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Abstract

In materials science research, digital volume correla-
tion (DVC) analysis is commonly used to track deforma-
tions and strains to elucidate morphology-function rela-
tionships. Optical flow-based DVC is particularly popu-
lar because of its robustness to estimate the correlation
as a dense deformation vector. Recently, computer vision
researchers showed that network-based optical flow ap-
proaches can outperform classical iterative optical flow ap-
proaches. In this paper, we propose a supervised machine
learning approach for digital volume correlation, VolRAFT,
that estimates the 3D displacement vector between the ref-
erence volume and the deformed volume. The proposed ap-
proach extends the state-of-the-art network-based optical
flow method, RAFT, from 2D images to 3D volumes such
that it predicts the volumetric displacement vector from the
input volume pairs. Experiments show that the proposed
network performs well in estimating different displacement
fields when compared to cutting-edge iterative DVC meth-
ods for bone-implant materials based on high resolution
synchrotron-radiation micro-computed tomography imag-
ing data.

1. Introduction
Digital volume correlation (DVC) analysis is a highly im-
portant tool in materials science to track deformations and
strains. Thus, it can be used to evaluate a material’s
functional behaviour from in situ imaging and determine
morphology-function relationships. For example, DVC
based on synchrotron radiation-based micro-CT (SRµCT)
and laboratory µCT data has been used for a long time to
study deformations in musculoskeletal tissues [9], as well as
materials such as fibre-reinforced composites [16]. Most of
the existing DVC analysis methods can be categorised into
local or global methods [8, 9]: local DVC methods [2, 18]
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Figure 1. VolRAFT consists of three major parts: feature encoders
that extract per-voxel feature vectors from both volumes; dot prod-
uct of feature vectors that constructs a 6D correlation matrix (in the
dimension of W ×H ×D ×W ×H ×D); recurrent 3D update
operators which update the displacement field f . The update oper-
ators predicts the 3D displacement field in its dimensions of width
(fw), height (fh) and depth (fd) respectively.

estimate the displacement field as a local neighbourhood
block-matching problem; global DVC methods [7, 11] for-
mulate the DVC problem as a global variational problem.

Interestingly, the trend of methodological development
to move from local to global methods is highly similar to
the development of optical flow method in computer vision
area, where optical flow is defined as the pixel motion of
adjacent frames by the dense displacement field [36]. This
similarity of development trends is because the objective
of both optical flow and DVC methods is to estimate the
dense displacement vectors between images (i.e. the de-
formation vectors for volumes), which makes optical flow-
based DVC [7, 11, 15, 23] particularly interesting because
of the robustness shown by optical flow methods.

However, classical iterative optical flow methods often
require hand-crafting and fine-tuning by experts [31], which
creates a bottleneck in their application for domain experts
such as materials scientists, as individual volumetric data
can have a large variety of tested samples and experimental
setups. Thus, machine learning-based optical flow methods,
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which are also categorized as data-driven approaches [36],
are of high interest as they learn the prior knowledge
instead of requiring expert-handcrafting. Recently, re-
searchers showed that learning-based approaches can out-
perform classical iterative optical flow approaches [36].

Practically, modern machine learning approaches rely
heavily on the computing power of GPUs, which may rep-
resent a limitation based on the GPU memory size. To ap-
ply machine learning based optical flow methods to DVC
analysis, the exponential increase of memory requirement
brought by the increment of data dimensionality from 2D
images to 3D volumes is one of the major challenges, es-
pecially for high resolution volumetric data such as the to-
mography data by SRµCT imaging.

In this paper, we apply machine learning-based optical
flow methods to the DVC analysis of in situ SRµCT data
of loading of bone-implant specimen. We extend one of
the state-of-the-art optical flow networks, the Recurrent All-
Pairs Field Transforms (RAFT) [31], from 2D image pairs
to 3D volume pairs as a Volumetric RAFT (VolRAFT) ap-
proach, which estimates the 3D displacement vectors be-
tween the reference volume and the deformed volume. In
detail, our contribution entails:

• The proposal of a supervised machine learning ap-
proach for digital volume correlation, VolRAFT, that
estimates the 3D displacement fields between the ref-
erence volume and the deformed volume.

• An extension of the optical flow neural net-
work approach, Recurrent All-Pairs Field Transforms
(RAFT) [31], from 2D images to 3D volumes, which
includes the volumetric input and output tensors, net-
work layers and the 6D correlation matrix.

