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Abstract

In this work, we explore the potential of self-supervised
learning with Generative Adversarial Networks (GANs)
for electron microscopy datasets. We show how self-
supervised pretraining facilitates efficient fine-tuning for a
spectrum of downstream tasks, including semantic segmen-
tation, denoising, noise & background removal, and super-
resolution. Experimentation with varying model complex-
ities and receptive field sizes reveals the remarkable phe-
nomenon that fine-tuned models of lower complexity con-
sistently outperform more complex models with random
weight initialization. We demonstrate the versatility of self-
supervised pretraining across various downstream tasks in
the context of electron microscopy, allowing faster con-
vergence and better performance. We conclude that self-
supervised pretraining serves as a powerful catalyst, being
especially advantageous when limited annotated data are
available and efficient scaling of computational cost is im-
portant.

1. Introduction
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Figure 1. The proposed pertaining pipeline, that includes GAN-
based pretrainig on CEM500k dataset [9] followed by fine-tuning
for downstream tasks: semantic segmentation of Gold nanoparti-
cles [46], and super-resolution and denoising using the TEMIma-
geNET dataset [26].

Microscopy, a fundamental tool in scientific research for

several centuries, encompasses various branches, including
optical, electron, scanning probe, and X-ray microscopy
[24]. Electron microscopy (EM) is a technique that uses a
beam of accelerated electrons to obtain high-resolution im-
ages of biological as well as non-biological specimens. Ap-
plications of this technique exist across various scientific
domains, including biology, materials science, nanotech-
nology, and physics. In the field of biology, EM has been
used for studying a wide range of biological samples such
as lungs, muscles, bones, or nerve tissue [21]. In materials
science, it has been utilized for visualization of the growth
and characterization of nano- and microstructures [27], ori-
entation mapping of semicrystalline polymers [32], and the
identification of crystal lattice defects [31].

Imaging techniques and statistical analysis in EM have
been instrumental in providing insights into the structure
and properties of materials at various scales. Statistical
analysis and classical machine learning methods have been
used to analyze nanoparticles [11, 23], identify defects in
metals [43, 53], and enhancing the quality of superresolu-
tion results in correlative tomography [40]. These meth-
ods, however, have shortcomings, such as limited resolu-
tion, time-consuming sample preparation, and the need for
expert interpretation of results.

Deep learning (DL) and computer vision have been in-
creasingly employed to address these limitations, enhance
the capabilities of EM, and overcome the limitations of
classical imaging and analysis methods by providing auto-
mated analysis, improved resolution, and enhanced inter-
pretation of complex data: DL enables the extraction of
valuable information from large datasets and offers new
opportunities for quantitative image analysis in EM [3].
It has been used for analyzing nanoparticles in TEM im-
ages [46], denoising TEM images [49], identifying clean
graphene areas [39], automatically segmenting and track-
ing of crystalline defects, [13, 38], decoding crystallogra-
phy from high-resolution electron imaging and diffraction
datasets [1], understanding important features of DL mod-
els for segmentation of high-resolution transmission elec-
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tron microscopy (TEM) images [17], and segmentation in
large-scale cellular EM [4], focused ion-beam scanning EM
(FIB-SEM) [22] and high-resolution TEM data [14].

Conventional DL methods, such as convolutional neu-
ral networks, require large annotated datasets to be able
to learn and generalize well on unseen examples. Manual
annotation of datasets, especially EM images, is a time-
consuming and labor-intensive task. To alleviate this, tech-
niques such as transfer learning and self-supervised learn-
ing can be used. These techniques offer significant ad-
vantages for a range of computer vision tasks by enabling
models to obtain general features from extensive datasets,
facilitating knowledge transfer to specific tasks with lim-
ited labeled data. These approaches significantly reduce
annotation costs, mitigate the problem of data scarcity,
and strongly enhance generalization to unseen scenarios.
Pretrained models exhibit faster convergence during fine-
tuning, possess broader applicability across tasks, and pro-
vide resource-efficient solutions. The robust representations
acquired through self-supervised learning contribute to im-
proved performance in real-world scenarios, establishing it
as an essential strategy in computer vision tasks across di-
verse domains [16, 35, 42, 48].

