

In addition to adapting the VGG16 model architecture
for fault detection, we employ a technique utilizing heat
maps generated from the feature maps to generate bound-
ing boxes around detected damage. After passing an image
through the adapted VGG16 model, feature maps are ex-
tracted from intermediate convolutional layers. These fea-
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ture maps capture rich spatial information corresponding to
different aspects of the input image. Heat maps are gener-
ated to highlight regions of the image that contribute most
significantly to the model’s classification decision. Subse-
quently, thresholding is used to localize and refine the re-
gions of interest, thereby generating bounding boxes around
detected damage. This approach enables precise localiza-
tion of damage within images, facilitating further analysis
and decision-making in fault detection applications.

3.1. Experimental dataset

To aid in the development and assessment of fault de-
tection and localization methods, we employed a care-
fully crafted dataset comprised of spatiotemporal data ma-
trices obtained through coulomb coupling imaging. Each
dataset entry consists of a 365 matrices with dimensions of
200×200, capturing both spatial and temporal features. The
spatial aspect of each snapshot is represented by 200× 200
pixels, equivalent to a physical area of 10 millimeters by 10
millimeters. Our dataset was meticulously gathered over a
total acquisition time of 1 microsecond, resulting in 4000
time-varying snapshots. Interestingly, these snapshots ex-
hibit a repeating pattern approximately every 365 frame, re-
flecting the cyclic nature of the observed waves due to ex-
perimental conditions. To ensure a comprehensive dataset,
we included only one complete cycle of 365 images, each
representing distinct wave patterns essential for analysis
and model training. We used two such types of images-
good and anomaly, resulting in 730 images. The images
were normalised prior to feeding into the model. We train
the model using our dataset using a learning rate of 0.0001
with a batch size of 10, for 10 epochs using Adam optimizer.

3.2. Experimental setup

The experimental setup for point contact excitation and
detection is depicted in Fig. 2. This state-of-the-art ex-
perimental technique, based on the Coulomb coupling
method, facilitates the excitation and detection of ultrasonic
waves in piezoelectric materials [21]. The transforma-
tion of electromagnetic energy to acoustic energy in piezo-
electric materials is governed by the electric field gradi-
ent and piezoelectric properties gradient through Coulomb
coupling. The technique involves generating an electric
field to induce stress waves via electromechanical excita-
tion [12, 13, 18]. The excitation Dirac delta pulse with a
time width of 70 ns was generated by an arbitrary func-
tion generator (Agilent 81150A). The generated signal is
delivered for amplification through a radio-frequency (RF)
amplifier (AMP018032-T). Subsequently, these amplified
signals were directed to the excitation steel probe, which
gently contacted the surface of the PZT sample. The in-
duced acoustic waves in the specimen were then acquired
using a similar steel probe on the opposite surface of the
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Figure 2. A schematic diagram represents the experimental con-
figuration for point contact excitation and detection. Signal gen-
eration (Block A) amplifies the signal (Block B), initiating acous-
tic waves in the Coulomb probe configuration (Block C). Trans-
impedance conversion (Block D) directs signals to the oscillo-
scope (Block E) for averaging and digitization. Following this,
data is transferred via USB to a PC (Block F). The image acqui-
sition area covered 10 mm × 10 mm, with a step size of 50µm in
both directions.

PZT. The ultrasonic waves were amplified using a trans-
impedance amplifier (DHPCA-100), converting current to
voltage with adjustable amplification. The amplified signal
was then captured by an oscilloscope (Agilent 3024A) with
12-bit digitization capability and a sampling interval of 25
ns. The oscilloscope averaged 256 pulse shots, and the dig-
itized signal was stored in a PC via USB. The PC controlled
the XY plane mechanical scanner, covering a scanning area
of 10mm×10mm with a step size of 50 µm in both direc-
tions. The experiment aims to visualize the spatial-temporal
evolution of ultrasonic waves in a PZT sample for anomaly
identification. Initially, a healthy PZT specimen is placed in
the setup, and Coulomb scanning is conducted. Controlled
surface damage is then introduced using a diamond drill af-
ter the scanning process.

3.3. Model Architecture

In this section, a detailed description is presented of
the modified VGG16 convolutional neural network archi-
tecture utilized for damage detection using binary image
classification. The modified VGG16 architecture, which
can be clearly seen in Fig. 3, consists of 5 convolutional
blocks, denoted as B1 through B5. Each convolutional
block comprises stacked convolutional layers, followed by
max-pooling layers for spatial downsampling. Mathemati-
cally, the output of the i-th convolutional block Bi is repre-
sented as follows:

Xi = Convi(Xi−1) for i = 1, 2, 3, 4, 5 (1)

Where X0 represents the input image, Xi−1 represents
the input feature map to the ith convolutional block, Convi
denotes the set of convolutional layers within the ith block,
and Xi denotes the output feature map of the ith convolu-
tional block.
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Figure 3. This image represents the architecture of a custom multi-class classification model built with a VGG16 feature extractor and a
custom classification head. The model is pre-trained on ImageNet and parameters for the first convolutional blocks are frozen. The model
returns class scores when in train mode and class probabilities and normalized feature maps when in evaluation mode.

