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Abstract

In this work, we propose a fashion item recommendation
model that incorporates hyperbolic geometry into user and
item representations. Using hyperbolic space, our model
aims to capture implicit hierarchies among items based on
their visual data and users’ purchase history. During train-
ing, we apply a multi-task learning framework that con-
siders both hyperbolic and Euclidean distances in the loss
function. Our experiments on three data sets show that
our model performs better than previous models trained in
Euclidean space only, confirming the effectiveness of our
model. Our ablation studies show that multi-task learning
plays a key role, and removing the Euclidean loss substan-
tially deteriorates the model performance.

1. Introduction

In hyperbolic space, the distance from the origin in-
creases exponentially as one moves towards the outside of
the space. This property makes it well-suited for model-
ing hierarchical data by representing the root node around
the origin and leaf nodes near the surface of the space. In
practice, hyperbolic space has been used to represent var-
ious types of instances that potentially possess hierarchi-
cal structures, such as sentences and words [25, 46], ques-
tions and answers [44], and objects and scenes [18]. In
computer vision, its effectiveness has been confirmed on
many tasks [15,36], including classification [10,12,31], re-
trieval [14, 28, 53, 56], segmentation [3, 8, 18], and genera-
tion [27].

In this paper, we propose a new fashion item recommen-
dation model that incorporates hyperbolic geometry into
user and item representations; we name it Hyperbolic Vi-
sual Attentive Collaborative Filtering (HVACF). Using hy-
perbolic space, our model aims to capture implicit hierar-
chies among fashion items based on their image data and
users’ purchase history. To train our model, we apply a

Figure 1. Overview of our proposed model.

multi-task learning framework that combines the hyperbolic
distance with the Euclidean one, which was found effec-
tive in previous studies for training recommender systems
without visual features and also for learning representations
of objects and scenes [18, 50]. Our experiments show that
our model outperforms existing models trained in Euclidean
space only, confirming the effectiveness of our model. We
also conduct ablation studies and find that multi-task learn-
ing plays a key role, and removing the Euclidean loss re-
sults in poor performance, even worse than baseline systems
without visual features. This result suggests that multi-task
learning is crucial for training fashion item recommender
systems, in contrast to the previous findings on recommen-
dation tasks without visual features that hyperbolic models
perform better than the Euclidean counterparts [7, 49].

2. Related Work

2.1. Visually-Aware Recommender Systems

Visually-aware recommendation models leverage item
visual data to capture characteristics of items and users [9,
22, 24, 30]. Visual information is particularly valuable for
recommending items whose appearances and styles heavily
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affect users’ preferences, such as clothing [24, 30, 40], cos-
metic products [1, 55], and hair-style [29, 54] [11]. In this
work, we incorporate hyperbolic geometry into a fashion
item recommender system with visual features and demon-
strate its effectiveness.

2.2. Recommender Systems in Hyperbolic Space

Hyperbolic geometry differs from Euclidean geometry
in that it measures distances on curves rather than straight
lines. In hyperbolic space, the distance from the origin
increases exponentially as one moves towards the surface
of the space. This property is well-suited for modeling
hierarchies and has been used for representation learning
on various tasks [2, 5, 6, 16, 19, 35, 38, 45, 47]. Previous
work also showed that it is effective in capturing the com-
plex interactions between items and user preferences in rec-
ommender systems [7, 36, 39, 50, 52]. For instance, Tran
et al. [49] proposed a method based on hyperbolic space,
called Hyperbolic Bayesian Personalized Ranking (BPR),
and Benjamin et al. [7] extended this model using large-
scale data. Lucas et al. [50] proposed Hyperbolic Metric
Learning (HML), which incorporates the hyperbolic dis-
tance into metric-learning models [23, 43]. Other studies
proposed recommendation models that incorporate hyper-
bolic geometry into graph-based methods [26, 41, 51, 57];
temporal point process [58]; or autoencoders [34]. How-
ever, to the best of our knowledge, hyperbolic space has not
been used on recommendation tasks where the visual data
of items provides critical information, such as fashion item
recommendation.