• The generation of synthetic displacement fields and
their application to the measured tomographic volume
by volume warping, and usage of the deformed volume
to serve as the training, validation and testing datasets.

• A comparison to cutting-edge iterative methods, for
bone-implant loading scenarios based on SRµCT im-
age data, which reveals that the proposed VolRAFT
approach can achieve a better performance.

2. Related work

Digital Volume Correlation (DVC) DVC is a com-
monly used method for materials analysis to study the de-
formation and strain for materials experiments. Hussein et
al. [18] formulated DVC as a maximum likelihood estima-
tion and solved it by the Gauss-Newton method, which is
a gradient-based iterative method. Bar-Kochba et al. [2]
proposed Fast Iterative Digital Volume Correlation Method
(FIDVC) to estimate the dense displacement field in lo-
cal windows. Dos Santos Rolo [11] expressed the DVC
analysis as a global 3D variational optical flow problem

and then solved it by the Brox’s variational optical flow
method [6]. Hermann and Werner [15] and Nogatz et
al. [23] also extended the Brox’s optical flow method to
compute the correlation vector of 3D CT images. Re-
cently, Bruns et al. [7] proposed and implemented an itera-
tive DVC method based on the optical flow method in [11]
for the study of implant materials that was similarly ap-
plied successfully to other materials [24–26, 32]. Other
common methods also included the commercial software
DaVis (LaVision GmbH, Göttingen, Germany), the service
BoneDVC (Insigneo Institute, Sheffield, UK), CCPi iDVC
app (Collaborative Computational Project in Tomographic
Imaging, UK [10, 22]) and TomoWarp2 [34]. For further
details, since the pioneering review by Bay in [3], Buljac et
al. [8] provided a review from the perspective of solid me-
chanics, while Dall’Ara and Tozzi[9] conducted a survey on
the application of DVC methods in biological tissues.

Using machine learning for DVC is a relatively new di-
rection in domain research fields, although it has shown
improvements in efficiency by reducing the computational
complexity [9]. Shen et al. [27] trained several common
deep CNN architectures, such as AlexNet and ResNet, in
supervised and transfer learning manners for DVC analy-
sis of in situ SRµCT experimental data of bone images.
Duan and Huang [13] proposed a deep learning based ap-
proach, DVC-Net, to train convolutional neural networks
(CNNs) directly predicting the displacement vectors from
the volumetric intensities for simulated data and volumetric
images captured by a laser scanning confocal microscope.
Wang et al. [35] proposed a deep learning based approach,
StrainNet-3D, for real-time DVC based on optical flow
CNN using simulated data. However, most of these CNNs
basically only enlarged commonly used network architec-
tures with hyperparameter fine-tuning. It could be more
beneficial to explore state-of-the-art networks designed for
optical flow with a proven improvement beyond CNNs.

Machine Learning based Optical Flow Machine learn-
ing based optical flow method is a well-studied problem
in computer vision and pattern recognition area, where re-
searchers provided comprehensive reviews in [14, 33, 36].
In this section, we focus on popular neural network ap-
proaches based on supervised training methods. Modern
optical flow networks started to emerge from FlowNet [12]
and its later extension FlowNet2 [19], which consisted of a
fully convolutional neural network (actually a U-Net) and a
combination of multiple U-Nets. On top of FlowNet, PWC-
Net [30] was proposed with respect to its feature Pyramid,
Warping and Cost volume, while the authors showed that
it was more efficient and faster than FlowNet2. After
PWC-Net, Teed and Deng proposed RAFT [31], which
was later considered as one of the most influential network
based approach [29], as RAFT demonstrated an outstand-
ing performance in terms of robustness and memory ef-
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ficiency. Most of the well-known optical flow in recent
years were generally developed based on RAFT, namely
BRAFT [20], CRAFT [29], FlowFormer [17] and Flow-
Former++ [28], etc. Even if researchers introduced trans-
formers to the RAFT architecture [17, 28], the original
RAFT approach based on convolutional layers is still con-
sidered one of the most renowned optical flow methods be-
cause of its simplicity and efficiency.