After the final convolutional block, the output feature
map X5 undergoes global average pooling to aggregate spa-
tial information across each feature map. Mathematically,
global average pooling computes the average value of each
feature map, yielding a fixed-length feature vector. The
global average pooling operation is represented as:

Y =
1

h× w

h∑
i=1

w∑
j=1

X5(i, j) (2)

Where, Y represents the output of the global average
pooling operation, h and w denote the height and width of
the feature map X5, respectively, and X5(i, j) represents
the activation value at position (i, j) in the feature map X5.
Following global average pooling, the fixed-length feature
vector Y is fed into a single dense layer acting as the clas-
sification head. The dense layer consists of neurons corre-
sponding to the 2 output classes and employs the softmax
activation function to produce class probabilities. Mathe-
matically, the output of the dense layer Z is computed as:

Z = Softmax(Wdense · Y + bdense) (3)

Where Wdense and bdense denote the weight matrix and
bias vector of the dense layer, respectively. The first 4 con-
volutional blocks based on the VGG 16 network pre-trained
on the ImageNet dataset are frozen. The last convolutional
block and the dense layer are then fine-tuned on our dataset.

3.4. Method to generate bounding boxes

During inference, our objective extends beyond mere
image classification to include the localization of anoma-
lies by generating bounding boxes around detected defects.
As shown in Fig. 4, this process involves leveraging the
model’s inference mode to output both class probabilities
and heat maps, which are subsequently processed to derive
bounding boxes.

Let F = {F1, F2, ..., F512} denote the set of feature
maps extracted from the Conv5–3 layer, each with dimen-
sions 14 × 14. Each feature map Fi highlights distinct re-
gions in the input image I . Leveraging the architecture’s
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Figure 4. This image shows how a CNN detects anomalies in
images. It transforms feature maps into heat maps, highlighting
anomalous regions. The process includes global average pooling,
a dense layer for probability calculation, and the multiplication of
feature maps with weights. Detected anomalies are marked with
bounding boxes on the heatmap.

Global Average Pooling Layer and Dense Layer, we as-
certain the influence of each feature map on the classifica-
tion scores, particularly the ’Anomaly’ class. Let Wdense =
{w1, w2, ..., w512} denote the weights of the Dense Layer
corresponding to each feature map. The weighted sum of
feature maps is computed as:

H =

512∑
i=1

wi · Fi (4)

The generated heat map H is upsampled to match the
input image’s size of 224 × 224. Bilinear upsampling is
employed for this purpose, ensuring the preservation of spa-
tial relationships. The heat map H is normalized using the
following equation:
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Hnorm(x, y) =
H(x, y)−min(H)

max(H)−min(H)
(5)

A threshold θ is selected to segment the heat map, trans-
forming values exceeding the threshold to 1 and those below
0:

Hbinarized(x, y) =

{
1 if Hnorm(x, y) ≥ θ

0 otherwise
(6)

The segmented regions represented by 1s in the heat-
map Hbinarized are considered as contiguous dense regions.
Bounding box B are generated around these contiguous re-
gions by identifying the minimum and maximum values
along the height and width dimensions, and their coordi-
nates are given by:

(xmin, ymin), (xmax, ymin), (xmax, ymax), (xmin, ymax) (7)

However, the size of the bounding box is affected by the
threshold value.

4. Results and discussion
The method is tested on two factors: the model’s perfor-

mance as a binary classifier and its performance on damage
localization.

4.1. Evaluation Metrics

To assess the classification performance of our damage
detection model, we employ a comprehensive set of evalu-
ation metrics, including accuracy, balanced accuracy, pre-
cision, recall, and F1 score. To evaluate the model’s per-
formance on damage localization, we employ a system-
atic procedure involving the division of the image into four
quadrants and a comparison of the bounding box centroids
within these quadrants which is evident in the Fig. 5. Let I
represent the input image, B denote the bounding box, and
C(B) represent the centroid of the bounding box B.

Beginning by dividing the image I into four quadrants,
denoted as Q1, Q2, Q3, and Q4, with the origin at the center
of the image. Each quadrant Qi is defined by its respective
coordinate ranges, where i = 1, 2, 3, 4. Ideally, due to the
isotropic nature of acoustic wave propagation in the PZT
material, all quadrants should exhibit symmetry.

Next, calculate the centroid C(B) of the bounding box B
detected within the image I . Subsequently, determining the
quadrant QB containing the centroid C(B) of the bounding
box B.

Following this, pairwise comparisons of all the quad-
rants Qi are performed in terms of Structural Similarity In-
dex (SSIM) to identify the quadrant with the lowest average
SSIM with the other quadrants. Let QA represent this quad-
rant.