Self-supervised learning aims to learn representations
from the data itself without explicit manual supervision. It
can be utilized to pretrain a model on a large amount of un-
labeled data, allowing it to learn general features and rep-
resentations from the data. These learned representations
can then be transferred and fine-tuned for a specific task,
effectively leveraging the knowledge gained from the self-
supervised pretraining to improve performance on the target
task. Pretraining models on these tasks with unlabeled data
and using the pretrained weights to fine-tune models on su-
pervised tasks with limited annotations help improve model
performance and reach faster convergence [7, 16, 34]. The
first step in self-supervised learning (pretraining on unla-
beled data) is called the pretext. The second step (fine-
tuning the pretrained models on annotated data) is called
downstream.

The main goal of this research is to use Generative Ad-
versarial Networks (GANs) in a self-supervised learning
framework (Fig. 1) to pretrain models on large unlabeled
EM datasets and use the weights to fine-tune DL models
for various supervised downstream tasks such as semantic
segmentation of nanoparticles, denoising, super-resolution,
and noise & background removal in high-resolution TEM
images. We show that such pretraining generalizes well and
results in faster convergence and improved performance for
different kinds of supervised tasks in EM with limited an-
notated data. Additionally, pretraining alleviates the need
for training complex network architectures and expensive
hyperparameter optimization. As a benchmark, results are
compared with the work of Sytwu et al., which investigates

the impact of receptive field size on the performance of DL
models for semantic segmentation of nanoparticles in TEM
images. Our results show that pretraining on unlabeled data
leads to an improved performance regardless of the recep-
tive field size or network architecture. More specifically,
with fine-tuning, simple and smaller models achieve at least
similar, often even better performance compared to larger,
more complex models with randomly initialized weights.

This work makes the following scientific contributions:
(i) demonstrating the substantial performance and conver-
gence improvements in EM tasks through self-supervised
(GAN-based) pretraining on unlabeled images; (ii) high-
lighting the generalization benefits and reduced dependency
on hyperparameter optimization across different network
architectures and receptive field sizes; (iii) a versatile frame-
work for fine-tuning DL models on various EM tasks is
introduced, including semantic segmentation, denoising,
noise and background removal, and super-resolution.

2. Related Work
A commonly used approach in deep learning is pretrain-
ing models on large labeled datasets and fine-tuning on
smaller datasets with limited annotations [29, 36, 54]. Such
an approach usually performs well when the source data
for pretraining is from a domain similar to the one from
which the target data was obtained. In domains where
large labeled datasets are scarce but an abundance of unla-
beled datasets is available, self-supervised learning proves
to be effective. Self-supervised learning leverages unla-
beled datasets for pretraining, and the learned knowledge
is then transferred to supervised downstream tasks with la-
beled data. Examples of successful self-supervised learning
methods include contrastive learning, jigsaw puzzles, au-
toencoders, masked image modeling, and generative-based
methods. SimCLR [7] is a prominent self-supervised learn-
ing method that has demonstrated significant advancements
in self-supervised learning on large-scale benchmarks such
as ImageNet. It leverages a contrastive pretraining objec-
tive, which involves maximizing agreement between differ-
ently augmented views of the same data point while mini-
mizing agreement with views from other data points. This
approach has been shown to learn semantically meaningful
representations from unlabeled data, making it a powerful
method for self-supervised learning. Momentum Contrast
(MoCo) [16] is another well-known technique that lever-
ages contrastive learning for unsupervised visual represen-
tation learning. It has been widely applied in various do-
mains, including remote sensing scene classification [2],
chest X-ray model pretraining [41], hand shape estimation
[56], and speaker embedding [10]. The method has also
been compared with other self-supervised learning tech-
niques, demonstrating its effectiveness in learning repre-
sentations from images and its potential for various down-
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stream tasks [55]. Conrad and Narayan used this method to
pretrain DL models on cellular EM images.