Recurrent All-Pairs Field Transforms (RAFT) As our
approach extends the approach of RAFT [31], we discuss it
in more detail. The RAFT approach simplifies optical flow
estimation into a three-step process: (1) a pair of feature en-
coders transform each pixel of the images into a pair of la-
tent feature space vectors. (2) a correlation layer computes
the similarity between all feature pairs, constructing a 4D
correlation volume. A pyramid of 4D correlation volumes
is constructed by applying average pooling to this 4D cor-
relation volume. This correlation pyramid further extracts
a sequence of feature maps in lower dimensions. (3) the
recurrent update operator predicts values from the pyramid
of correlation feature maps and iteratively refines the flow
field from an initial zero state.

According to the authors in [31], RAFT is inspired by
classic optimization techniques, but with a critical differ-
ence: both the feature extraction and the correlation estima-
tion are learned from the data, allowing RAFT to adapt to
complex and varied motion patterns more effectively than
traditional, handcrafted methods. Therefore, RAFT seems
ideal for the extension towards volumetric image data, as
we outline in the following.

To the best of our knowledge, the proposed approach is
the first work to apply cutting-edge machine-learning-based
optical flow approach for DVC analysis for bone-implant
specimen using high resolution SRµCT imaging data.

3. The proposed VolRAFT method
Given a pair of volumes reconstructed by CT reconstruc-
tion methods, we denote the reference volumetric intensity
as v0(x) and the deformed volumetric intensity as v1(x) at
each spatial position x. DVC is formulated as estimating a
dense displacement field f , such that the displacement field
maps each voxel in v0 to its corresponding coordinates in
v1, resulting in v1(x) = v0 (x+ f(x)).

Fig. 1 illustrates the proposed approach, which consists
of three major parts: feature extraction by encoders, a 6D
correlation matrix, and the 3D recurrent update operators.

Encoders To extract features from the input volume
pairs, two feature encoders and one context encoder are
built by convolutional layers (illustrated as blue blocks
in Fig. 1). Here, we denote the feature encoders for the
reference volume as gθ(v0) ∈ RW×H×D×C and for the de-
formed volume gθ(v1) ∈ RW×H×D×C , where W,H,D,C

are dimensions of width, height, depth and channels in the
feature space respectively, and θ denotes the network pa-
rameters. Note that the context and the feature encoders gθ
are almost identical in their architectures, only except that
the feature encoders utilize instance normalization while the
context encoder does not use any normalization layer.

6D correlation matrix To compute the visual similarity,
we construct a correlation matrix (yellow blocks in Fig. 1)
by the dot product operation between the extracted feature
vectors and the feature encoders. Given the feature vectors
gθ(v0) and the feature vector gθ(v1), we formulate the 6D
correlation matrix M as:

M (gθ(v0), gθ(v1)) ∈ RW×H×D×W×H×D

where Mijklmn =
∑
h

gθ(v0)ijkh · gθ(v1)lmnh
(1)

We further construct a correlation pyramid ML by aver-
age pooling the last three dimensions of M by the stride
of 2L, where L denotes the level of pyramid. This multi-
scale pyramid ML ∈ RW×H×D×W/2L×H/2L×D/2L allows
the network to estimate the large and small displacement
and to recover the large displacement of small-sized struc-
tures [31].

After the correlation matrix, correlation lookup operators
(orange blocks in Fig. 1) generate feature maps by index-
ing from the correlation pyramid. Similar to RAFT [31],
these correlation lookup operators use the local neighbor-
hood, which are grids around the projected position on the
deformed volume, to index the correlation volumes for each
pyramid level. These grids are interpolated by trilinear sam-
pling and are then concatenated to form a feature map.

3D recurrent update operators Similar to RAFT, the
3D recurrent update operators (grey blocks in Fig. 1) pre-
dict a sequence of displacement fields {f1, ..., fN} for each
iteration, starting from a hidden initialized state f0 = 0. At
the k-th iteration, this update operator estimates an update
of the displacement ∆f such that fk+1 = fk +∆f .

The correlation features from the lookup operator are
further extracted by two convolutional layers. Another two
convolutional layers are applied to extract the displacement
features from the current displacement field fk. In addition
to the direct extracted features from the context encoder,
these three features - correlation, displacement, and context
- are concatenated and served as the input feature map xt

for the recurrent update operator.
The recurrent update operator is based on a Gated Re-

current Unit (GRU), where its core component is a gated
activation unit with 3D convolutional layers:

zk = sigmoid (Conv3×3×3 ([hk−1, xk]; θ))

rk = sigmoid (Conv3×3×3 ([hk−1, xk]; θ))

qk = tanh (Conv3×3×3 ([rk · hk−1, xk] ; θ))

hk = (1− zk) · hk−1 + zk · qk

(2)
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where [·, ·] denotes the concatenating operation and hk is
the hidden state predicted by GRU at the k-th iteration.