1st 1st2nd 2nd

3rd 3rd4th 4th

1st2nd

3rd 4th
(a) (b) (c)

Figure 5. This image illustrates the process of evaluating a model’s
performance. It involves dividing the image into four quadrants,
comparing bounding box centroids within these quadrants, and us-
ing metrics such as accuracy. The process is part of a comprehen-
sive assessment of the model’s effectiveness in localizing damages
within identified quadrants.
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Figure 6. The confusion matrix shows the classification model’s
performance. It correctly predicted 71 ”Good” and 73 ”Anomaly”,
with only 2 ”Anomaly” misclassified as ”Good”. No ”Good” was
misclassified as an ”Anomaly”.

Finally, we compute accuracy between quadrants QA

and QB for all the images in the test set, considering the
classification of damage localization within these regions.
This evaluation metric provides a comprehensive assess-
ment of the model’s performance in localizing damages
within the identified quadrants, as evident in Fig. 6 facil-
itating the evaluation of damage detection accuracy and ef-
fectiveness in practical applications.

4.2. Quantitative analysis

We tested our method across the different aforemen-
tioned metrics and got the following results. The value
of θ is a hyper-parameter in our method and can be cho-
sen according to the use case. We studied how the accu-
racy of choosing the correct quadrant of the bounding box
depends on the value of θ in Fig. 7. In the study, ex-
ploration was conducted on the performance of ten distinct
models, each characterized by its unique architecture. Pri-
marily, three loss functions were utilized: Cross Entropy
(Original Loss Function), Negative Log Likelihood (NLL),
and Multi-Margin Loss (MML). From these loss functions,
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Figure 7. The plot shows the relationship between the accuracy of a model and the hyperparameter θ. This shows the dependence on
choosing the right value of hyper-parameter in determining the performance of the model.
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Figure 8. The figure illustrates the performance of ten different models using various loss functions and layers, evaluated against some
widely used metrics named Accuracy, Balanced Accuracy, Precision, F1 Score, and Recall, using the same dataset.

ten models with varying layers were created. The layers
employed included: Custom Layer 1 maintains the archi-
tecture of the Original Model while modifying the forward
method. Custom Layer 2 simplifies the classifier attribute
of the Original Model. The new classifier is a sequential
model comprising a linear layer that accepts 4096 inputs
and produces 2048 features, followed by a ReLU activation
function, a dropout layer with a dropout rate of 0.5, and a
final linear layer that accepts 2048 inputs and yields 10 fea-
tures.

The third layer type, Custom Layer 3, is a modification
of the Original Model. The classifier attribute of the model
is altered to include a sequential model with a linear layer
that accepts 4096 inputs and produces 2048 features, fol-
lowed by a ReLU activation function, a dropout layer with
a dropout rate of 0.5, an additional linear layer that accepts

2048 inputs and yields 1024 features, another ReLU activa-
tion function, another dropout layer with a dropout rate of
0.5, and a final linear layer that accepts 1024 inputs and
yields 10 features. Using these layers, ten models were
formed: Original, Original Custom Layer 1, Original Cus-
tom Layer 2, Original Custom Layer 3, MML Loss (where
only the loss function was changed but the layers in the
model remained the same as the Original), MML Custom
Layer 1, MML Custom Layer 2, NLL Loss (where the loss
function was changed but the layers in the model remained
the same as the Original), NLL Custom Layer 1, and NLL
Custom Layer 2.

After evaluating the performance of all the models using
widely used metrics such as Accuracy, Balanced Accuracy,
Precision, F1 Score, and Recall, in Fig. 8 it was found that
the Original Model outperformed the others. The efficiency
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Figure 9. The figure illustrates the performance of the original
model in the classification task in predicting whether the image is
good or an anomaly with respect to the true label. It also represents
the probability and the location of the bounding box formed.

of this model can also be seen in Fig. 9 which represents its
capabilities in predicting the labels correctly and forming
the best-suited bounding box.

5. Conclusion

A novel experimental technique based on Coulomb cou-
pling is employed to visualize the spatial-temporal evolu-
tion of ultrasonic waves in the PZT sensor. Sequential
temporal signals of the excited ultrasonic wave in the PZT
are analyzed to detect and quantify surface defects. This
study emphasizes the effectiveness of utilizing deep learn-
ing methods, particularly CNNs, for detecting and locating
the damage in the PZT ceramics. Through the incorpora-
tion of techniques such as class activation mapping (CAM)
and the utilization of architectures like VGG16, the study
has demonstrated enhanced accuracy and reliability in the
detection of anomalies within images of PZT materials.
CAM enables localization of the areas in the image that
contribute most significantly to the model’s classification
decision while leveraging the VGG16 architecture to pro-
vide a robust framework for feature extraction and anomaly
identification within the PZT material images. These results
emphasize the capacity of deep learning methods to im-
prove damage detection systems, facilitating more resilient
and effective monitoring and maintenance of PZT-based de-
vices and structures. Future investigations in this field offer
the prospect of enhancing fault detection techniques and ex-
tending their utility across diverse engineering disciplines.
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