Figure 2. High- (left) and low-resolution (right) TEM image
dataset of 2.2 nm and 20 nm Au nanoparticles and their ground
truth segmentations. The more ordered structures are the nanopar-
ticles, and the noisy regions are the amorphous matrix.

Figure 3. The example TEMImageNet image and corresponding
ground truth labels. Left to right: original image, noise reduction,
denoising & background removal, and super-resolution

Masked image modeling, another self-supervised learn-
ing method, involves training a model to predict the orig-
inal content of an image from a corrupted or masked ver-
sion [51]. This approach has been applied in various do-
mains, including medical imaging and spectroscopic data
identification. Li et al. proposed RGMIM (Region-Guided
Masked Image Modeling) for COVID-19 detection, show-
casing the potential of masked image modeling in medical
imaging applications. Furthermore, Xue et al. highlighted
the success of masked image modeling in self-supervised
learning, demonstrating its ability to alleviate data-hungry
issues and achieve competitive results. Caron et al. show
the prominence of self-supervised learning on various tasks
using vision transforms. These examples underscore the
significance of masked image modeling in learning robust
representations and its applicability across diverse domains.

Using GANs for self-supervised pretraining is also very
effective. Chen et al. uses a GAN-based model to pretrain
a model that learns image rotation. Guo et al. uses GAN-
based pretraining for learning image similarity in remote
sensing images. Other notable research in this area includes
latent transformation detection [33], GAN-based image col-
orization for self-supervised visual feature learning [47],
and self-supervised learning for semantic segmentation of
archaeological monuments [20].

Recently, pretraining methodologies have been explored
in the domain of EM. In particular, the microstructure
segmentation with DL encoders pretrained on a large mi-
croscopy dataset [44], classification of scanning electron
microscope images of pharmaceutical excipients using deep
convolutional neural networks with transfer learning [19]

and the unsupervised pretraining, the Momentum Contrast
(MoCoV2) algorithm [8] was used by Conrad and Narayan.

In this paper, we explore the application of self-
supervised pretraining based on GANs, specifically the
Pix2Pix architecture [18], for EM images. The GAN model
is pretrained on a large unlabeled Cellular Electron Mi-
croscopy (CEM) dataset called CEM500K [9]. The pre-
trained generator model can be fine-tuned on a wide range
of downstream tasks in EM, including semantic segmenta-
tion of nanoparticles in TEMs, denoising, noise & back-
ground removal, and super-resolution. We show that such a
pretraining approach leads to faster convergence and higher
predictive power on all of the mentioned tasks with lim-
ited annotated datasets. We also find that fine-tuning with
pretrained weights helps smaller and architecturally simpler
models achieve similar or even higher scores compared to
training with random weight initialization.

3. Materials and Methods
3.1. Datsets

3.1.1 CEM500K

CEM500K [9] is a large-scale, heterogeneous, unlabeled
cellular EM image dataset developed for DL applications.
The dataset is curated from experiments and various pub-
licly available sources, encompassing 2D and 3D cellular
EM images with diverse imaging modalities, sample prepa-
ration protocols, resolutions, and cell types. It includes
examples from reconstructed FIB-SEM volumes, transmis-
sion EM (TEM) images, and EM image volumes and 2D
images from various sources.