The output feature hk from the GRU block passes
through two convolutional layers to predict the displace-
ment update at a lower dimension. Finally, we use trilin-
ear interpolation to upsample the predicted displacement
update ∆f to the desired dimension W ×H ×D.

Supervised loss with a foreground mask When consid-
ering DVC from (SR)µCT, generally the interested material
subjected to deformation is placed within a controlled en-
vironment and sample holder. These may be visible within
the reconstructed image data. Therefore, the DVC analysis
should be limited to the sample region itself, for example
by creating a foreground segmentation mask [7]. Hence,
regarding the loss function, we apply a binary volumet-
ric mask vm ∈ {0, 1}W×H×D, which separates the back-
ground and foreground voxels (e.g. in bone-implant sam-
ples, the foreground structures include both the screw and
the implant), respectively. We train the network using su-
pervised learning approach with the mini-batch b to mini-
mize the ℓ1-distance between the predicted and the ground
truth for all of the predicted displacements {f1, ..., fN}:

min
θ

∑
b

N∑
k=1

γN−k · vm ·
∥∥fb

gt − fb
k(θ)

∥∥
1

(3)

where γ denotes the exponentially increasing weights and
fgt is the ground truth displacement.

Patch-based training and inference During the adapta-
tion of RAFT from 2D image pairs to 3D volumetric pairs,
we discovered that it is very difficult to have sufficient GPU
memory to store and train the full volumes, the ground-truth
displacement fields, and the network parameters in a single
GPU device. Theoretically, it is possible to split all ten-
sors into multiple GPU devices for computation. However,
in common practise of material science research, the size
of the high-resolution imaging data such as the volumes of
synchrotron radation tomography can easily scale up in the
third-order of size, e.g. the SRµCT volumes in this paper are
1280×1280×960 voxels. Therefore, we split the reference
volume v0, the deformed volume v1, the volume mask vm,
the ground truth fgt and the predicted displacement fields f
into patches with the size factor of 1/16 (i.e. the full vol-
ume with a size of 1280 × 1280 × 960 is split into patches
with a size of 80×80×60). Moreover, we use the half-size
overlapping stride (40× 40× 30) and only include patches
that contain foreground voxels in its volume mask. We train
VolRAFT based on these patch pairs.

As the network is trained using patch pairs, it predicts the
displacement field in the dimension of patch size (i.e. 80×
80 × 60 in our case). Hence, we utilize a 4-steps patched-
base method for the inference:

• Roll the sampling window by the stride size of 1/7
(e.g. 11× 11× 8 in our case) for each direction.

• Generate a 3D Gaussian distribution matrix in the di-
mension of the patch size as the weights of prediction.

• Multiply and accumulate the Gaussian weights to the
predicted displacement, and repeat step 1.

• Normalize the overall displacement field by dividing
the weighted sum of fields by the sum of weights.

We have also tried approaches such as median/averaging fil-
tering and Hamming windows blending, while empirically
this method obtains the best inference result.

4. Implementation and experiments
In this section, we provide more details about the im-
plementation, experimental setup, and evaluation methods.
VolRAFT is implemented on PyTorch (version 2.1.0) us-
ing NVIDIA Tesla V100 with 32GB GPU memory. The
source code and trained network are available on GitHub
https://github.com/hereon-mbs/VolRAFT.

Volume normalization In computer vision area, re-
searchers usually assume the data are normalized vectors
in a range of [0, 1] for 8-byte RGB images (e.g. as RAFT
approach assumed). However, in (32-bit) images recon-
structed from µCT imaging, this assumption is often in-
valid as the data contains physical information, e.g. the
range of SRµCT data related to the measured attenuation
of X-ray radiation. Therefore, at the beginning of Vol-
RAFT model, we normalize the reference volume v0 and
the deformed volume v1 before applying the encoders. We
find the minimum value vmin = min(v0 · vm, v1 · vm)
and the maximum value vmax = max(v0 · vm, v1 · vm)
across both volumes at foreground positions. By comput-
ing v̄{0,1} = (v{0,1} − vmin)/(vmax − vmin), the normalized
volumes v̄0, v̄1 are then passed to the network encoders.