3. Methodology
The overview of our proposed model is illustrated in Fig-

ure 1. The training data of our model is constructed as a set
of triplets of users and positive/negative items, and is de-
fined as follows:

DS = {(i, j, k)|i ∈ U , j ∈ I+
i , k ∈ I\I+

i }, (1)

where U , I, and I+
i are the sets of users, items, and items

purchased by the i-th user, respectively.

3.1. Training a Model in Hyperbolic Space

Among several isometric models for modeling hyper-
bolic space, this paper adopts the Poincaré ball model, one
of the most common models in computer vision [15, 18,
20, 33]. In this paper, the induced geodesic distance be-
tween x and y in hyperbolic space Dn

c := {x,y ∈ Rn :
c∥x∥2, c∥y∥2 < 1} for c ≥ 0 is defined as follows:

dc(x,y) :=
2√
c
tanh−1

(√
c∥(−x)⊕c y∥

)
, (2)

x⊕c y :=
(1 + 2c⟨x,y⟩+ c∥y∥2)x+ (1− c∥x∥2)y

1 + 2c⟨x,y⟩+ c2∥x∥2∥y∥2
.

(3)
In addition, the following function maps a point z ∈

TqDn
c from a n-dimensional vector space TqDn

c , which is
a tangent space of Dn

c at a point q ∈ Dn
c , to the hyperbolic

space Dn
c .

h(z) = expcq(z) := q ⊕c

(
tanh

(√
c
λc
q∥z∥2

2

) z√
c∥z∥

)
,

(4)

where λc
q = 2

1−c∥q2∥ is the conformal factor [17]. Detailed
definitions can be found in the appendix or previous studies
such as [15, 36].

3.2. Neighbor-Attentive Aggregation

Our proposed model extracts user preferences based on
their purchase history and image data of each item. Here,
U = {[u1; ...;un; ...;uNu

]|un ∈ RD} ∈ RNu×D denotes
the user embeddings, and V = {[v1; ...;vn; ...;vNv

]|vn ∈
RD} ∈ RNv×D and P = {[p1; ...;pn; ...;pNv

]|pn ∈
RD} ∈ RNv×D denote separate embeddings associated
with the items. Nu and Nv are the numbers of users and
items, respectively; D is the embedding dimension; and
[a; b] denotes the concatenation operation between the vec-
tors a and b.

First, we calculate the embedding ũi that combines the
i-th user embedding and item embeddings purchased by the
user, inspired by [9], as follows:

ũi =
ui +

∑
l∈A(I+

i \j,L) αilpl

2
, (5)

where A(I+
i \j, L) is an item set obtained by randomly

sampling L > 0 items from I+
i \j.1 Here, αil represents the

contribution (attention) score of the l-th item to the prefer-
ence profile of the i-th user, and is defined as follows:

αil =
exp(α′

il/τ)∑
n∈A(I+

i \j,L) exp(α
′
in/τ)

, (6)

α′
il = w⊤

2 ϕ(Wuui +Wvvl +Wppl

+WfE(Il) + b1) + b2, (7)

where τ is a scaling factor (the larger the value is, the
sharper the attention score becomes), which we set τ =√
D, and ϕ(x) = max(0, x) is the ReLU function. E(·) is a

pre-trained backbone encoder model and Il is the l-th item’s
image data. Wu,Wv,Wp ∈ RD×D, and Wf ∈ RD×Dpool

denote transformation matrices for the users, items, and
item visual features extracted by the image encoder, respec-
tively (Dpool is dimension size of the final pooling layer in
the backbone model); b1 ∈ RD is the bias vector of the first
layer; and w2 ∈ RD and b2 ∈ R are the weighting vector
and bias of the second layer.

1If L > |I+
i \j|, we retrieval all the items from I+

i \j.
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Table 1. Statistics of the data sets used in our experiments on
recommendation tasks.

Dataset #users #items #feedbacks

Amazon Women [21] 30,631 285,269 849,801
Amazon Men [21] 27,892 120,758 451,932
TOWN Women [59]2 37,357 187,866 800,000

Table 2. Comparison of our baselines; “Vis” and “Hyp” denote
models with visual features and models in hyperbolic space, re-
spectively.