3.1.2 HRTEM Au Dataset

The Gold nanoparticle image dataset consists of high- and
low-resolution TEM images of Gold (Au) nanoparticles
with varying sizes (2.2 nm, 5 nm, 10 nm, and 20 nm) and
different surface ligands, i.e., citrate (for 2.2 nm) and tan-
nic acid. The images were acquired using an aberration-
corrected TEAM 0.5 TEM for 2.2, 5, and 10 nm nanopar-
ticles, while low-resolution images of 20 nm nanoparti-
cles were obtained with a non-aberration-corrected TitanX
TEM. The nanoparticles have a different crystalline struc-
ture than the embedding matrix (which is amorphous). This
is the reason why the atomic arrangements look different in
TEM. An important task in materials science is to segment
such nanoparticles. The dataset was manually segmented
and labeled, followed by preprocessing steps such as outlier
removal and image standardization. To optimize memory
usage during training, images were divided into 512 × 512-
pixel patches, excluding patches consisting solely of amor-
phous background to address potential class imbalance is-
sues [46]. In this paper, we will refer to the datasets as
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Table 1. Number of images for training validation and testing of
the datasets, used in the experiments.

DATASET TRAIN VALIDATION TEST

CEM500K 50K/100K/200K 5000 5000
AU10NM 660 220 220
AU5NMV1 144 48 48
AU5NM 1044 348 348
AU20NM 660 220 220
AU2.2NM 1740 580 580
TEMIMAGENET 10377 1832 2155

“Au2.2nm”, “Au5nm”, “Au10nm”,“Au20nm”. Addition-
ally, the dataset of 5 nm Au nanoparticles [14] was included
in our experiments and is referred to as “Au5nmV1”. Ex-
amples of low and high-resolution TEM images of Gold
nanoparticles and the corresponding ground truth segmen-
tation annotations are shown in Figure 2.

3.1.3 TemImageNET

TEMImageNet is an open-source atomic-scale scanning
transmission electron microscopy (ADF-STEM) image
dataset. The dataset includes ten types of ground truth la-
bels for training and validating DL models for tasks such
as segmentation, super-resolution, background subtraction,
denoising, and localization. The dataset comprises simu-
lated ADF-STEM images of eight materials projected along
multiple orientations with diverse atomic structures and
crystallographic orientations. To replicate real-world ex-
perimental conditions, the images are augmented with real-
istic scan and Poisson noise, along with randomized linear
and nonlinear low-frequency background patterns [26]. The
example simulated image and the ground truth labels are
shown in Figure 3. The number of images in each dataset
for training, validation and testing is given in Table 1.

3.2. Pretraining Method

We employ a GAN-based approach for pretraining on un-
labeled data. GANs are originally designed for generating
new data samples that resemble a given dataset. The GAN
architecture involves two neural networks: a generator and
a discriminator. These are trained simultaneously through
adversarial training. The generator takes random noise as
input and generates synthetic data samples that are indistin-
guishable from real data. The discriminator evaluates the
real and generated data and distinguishes them from each
other. Both networks are simultaneously trained in an ad-
versarial fashion: the generator tries to improve its ability
to generate realistic data to fool the discriminator. The dis-
criminator, in turn, strives to become better at distinguishing
between real and generated samples [12].

Conditional Generative Adversarial Networks (cGANs)
are an extension of the traditional GAN framework, where
the generator is conditioned on additional information, typ-
ically in the form of class labels or other auxiliary data. The
key idea is to guide the generation process based on specific
conditions, allowing a more controlled and targeted gener-
ation of samples. In a cGAN, both the generator and the
discriminator receive additional input information (condi-
tioning) alongside the random noise for the generator and
real/fake labels for the discriminator. The conditioning in-
formation could be anything relevant to the desired output,
e.g., class labels, attributes, or other types of data. Con-
ditional GANs have been used for various tasks, includ-
ing image-to-image translation, image synthesis with spe-
cific attributes, and generating samples from certain classes.
They provide a way to control and manipulate the charac-
teristics of the generated data by incorporating additional
information during the training process [30]. The same loss
function for cGANs as mentioned in [18] is used.