Hyperparameters To demonstrate that our method is a
native extension from RAFT without further hyperparame-
ter optimization, we essentially reuse hyperparameters from
the RAFT approach [31] using the small model RAFT-S, in
which the authors showed a significantly lower number of
network parameters. In Tab. 1, we compare the main hyper-
parameters and the number of learnable parameters between
the RAFT-S model and VolRAFT. As the hyperparameters
of the original RAFT model were optimized for each 2D
optical flow dataset individually by the authors [31], the set-
tings reported in the RAFT paper can be biased for a par-
ticular use case. Therefore, to have a fair and generalized
setting, we take the default setting of hyperparameters from
the published source code of RAFT for our use case.

Measured volumes The image volumes used in this
study were obtained by SRµCT imaging at the P05 imag-
ing beamline operated by the Helmholtz-Zentrum Hereon
at PETRA III at Deutsches Elektronen-Synchrotron (DESY,
Hamburg, Germany). 1200 projections measuring 5120 ×
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Hyperparameter RAFT-S VolRAFT
Size of image/volume-patches 512× 384 80× 80× 60
Size of flow/displacement-patches 2× 512× 384 3× 80× 80× 60
Optimizer AdamW [21] AdamW [21]
Learning rate 2e-5 2e-5
Number of epochs 100000 10000
Maximum range of displacement 400 24
(Mini-)Batch size b Eq. (3) 6 18
Recurrent iterations N Eq. (3) 12 12
Weights of loss γ Eq. (3) 0.8 0.8
Levels of correlation matrix L 4 4
Gradient-norm clipped [−1, 1] [−1, 1]

Number of learnable parameters 1M 2.95M

Table 1. Hyperparameters and the number of learnable parameters
between the RAFT-S model and VolRAFT. The default hyperpa-
rameters from the source code of RAFT are taken as reference.
Changes are highlighted.

3840 pixels were acquired using fly scans with an exposure
time of 34 ms per projection. The projection images were
processed through the typical CT reconstruction pipeline,
i.e. flat-field and dark-field correction, binning, ring re-
moval, and tomographic reconstruction, resulting in vol-
umes of 1280× 1280× 960 at 5.1µm voxel resolution. 3D
registration was performed to maximize the correlation be-
tween the corresponding reference and deformed volumes,
and the 3D foreground layers were segmented to define the
region of interest on the reference volume.

The measured volumes consisted of rat bone samples
containing a screw made of one of four different types
of implant materials: magnesium-10wt.%gadolinium (Mg-
10Gd), magnesium-5wt.%gadolinium (Mg-5Gd), titanium
(Ti) and polyetheretherketone (PEEK). Each implant mate-
rial was tested after 4, 8, and 12 weeks of healing. During
push-out tests, samples were subjected to forces from 5N
up to 240N. For more details on the measurement setup and
image processing, the readers can refer to [7]. In total, we
utilize 39 measured volumes which are used as reference
volumes for the generation of synthetic datasets.

Synthetic displacement fields In this paper, we gener-
ate 5 different classes of synthetic displacement fields for
training and testing (see Fig. 2):

• Star: star field was proposed [4] to access the mea-
surement errors of digital image correlation [4, 5] and
DVC [13]. The displacement field is based on syn-
thetic fields undergoing sinusoidal displacements with
various amplitudes and spatial frequencies [4].

• Curve: To model single direction deformation, a
curved displacement field is generated by 1D curves
with an exponential non-linearity term (i.e. f(x) =
mxα + c,where 1 ≤ α ≤ 2) for all three directions.

• Random: To address the local inhomogeneity of dis-
placement field, a random field with Gaussian distri-
bution is generated.

• Sphere: To simulate various flow dynamics scenarios
such as divergence and curl, the sphere displacement

20 10 0 10 20 6 4 2 0 1.4 1.6 1.8 20 10 0 10 10 0 10 20

Star Curve Random Sphere Overall

Figure 2. Synthetic displacement fields are generated according to
5 classes: Star, Curve, Random, Sphere and Overall. Slices of dis-
placement field fw are shown as examples here. As the synthetic
displacement fields are augmented by the randomly permuted or-
der of axes, these slices of field can appear in any one of the di-
mensions (fw, fh, fd) during the generation of synthetic dataset.

field generates a 3D vector field within a spherical do-
main based on radial and tangential components.

