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1. Methodology
Out of five isometric models for modeling hyperbolic

space [1, 2, 6, 15]: the Poincaré ball model, the Poincaré
half-space model, the Lorentz model, the Klein model, and
the Hemisphere model, this paper adopts the Poincaré ball
model, one of the most common models in computer vi-
sion [6, 8, 9, 13].

The Poincaé ball in n-dimensional hyperbolic space is
described by the manifold Dn := {q ∈ Rn : ∥q∥2 < 1} and
n-dimensional Riemannian metric gD, which are denoted
as (Dn, gD). Here, the Reimannian metric gD is given by
gDq = λ2

qg
E , where λq := 2

1−∥q∥2 is the conformal factor
at a point q and gE = In is the Euclidean metric tensor.
In other words, the hyperbolic metric tensor is conformal to
the Euclidean one.

The induced geodesic distance (length of the shortest
path) between two points x,y ∈ Dn is given as follows:

dD(x,y) = cosh−1
(
1 + 2

∥x− y∥2

(1− ∥x∥2)(1− ∥y∥2)

)
. (1)

Note that the geodesic is a straight line connecting two
points in the Euclidean space.

Because hyperbolic space is based on curved geometry,
standard vector operations such as vector addition or multi-
plication are difficult to define in hyperbolic space. This is
because it needs to be modified appropriately to match the
curvature of the hyperbolic space and its properties. There-
fore, to facilitate vector operations, the algebraic formalism
provided by the Möbius gyrovector space [19] is introduced
for the Riemannian geometry of the Poincaré ball model of
the hyperbolic space [7].

Consequently, in Möbius gyrovector space, the Poincaré
ball is defined as Dn

c := {q ∈ Rn : c∥q∥2 < 1} with
the curvature −c for c ≥ 0. The comfort factor is defined
as λc

q = 2
1−c∥q2∥ . Note that Dn

c = Rn when c = 0. In
addition, the Möbius addition of the two vectors x,y ∈ Dn

c

is defined as follows:

x⊕c y :=
(1 + 2c⟨x,y⟩+ c∥y∥2)x+ (1− c∥x∥2)y

1 + 2c⟨x,y⟩+ c2∥x∥2∥y∥2
.

(2)

Note that when c = 0, the addition defined in Eq. 2 recovers
the Euclidean addition of two vectors in Rn.

With Möbius gyrovector space operations, the induced
geodesic distance between x and y in the hyperbolic space
Dn

c is defined as follows:

dc(x,y) :=
2√
c
tanh−1

(√
c∥(−x)⊕c y∥

)
, (3)

In addition, Eq. 4 below allows us to navigate a point
z ∈ TqDn

c from a n-dimensional vector space TqDn
c , which

is a tangent space of Dn
c at a point q ∈ Dn

c , to the hyperbolic
space Dn

c .

h(z) = expcq(z) := q ⊕c

(
tanh

(√
c
λc
q∥z∥2

2

) z√
c∥z∥

)
.

(4)

Furthermore, Eq. 5 bellow allows us to project a point z′ ∈
Dn

c to TqDn
c .

logcq(z
′) :=

2

λc
q

√
c
tanh−1(

√
c∥ − q ⊕c z

′∥) −q ⊕c z
′

∥ − q ⊕c z′∥
.

(5)

Note that it holds logcq(exp
c
q(z)) = z.

2. Experiments
2.1. Settings and Implementation Details

• Bayesian Personalized Ranking Matrix Factoriza-
tion (BPRMF) [16] is a standard recommendation
model that learns interactions between users and items
using BPR loss.
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• Hyperbolic Bayesian Personalized Ranking
(HBPR) [21] learns interaction information between
users and items based on BPR loss using hyperbolic
distance. This is the first study that incorporates
hyperbolic geometry into a recommendation model.
The Poincaré ball model is used as an isometric model
to model hyperbolic space.

• Hyperbolic Recommender System (HRec) [3] uses
the Lorentz model to model hyperbolic space. Al-
though it has a simple structure using BPR training
with hinge loss, it easily scales on large data.

• Lorentzian Factorization Machine (LFM) [23]
models the user-item interactions by using a triangle
inequality using the Lorentz distance instead of the dis-
tance between two points. It works well with a small
number of parameters.