In this paper, we use the cGAN model called Pix2Pix
[18] for pretraining on the unlabeled CEM500K dataset of
EM images. The images are fed to the generator with added
noise, and the goal is to generate output images that are
indistinguishable from the original ones. The trained gen-
erator model can then be fine-tuned on supervised down-
stream tasks explained in Section 3.3. To investigate the
influence of the size of unlabeled datasets used for pretrain-
ing on the results of fine-tuning in the downstream tasks, we
run pretraining experiments with different numbers of ex-
amples from the CEM500K dataset: 50K, 100K, and 200K
examples.

3.3. Downstream Tasks

The pretrained generator model explained in the previous
section can be fine-tuned on a wide range of downstream
tasks. As case studies in this paper, we have selected tasks
including semantic segmentation of nanoparticles, denois-
ing, noise & background removal, and super-resolution in
high-resolution TEM images.

Semantic segmentation involves labeling each pixel of
an image with a corresponding class of what is being rep-
resented. In materials and biological sciences, this imag-
ing task plays a crucial role in analyzing and understand-
ing complex microstructural and elemental features within
the images obtained. Sytwu et al. conducted experiments
on semantic segmentation of Gold nanoparticles of differ-
ent sizes and resolutions using the U-Net model [37]. They
used a U-Net with different numbers of residual blocks and
different receptive field sizes to study the influence of model
complexity and receptive field size on the performance of
the model. Their findings show that increasing the receptive
field increases model performance in high-resolution TEM
images. They also conclude that as the model complexity
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increases, there is a corresponding improvement in perfor-
mance and prediction confidence. Here, the focus is on an
investigation of the influence of pretraining on the perfor-
mance of DL models in semantic segmentation. Therefore,
we selected the same network as that used by Sytwu et al.,
i.e., the U-Net, and used it as the generator for pretrain-
ing on unlabeled data in the previous step. We then fine-
tuned it for semantic segmentation on the same dataset, i.e.,
high-resolution TEM images of Gold nanoparticles. The
results were compared to training the same model with ran-
domly initialized weights. These experiments were con-
ducted with different complexities and receptive field sizes.
We additionally used a more complex High-Resolution Net-
work (HRNet) [45] as the generator and fine-tuned it on this
dataset for comparison.

Furthermore, atom segmentation, localization, noise
reduction, and deblurring are crucial tasks in atomic-
resolution scanning transmission electron microscopy
(STEM). The images captured at the atomic scale often suf-
fer from noise, which can obscure subtle details and com-
promise the accuracy of atom segmentation and localization
[26]. Denoising is important in refining these images, en-
suring a clearer representation of the atomic structure. It
enhances the level of detail in the images beyond the inher-
ent resolution of the microscope, achieving higher spatial
resolution, which allows researchers to discern finer struc-
tural features and better characterize atomic arrangements.
By reducing noise and enhancing resolution, the method en-
sures a more accurate and robust analysis of atomic struc-
tures, even in challenging imaging conditions with varia-
tions in sample thickness. To show the generalizability of
pretrained models in our work, we use the TEMImageNet
data and do experiments on denoising, noise & background
removal, and super-resolution. We use the HRNet model
and run the same experiments to compare the results of
fine-tuning to those of training with random weight initial-
ization. Details of experiments and results are outlined in
Section 4.
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Figure 4. Validation L1 loss for HRNet and U-Net 4 424 for three
different dataset sizes.

Figure 5. Left to write: input image with added noise, original
image, and generated images by U-Net and HRNet.