• Overall: this is a mixture of displacement field over all
(Star, Curve, Random and Sphere) displacement fields.

Data augmentation We select 23 different field settings
(5 for each single-type class and 3 for the overall field),
with each setting being randomly augmented across 39 vol-
umes. These settings, as shown in Fig. 2, undergo random
augmentations including rotation by 3D angles, permuta-
tion of the axes order, addition of noise to the volume pairs
after warping, and generation of random flow parameters
(e.g., amplitudes, spatial frequencies, non-linearity, circu-
lating phase, etc.). In total, we generate 897 unique fields
for deforming volume pairs, which serve as synthetic fields
for training, validation, and testing.

Synthetic and measurement datasets We create the de-
formed volumes v1 by warping the synthetic fields to the
measured volumes as the reference volume v0 using the
PyTorch function grid sample in the trilinear interpo-
lation mode. Hence, by computation for each reference vol-
ume and synthetic fields, we compute 897 (23×39) volume
pairs as the total number of datasets.

To ensure the generalization of the model training, we
separate these datasets as follows: 828 for training sets,
while 20% of the set are randomly split for validation; 69
for testing. We excluded 3 samples (Mg-5Gd 4w 103L,
Ti 4w 5R, PEEK 4w 5L) and their corresponding 23 syn-
thetic fields for each sample (i.e. training and testing sets are
mutually exclusive in samples), so that the generalization of
VolRAFT approach can be evaluated.

To verify the generalization of the proposed VolRAFT
approach, we also examine the volume pairs, which were
experimentally measured for both reference and deformed
volume, as the realistic measurement dataset. In this paper,
we select the PEEK 4w 5L sample using its first and second
scan, as well as the Ti 4w 5R sample using its first and last
scan as reference and deformed volumes, respectively.
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Evaluation metrics In this paper, we investigate the
DVC analysis in a more computer-vision-oriented perspec-
tive. Instead of measuring the physical displacement (e.g.
the distance between the reference and deformed struc-
tures in µm), we evaluate the result based on the average
End-Point-Error (EPE), which is defined as the Euclidean
distance [1, 14] between the displacement vector f =
{fw, fh, fd} and its reference vector f ref =

{
f ref
w , f ref

h , f ref
d

}
:

EPE =
√
(fw − f ref

w )2 + (fh − f ref
h )2 + (fd − f ref

d )2 (4)

This is also because of the difficulty to obtain the ground
truth measurement of the physical displacement when ex-
amining continuously deforming materials in a high pre-
cision modality, e.g. the bone-implant materials using
SRµCT imaging.

Methods for comparison In this paper, we compare
the VolRAFT approach to the iterative method proposed
by Bruns et al. [7], which is one of the publicly avail-
able state-of-arts methods for high resolution SRµCT imag-
ing data. We apply the open-source code of this MBS-
3D-Optflow method based on its default settings as the
vanilla version, abbreviated MBS-VAN. To have a fair com-
parison with VolRAFT, we empirically optimize Bruns’s
method based on one of the testing data sets (i.e. the
Mg-5Gd 4w 103L sample with the star displacement
field) as the optimal version, abbreviated as MBS-OPT.

5. Evaluation
The computation of optical flow in texture-less regions is
generally difficult [1]. In this section we thus only evaluate
the bone structure but not the texture-less screw structure.
We also crop out the sample holder region as it does not
contain information of interest for the experiment. We eval-
uate the 3D displacement fields using the synthetic and the
realistic measurement dataset.

Tab. 2 shows the average EPE of all 15 syn-
thetic testing datasets (i.e. PEEK 4w 5L, Ti 4w 5Rand
Mg-5Gd 4w 103L samples for all 5 displacement fields)
using the default vanilla setting (MBS-VAN) and the opti-
mal setting (MBS-OPT) of Bruns’s method [7]. As the nu-
merical results show, VolRAFT achieves significantly better
performance in the Star displacement field than MBS-VAN
and MBS-OPT, while it performs in par in Curve, Random,
Sphere and Overall fields. For the Ti 4w 5R dataset, Vol-
RAFT appears to yield better results also for the Sphere and
Overall displacement fields. Star and Sphere fields are both
vector fields that model the blending and the spherical flow
dynamics, and the Overall field is a mixture of all classes of
linear and rotational fields. Thus, VolRAFT approach gen-
erally performs better in displacement fields with strong and
significant divergence and curl.