• Hyper Metric Learning (HML) [22] is a metric
learning recommendation model that learns user-item
interaction using hinge loss in hyperbolic space. It also
calculates the loss based on the Euclidean distance,
and we adopt this approach in our proposed model.
The Poincaré ball model is used to model hyperbolic
space.

• Visual Bayesian Personalized Ranking (VBPR) [10]
is a standard visually-aware recommendation model
that incorporates a latent content-based preference fac-
tor, which is built on BPRMF.

• Deep Visual Bayesian Personalized Ranking
(DVBPR) [11] is an end-to-end model that trains a
visual feature extractor, which is built on VBPR. Due
to our limited computational resources, we used a
model that excludes the GAN structure. This sim-
plified structure is also adopted in [14] and achieves
good accuracy.

• DeepStyle [12] is a model based on VBPR that learns
user preferences using both visual feature vectors and
category vectors. Since we focus only on user-item
interaction and visual information, we do not use cate-
gory information and instead employ trainable vectors
that cross all categories.

• Attentive Collaborative Filtering (ACF) [4] utilizes
user preference vectors based on visual information,
and its structure inspires our proposed model. Due to
its computational complexity, we only use the item-
level attention mechanism.

We chose all the models (VBPR, DVBPR, DeepStyle,
and ACF) listed in Section 3.1 “visually-aware model-based

collaborative filtering” in the fashion recommendation sur-
vey paper [5] as our baselines with item visual features. In
addition, we chose all the models (HBPR, HRec, LFM, and
HML) listed in the hyperbolic “recommender systems” in
Chapter 4 of the hyperbolic deep neural networks survey
paper [15] as our baselines trained in hyperbolic space.

2.2. Ablation Studies

• dc(·) ⇒ deuc(·) is a model trained using the Euclidean
distance instead of the hyperbolic one. This means that
Ladj always becomes zero.

• w/o Ladj is a model that removes Ladj from the over-
all multi-task loss and only includes Lhyp. In other
words, it is equivalent to setting γ = 0 and only using
hyperbolic distance.

• w/o aggregation is a model without the neighbor-
attentive aggregation mechanism. In other words, it
is a model trained only with the user vector ui and the
item vectors vj , vk.

• w/o attention is a model that calculates attention
scores based on the uniform distribution.

• attention w/o E(Il) is a model that does not take im-
age features E(Il) as input in the visually-aware atten-
tion mechanism.

• attention w/o vl is a model in which the item vector vl

is removed in the visually-aware attention mechanism.

• attention w/o pl is a model in which the auxiliary in-
formation vector pl is removed in the visually-aware
attention mechanism.

3. Discussion

3.1. Impacts of Hyperparameters

Figure 1 shows that our model performance slightly
changes with different values for the hyperparameter L.

Figure 1. Our model performance with different values for the
hyperparameter L (= #neighbor items).



Figure 2. Examples of user preference attention scores on Amazon
Women.

3.2. Analysis of Preference Profile

Figure 2 shows examples of a list of: (1) items purchased
by a certain user; (2) the contribution (attention) scores ob-
tained by our proposed model for each item; and (3) the
top recommended items during inference. Items that were
actually purchased in the test data are surrounded by a red
frame.

For example, given the purchase history and the prefer-
ence scores of User 1, we can interpret that our proposed
model pays close attention to tight silhouette tops and tight
spats that User 1 purchased in the past, and these types
of items are actually included in the list of recommended
items.

3.3. Analysis of Embeddings

Figures 3–6 show the embedding-norm distributions and
2D projections of the user and item embeddings trained on
the Amazon Men and TOWN Women data sets.

4. Limitations

In this study, we adopted the most common Poincaré ball
model to incorporate hyperbolic geometry into a visual rec-
ommendation model, but it remains unclear how well our
model performs with other hyperbolic-space models. Our
model uses purchase history and item visual data as features
but does not consider text information such as item tags and
descriptions, which can provide important information as
shown in previous work [17, 18].
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Figure 3. The embedding-norm
distribution on Amazon Men.

(a) User and item representations (b) User representations (c) Item representations

Figure 4. User and item 2D-representations compressed by tSNE [20] on Amazon Men.

Figure 5. The embedding-norm
distribution on TOWN Women.

(a) User and item representations (b) User representations (c) Item representations

Figure 6. User and item 2D-representations compressed by tSNE [20] on TOWN Women.
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