4. Experiments and Results

4.1. Experiments on CEM500K and GANs

The CEM500K dataset was employed in the pretraining
step where cGANs, based on the Pix2Pix model [18], were
used. As generator, we used different U-Net architectures
with varying numbers of residual blocks and receptive field
sizes. Specifically, configurations with 2, 3, and 4 residual
blocks were considered, each associated with different re-
ceptive field sizes. For two residual blocks, the receptive
field sizes were 44, 84, and 116, for three blocks, we used
96, 176, and 240 as well as a receptive field of 200, 360,
and 424 for four blocks, in line with the work presented
in [46]. For brevity, we refer to these U-Net variations as
U-Net B RF from now on, where B refers to the number
of residual blocks and RF refers to receptive field size. Ad-
ditionally, a more complex model architecture, HRNet [50],
was used to explore its effectiveness in comparison to U-Net
variants and, in particular, to understand how far an increase
in model complexity results in an increase in expressivity.

For training, random Gaussian noise, blurring, flipping,
and rotations were applied to the images used as input to the
generator. The generator was trained to predict images in-
distinguishable from the original “clean” images. The train-
ing for each model variation was conducted for 60 epochs
with a batch size of 128. Adam optimizer with a learning
rate of 2×10−4 was used for optimization. In terms of train-
ing the whole GAN architecture, it was framed as the Least
Square GAN (LSGAN), which adopts the least squares loss
function for the discriminator and is more stable than reg-
ular GANs. LSGANs are able to generate higher quality
images and perform more stably during the learning pro-
cess [28]. The generator was also trained using the L1 loss,
and the λ in Equation 3 was set to 100.

Each model variation was trained with the same exper-
imental setup for three different subsets of the CEM500K
dataset consisting of 50K, 100K, and 200K images. This
experiment was conducted to investigate the influence of the
dataset size in pretraining on the model performance during
fine-tuning on downstream tasks.

The validation plots for the GAN pretraining with HR-
Net and the most complex U-Net variation are shown in
Figure 4. For each of the models, as the dataset size in-
creases, the validation loss decreases. Interestingly, the U-
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Net model shows better validation results compared to HR-
Net. This is also illustrated in the generated images in Fig-
ure 5. We believe this is due to the skip connections from
the initial residual blocks in the U-Net model to the corre-
sponding upsampling blocks. The U-Net model has direct
access to the information in the larger spatial resolutions
and is more prone to memorizing, while the HRNet model
actually learns the feature representations as it encodes the
images into lower spatial resolutions with higher feature
maps and then decodes it, without having direct access to
the input features in the higher spatial resolution. Addition-
ally, we find that the pretrained HRNet model fine-tuned on
a variety of supervised tasks outperforms the U-Net model.
For brevity, results for other experiments are included in the
supplementary materials.

4.2. Experiments on Semantic segmentation with
Au datasets

The segmentation of nanoparticles in the Au datasets was
approached using the same variations of the U-Net and
the HRNet models that were pretrained on the unlabeled
CEM500K dataset. All model variations were trained and
systematically compared with respect to weight initializa-
tion with random weights and with the pretrained weights
from the previous step. All experiments were performed
by training for 60 epochs on each dataset. As an objective
function, the Binary Cross Entropy (BCE) loss was used
and minimized by the Adam optimizer with a learning rate
of 2× 10−4. The model’s performance was evaluated using
the dice score. The original image size is 512× 512 pixels,
but data augmentation techniques, including various types
of noise, flips, rotations, resizing, and random cropping to
448× 448 pixels, are applied.

In the experiments conducted with different variations
of the U-Net, we observe that randomly initialized mod-
els with a higher receptive field size perform better than
those with a smaller receptive size. However, the fine-
tuned models with smaller receptive field sizes initially not
only outperform the same models with randomly initial-
ized weights, but even outperform those with bigger re-
ceptive fields. Even though the randomly initialized model
catches up as training progresses longer, the performance
is not stable and the oscillations are large. This is illus-
trated in the validation plots for the Au5nmV1 dataset in
Figure 6. We also observe that the fine-tuned U-Net model
(U-Net 2 44 P(100K)) outperforms the randomly initial-
ized models, as illustrated in Figure 7. Suffixes P(50K),
P(100K) and P(200K) indicate models that were pretrained
on 50K, 100K, and 200K unlabeled images, respectively,
in the first step.