Fig. 3 compares the ground truth displacement fields

Sample Disp. class MBS-VAN MBS-OPT VolRAFT
PEEK 4w 5L Star 20.686 24.406 4.968
PEEK 4w 5L Curve 0.680 0.714 1.276
PEEK 4w 5L Random 0.187 0.250 0.456
PEEK 4w 5L Sphere 1.045 1.178 0.880
PEEK 4w 5L Overall 1.195 1.406 0.882

∗Mg-5Gd 4w 103L ∗Star 20.526 20.136 5.748
Mg-5Gd 4w 103L Curve 0.356 0.413 0.440
Mg-5Gd 4w 103L Random 0.140 0.152 0.339
Mg-5Gd 4w 103L Sphere 1.569 2.081 0.855
Mg-5Gd 4w 103L Overall 1.149 1.280 0.944

Ti 4w 5R Star 21.262 19.805 4.426
Ti 4w 5R Curve 0.923 0.997 1.270
Ti 4w 5R Random 0.313 0.229 0.307
Ti 4w 5R Sphere 3.103 2.236 1.078
Ti 4w 5R Overall 1.928 0.946 0.706

∗ MBS-OPT is empirically optimized by this dataset.

Table 2. Evaluation of VolRAFT to Bruns method [7] using the
default vanilla (MBS-VAN) and the optimal setting (MBS-OPT),
based on average End-Point-Error (EPE). The best is highlighted.

and the fields estimated by MBS-VAN, MBS-OPT and Vol-
RAFT using the synthetic datasets Mg-5Gd 4w 103L and
the Star field. The screw volume, which was not evaluated,
is shown in black in the image. Results show that the dis-
placement predicted by VolRAFT generally resembles the
displacement as shown within the ground truth. By con-
trast, the classical iterative method would require further
fine-tuning of the smoothness term and prior knowledge to
handle continuous fields such as this Star field. After empir-
ical optimization for Bruns’s method by the objective EPE
value and its qualitative accuracy, MBS-OPT only shows
slight improvement to its vanilla setting MBS-VAN.

However, VolRAFT can obtain block-based artifacts
near the edge of homogeneous region (see the fh field, Fig. 3
middle-row last-column). This is due to the fact that Vol-
RAFT utilizes patch-based inference methods, which can
lead to a severe jump of values near the edge of patches.
We have employed Gaussian weights to blend and sup-
press these artifacts (as shown in Sec. 3), but the nature of
this patch-based inference cannot be completely eliminated.
One common practise is to include regularization terms
such as total variation utilized by Bruns’s method. How-
ever, the use of regularization terms introduces the need for
manual tuning thereof by the user to the application of the
deep learning model. As the aim of this work is to present
a methodology for DVC without user input, we exclude the
regularization from the scope in this paper.

To examine the quality in a realistic measurement envi-
ronment, we test VolRAFT by inference to the experimen-
tal measured volume pairs based on the model parameters
trained by synthetic datasets. Fig. 4 shows the displacement
fields obtained by MBS-VAN, MBS-OPT and VolRAFT us-
ing real measured volumes of PEEK 4w 5L sample at its
first and second scan as the reference and deformed vol-
ume, respectively. Similarly, Fig. 5 shows the displacement
fields based on MBS-VAN, MBS-OPT and VolRAFT of a
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Figure 4. Evaluation of the measured volumes of PEEK 4w 5L, based on the reference volume (first) and the real deformed volume
(second). Displacement fields are estimated by (from left to right): MBS-VAN [7] (third); MBS-OPT (fourth); the proposed VolRAFT
approach (fifth, the last one at the right). Cross sections (slices) of volumes and displacement fields are shown here.

Ti 4w 5R sample at its first and last scan as the reference
(Fig. 5a) and deformed (Fig. 5b) volume. We observe that
VolRAFT essentially estimates the structure of displace-
ment fields correctly, if we consider the Bruns’s method as
the optimal solution of DVC for this material class. How-
ever, as it is extremely difficult to measure the ground truth
of a realistic displacement field in a SRµCT experimen-
tal setup, we can only evaluate these results in a qualita-
tive manner. The generalization capability of VolRAFT is
particularly impressive, as both samples are completely un-
known in the training set.