Method Vis Hyp Method Vis Hyp

BPRMF [37] ✗ ✗ VBPR [22] ✓ ✗
HBPR [49] ✗ ✓ DVBPR [24] ✓ ✗
HRec [7] ✗ ✓ DeepStyle [30] ✓ ✗
LFM [52] ✗ ✓ ACF [9] ✓ ✗
HML [50] ✗ ✓ HVACF ✓ ✓

3.3. Objective Function

Following [50], the target parameters Θ = {U,V,P,
Wu,Wv,Wp,Wf , b1,w2, b2, q} are optimized as fol-
lows:

argmin
Θ

L = Lhyp + γLadj + λ∥Θ∥2, (8)

where γ > 0 is a scalar hyperparameter that balances the
loss based on the hyperbolic distance (Lhyp) and the adjust-
ment loss based on the Euclidean distance (Ladj), and λ > 0
determines the degree of regularizing the model parameters
(Θ). Each loss function is defined as follows:

Lhyp :=
∑

(i,j,k)∈DS

[
m+ d2c(h(ũi), h(vj))− d2c(h(ũi), h(vk))

]
+
,

(9)

Ladj :=
∑

(i,j)∈DS

fadj(ũi,vj) +
∑

(i,k)∈DS

fadj(ũi,vk), (10)

fadj(x,y) :=
[ |dc(h(x), h(y))− deuc(x,y)|

deuc(x,y)

]
+
, (11)

where [a]+ denotes max(0, a); m > 0 is the margin in
the hinge function; and deuc(a, b) is the Euclidean distance.
During inference, the model recommends the items with the
smallest hyperbolic distances to the user vector ũi.

4. Experiments
4.1. Experimental Settings

We perform experiments using three data sets for fashion
item recommendation tasks (shown in Table 1). Each data

2ZOZOTOWN is the largest fashion e-commerce application in Japan.

Table 3. Results of our experiments (*DStyle = DeepStyle). The
numbers denote the AUC scores of each baseline and our model.

Method Amazom (W) Amazon (M) TOWN (W)

Rand 0.499 ±0.002 0.499 ±0.001 0.499 ±0.002

BPRMF 0.702 ±0.002 0.717 ±0.003 0.741 ±0.001

HBPR 0.711 ±0.001 0.743 ±0.001 0.716 ±0.001
HRec 0.762 ±0.000 0.808 ±0.002 0.784 ±0.002
LFM 0.679 ±0.001 0.703 ±0.002 0.685 ±0.002
HML 0.777 ±0.002 0.818 ±0.000 0.795 ±0.001

VBPR 0.730 ±0.000 0.756 ±0.002 0.728 ±0.001
DVBPR 0.776 ±0.001 0.818 ±0.001 0.790 ±0.000
DStyle 0.728 ±0.001 0.730 ±0.004 0.700 ±0.004
ACF 0.767 ±0.001 0.797 ±0.002 0.772 ±0.000

HVACF 0.804 ±0.001 0.830 ±0.002 0.810 ±0.001

Table 4. Results of our ablation studies.

Variants Amazon (W) Amazon (M) TOWN (W)

(complete) 0.804 ±0.001 0.830 ±0.002 0.810 ±0.001

dc(·) ⇒ deuc(·) 0.755 ±0.001 0.790 ±0.001 0.775 ±0.002
w/o Ladj 0.701 ±0.001 0.749 ±0.001 0.722 ±0.001
w/o aggregation 0.745 ±0.004 0.809 ±0.002 0.779 ±0.003
w/o attention 0.798 ±0.000 0.827 ±0.001 0.807 ±0.001
attention w/o E(Il) 0.798 ±0.001 0.826 ±0.001 0.808 ±0.001
attention w/o vl 0.799 ±0.001 0.828 ±0.001 0.808 ±0.001
attention w/o pl 0.798 ±0.000 0.827 ±0.002 0.807 ±0.001

(a) AUC w.r.t. balancing value γ (b) AUC w.r.t. scaling factor c

Figure 2. Performance with different hyperparameters.

set is chronologically sorted and then divided into the train,
validation, and test sets with a ratio of 7:1:2, respectively.
Besides, the ten previous models listed in Table 2 plus a
random recommendation model are used for our baselines.
These baselines are chosen from the “visually-aware rec-
ommendation models” listed in [11] and the “hyperbolic
recommender systems” listed in [36]. The area under the
ROC curve (AUC) is used for evaluation, following previ-
ous work [22, 37].