In terms of model complexity, the observation is still
consistent. As illustrated in Figure 8, a randomly initial-
ized U-Net 4 424 performs worse than the three different
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Figure 6. Comparison of validation loss for bigger randomly ini-
tialized U-Net and smaller fine-tuned U-Nets.
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combinations of fine-tuned models.
Conducting the same experiments with the HRNet
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model, we find that a fine-tuned U-Net model still out-
performs the randomly initialized HRNet model, but all
three fine-tuned HRNet models not only outperform the ran-
domly initialized HRNet model but also score higher than
the randomly initialized U-Net, as well as all fine-tuned
U-Net models. The validation plots are shown in Figure
9. Example predictions are illustrated in Figure 10 for the
fine-tuned HRNet and fine-tuned U-Net 4 0, pretrained on
100K CEM500K images. Moreover, the dice scores on
test set are calculated for all models after 5, 30 and 60
epochs. As shown in Table 2, the pretrained models con-
verge faster than randomly initialized models and generally
score higher, specially in the beginning epochs. The general
trend of the results and observations for all other datasets is
consistent with the above-reported ones.

Figure 10. Left to write: original image, ground truth, prediction
by fine-tuned HRNet and U-Net 4 0, respectively, both pretrained
on 100K CEM500K images and fine-tuned.

4.3. Experiments on TEMImageNet dataset

As the HRNet model performed better than all U-Net vari-
ations regardless of the fine-tuning, we conducted the ex-
periments on the TEMImageNet dataset only with HR-
Net. On this dataset, we decided to exclusively employ
HRNet for denoising, noise & background removal, and
super-resolution tasks. For each of these tasks, the HR-
Net model was trained with random initialization. The
same experiments were conducted by fine-tuning the HR-
Net model pretrained on three separate subsets of the unla-
beled CEM500K datasets in the previous step. During the
experiments, an image size of 256x256 pixels and a batch
size of 64 were used, and the training process continued for
60 epochs. The objective function comprised both L1 and
L2 terms, and optimization was carried out using the Adam
optimizer with a learning rate of 2× 10−4. The chosen data
augmentation techniques, including noise variations, flip-
ping, rotations, and random resizing, as usual had the goal
of enhancing the model’s ability to generalize and learn ro-
bust features.

The plots for validation loss in all three tasks are shown
in Figure 11. We observe that in all three cases, the vali-
dation losses for the fine-tuned models are lower than those
for the randomly initialized models. During the initial train-
ing phase, the validation loss for the model fine-tuned with
smaller datasets is larger than that for the models trained
with more data. However, already after approximately 10

Table 2. Comparison of segmentation Dice scores for different
training methods (randomly initialized weights (R) and pretrained
(P) with GANs on CEM500K using 50K, 100K, 200K images)
on the Au5nmV1 test dataset. The experiments were performed
with UNets of different sizes (with two and four residual blocks)
and receptive fields (two for each U-Net size) and HRNet.

Epochs 5 30 60

H
R

N
et

R 41.05 86.55 90.24
P(50k) 86.37 91 91.97
P(100k) 88.49 92.14 92.38
P(200k) 83.86 91.41 92.07

U
-N

et
4

bl
oc

ks 42
4

R 7.8 86.03 89.95
P(50k) 72.78 89.81 91.16
P(100k) 71.8 89 89.72
P(200k) 75.46 87.34 90.21

20
0

R 0.25 80.69 83.61
P(50k) 82.03 87.05 85.68
P(100k) 83 86.7 88.53
P(200k) 55.75 86.56 89

U
-N

et
2

bl
oc

ks 17
6

R 0 80.81 82.49
P(50k) 61.99 82.3 84.72
P(100k) 51.97 80.16 83.47
P(200k) 67.87 80.48 83.18