Within the Ti 4w 5R sample we can observe a fracture
(magnified in the circle box of Fig. 5) in the deformed vol-
ume that extends from the screw into the cortical bone. This
presents a particular challenge in DVC, as the volumetric
structure of this fracture (see the magnified region Fig. 5b)
is an unknown pattern not present in the reference volume.
The fracture results in a discontinuous and sharp change

such as the edge observed in the displacement field (magni-
fied in the circle box of Fig. 5). In the proposed VolRAFT
approach, we did not particularly address this scenario by
generating any corresponding synthetic field. Surprisingly,
the estimated field by VolRAFT (bottom-right, Fig. 5) can
roughly estimate this structure nonetheless. An artifact is
visible within the flow field, which is likely caused by the
patch blending during the inference. This capability of Vol-
RAFT is potentially due to the training on the synthetic
Sphere field, as it includes scenarios of positive divergence
(i.e. a point source of 3D vector fields). The performance of
VolRAFT for monitoring crack formation needs to be fur-
ther studied in the future.

To further test the generalizability of VolRAFT, future
studies should include displacements based on individual
motions of multiple objects and displacements of objects
with little inside texture, as can be the case in mechanical
testing of powder and particle samples and tensile testing of
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Figure 5. Evaluation of the measured volumes of Ti 4w 5R, based on the reference volume (Fig. 5a) and the real deformed volume
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proposed VolRAFT approach. Cross sections (slices) of volumes and displacement fields are shown here. The fracture is magnified in the
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metallic samples, respectively.

6. Conclusion
In this paper, we propose the VolRAFT approach that ex-
tends the optical flow network RAFT from 2D images to 3D
volumes, without further fine-tuning or optimizing its hy-
perparameters. The experiments demonstrates that this ap-
proach generally performs better using synthetic displace-
ment fields with strong and significant divergence and curl
in comparison to cutting-edge iterative methods. As the re-
alistic measurement datasets show, the generalizability is
particularly impressive, as it can still resemble the overall
structure of the field even if the testing set is completely
unknown in the training set of VolRAFT model.

This work provides insight into application of state-
of-the-art computer vision approaches to address classical
challenges in materials science research, such as the DVC
analysis shown in this paper. In the future, this approach
can be improved by its inference method, and it can be po-
tentially applied to other materials and experimental data.
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ethical committee at the Malmö/Lund regional board for an-

imal research, Swedish Board of Agriculture (approval no.
DNR M 188-15). Authors declare no competing interests.

Acknowledgements
We thank Dr. Stefan Bruns for his valuable insight and
the fruitful discussions regarding the optimization of the
MBSOptflow framework. We acknowledge the Deutsches
Elektronen-Synchrotron DESY (Hamburg, Germany), a
member of the Helmholtz Association HGF, for the pro-
vision of beamtime, related to the proposal 20180109 at
the imaging beamline (IBL) P05 at PETRA III at DESY.
This research was supported in part through the Maxwell
computational resources operated at DESY. The authors ac-
knowledge the ErUM-Data Verbundprojekt ’KI4D4E: Ein
KI-basiertes Framework für die Visualisierung und Auswer-
tung der massiven Datenmengen der 4D-Tomographie für
Endanwender von Beamlines’ which is funded by the
Bundesministeriums für Bildung und Forschung (BMBF)
(Förderkennzeichen 05D23CG1).

References
[1] Simon Baker, Daniel Scharstein, James P Lewis, Stefan

Roth, Michael J Black, and Richard Szeliski. A database
and evaluation methodology for optical flow. IJCV, 92:1–31,
2011. 6

60



[2] E Bar-Kochba, J Toyjanova, E Andrews, K-S Kim, and
Christian Franck. A fast iterative digital volume correlation
algorithm for large deformations. Experimental Mechanics,
55:261–274, 2015. 1, 2

[3] Brian K Bay. Methods and applications of digital volume
correlation. The Journal of Strain Analysis for Engineering
Design, 43(8):745–760, 2008. 2

[4] Michel Bornert, Fabrice Brémand, Pascal Doumalin, J-C
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