4.2. Implementation Details

We use Riemannian Adam [4] as the optimizer for
HBPR, HRec, and LFM models based on the performance
on the validation set, and use Adam [13] with decou-
pled weight decay [32] for the other models. We set
the embedding dimension D to 50 and the batch size
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Figure 3. The embedding-norm
distribution on Amazon Women.

(a) User and item representations (b) User representations (c) Item representations

Figure 4. User and item 2D-representations compressed by tSNE [48] on Amazon Women.

to 512 for all models. We tune the learning rate r ∈
{0.01, 0.001, 0.0001} and the hyperparameter for regular-
ization λ ∈ {0.1, 0.01, 0.001} for each model based on the
performance on the validation set. Inception V3 [42] is used
as the backbone image encoder model for all models with
visual features, and its parameters are freezed during train-
ing. For HVACF, we set γ = 0.5, c = 1.0, L = 32, and
m = 0.5 based on the performance on the validation set.
We repeat each experiment three times with different ran-
dom seeds, and report the mean and standard deviation val-
ues.

4.3. Results

Table 3 shows the results. It demonstrates that our pro-
posed model outperforms all baselines on three data sets.
These results highlight the effectiveness of using hyperbolic
space for fashion item recommender systems.

4.4. Ablation Studies

We perform ablation studies and Table 4 summarizes
the results. It shows that each component of our pro-
posed model is indispensable to achieve high accuracy. No-
tably, the performance of “w/o Ladj” is lower than that of
“dc(·) ⇒ deuc(·)”: a model trained in Euclidean space only.
The model “w/o Ladj” even underperforms baselines with-
out visual features. These results indicate the importance
of considering both Euclidean and hyperbolic distances to
train fashion item recommendation models.

4.5. Impacts of Hyperparameters

Figure 2a and 2b illustrate how the hyperparameters of
our model affect its performance. Figure 2a shows that
setting γ to a small value harms the performance, indicat-
ing that it is important to consider both the hyperbolic and
Euclidean distances during training. Figure 2b shows that
when c is set too large, the performance drops sharply as
a result of the radius of the embedding space (ball) 1/

√
c

getting too small, which causes both users and items to be
placed near the ball’s surface during training, and results in
inefficient training.

4.6. Analysis of Embeddings

Figure 3 shows the norms of the user and item embed-
dings trained on the Amazon Women data set in hyperbolic
space (i.e., h(ũ) and h(v), respectively), which correspond
to the distance distributions from the ball’s origin of the
space. It clearly indicates that items and users are separated
in the embedding space, with the items being placed near
the origin and the users mapped near the ball’s surface.

Next, we analyse the 2D-compressed representations of
the users and items in 4a-4c, where each plot is colored
based on the logarithmically transformed value of the num-
ber of the purchases or purchases made. We can see that
items with many purchases are mapped near the user em-
beddings. We also calculate the correlation coefficient be-
tween the norms of item embeddings and the number of pur-
chases made, and observe that it is −0.360. This indicates
that popular items tend to be mapped near the origin, and
our proposed model separates items largely based on how
popular they are among users.

5. Conclusion
In this paper, we proposed HVACF, a fashion item rec-

ommendation model trained in hyperbolic space. Our ex-
periments on three data sets showed that it performs better
than previous models trained in Euclidean space, confirm-
ing the effectiveness of our model. We also performed ab-
lation studies and showed that it is crucial to consider both
hyperbolic and Euclidean distances in the objective func-
tion. Lastly, we analysed the trained embeddings of users
and items and found that items and users are separated in
hyperbolic space. We also found that popular and unpop-
ular items are also separated in the space, with the popular
ones being centered near the origin.
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