44
R 0 74.87 79.75
P(50k) 65.89 76.9 78.59
P(100k) 58.62 75.67 79.92
P(200k) 53.15 75.45 76.99

epochs, this difference vanishes. Additionally, the vali-
dation L1 loss of all randomly initialized models exhibits
severe fluctuations, while the fine-tuned models behave
much more robustly. Some example predictions for denois-
ing, noise & background removal, and super-resolution are
shown in Figures 12, 13, and 14, respectively. Even though
all predictions are visually very good and it is difficult to ob-
serve any differences, the quantitative results as confirmed
by the plots in Figure 11 show that pretraining leads to a
better and more stable performance. Similarly, the L1 met-
ric on test set are calculated for all models after 5, 30 and
60 epochs. As shown in Table 3, the pretrained models con-
verge faster than randomly intialized models and generally
score better, specially in the beginning epochs.

5. Conclusion
In this paper, we explored the impact of pretraining on var-
ious computer vision tasks. Through self-supervised train-
ing, GANs, and a pretraining strategy involving unlabeled
data followed by fine-tuning on labeled data, our investi-
gation showcased significant advancements in the capabil-
ities of computer vision models, specifically in the context
of EM. Self-supervised training enabled the models to ex-
tract representations from unlabeled EM data, addressing
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Figure 11. Validation L1 loss for the downstream tasks on TEMImageNet dataset. Left to right: denoising (DN), noise & background
removal (N&BGR), and super-resolution (SR)

A B C

D E F

Figure 12. Results for denoising on TEMImageNet. Input (A),
ground truth (B), prediction by randomly initialized model (C),
and predictions (D, E, F) by fine-tuned models pretrained on 50K,
100K, and 200K images.

A B C

D E F

Figure 13. Results for noise & background removal on TEMIma-
geNet. (A)-(F) in analogy to Figure 12.

challenges associated with the scarcity and labor intensity
of labeled datasets in this domain. Furthermore, the inte-
gration of GANs in generative pretraining proved beneficial
for improving model generalization.

Pretraining on unlabeled data, followed by fine-tuning on
labeled data, enhanced performance and accelerated conver-
gence in several downstream tasks, including segmentation,
denoising, and super-resolution. An important outcome of
our work for such tasks is that for obtaining a higher predic-
tive accuracy, the model complexity might not be the only or
most important factor. The CEM500K dataset, containing
SEM images, was used for pretraining and improved per-
formance in TEM image-based downstream tasks, despite
the differences between SEM and TEM images. Future re-

A B C

D E F

Figure 14. Results for super-resolution on TEMImageNet. (A)-(F)
in analogy to Figure 12.

Table 3. Comparison of the L1 metric for different training meth-
ods (randomly initialized weights (R) and pretrained (P) with
GANs on CEM500K using 50K, 100K, 200K images) on each
of the downstream tasks: Super-resolution (SR), Noise & Back-
ground Removal (N&BGR) and Denoising (DN). The experiments
were performed with HRNet.

Epochs 5 30 60

SR

R 0.01972 0.01524 0.01122
P(50k) 0.01688 0.01359 0.0112
P(100k) 0.02105 0.01465 0.01142
P(200k) 0.01639 0.01371 0.01156

N&BGR

R 0.06391 0.03438 0.0176
P(50k) 0.03332 0.02257 0.01776
P(100k) 0.03268 0.02913 0.01766
P(200k) 0.03323 0.0224 0.01792

DN

R 0.04732 0.02996 0.01541
P(50k) 0.03287 0.02169 0.01542
P(100k) 0.03693 0.03708 0.01555
P(200k) 0.02657 0.01907 0.01586

search could explore pretraining on TEM images for closer
domain relevance. Additionally, while self-supervised
learning with GANs enhanced the performance in this
study, their training complexities and risk of mode collapse
suggest exploring alternative self-supervised methods like
contrastive pretraining for potentially better outcomes in the
future.
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