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1. Implementation Details
In both our CTW and CTF modules, the diffusion model
settings are implemented with T = 1000 steps and a fixed
variance schedule. We utilize the Adam optimizer with a
learning rate of 1e-5. The batch size is set to 32. Addition-
ally, in CTW, we set λclothes = 0.2, and λseg = 1. Images
are resized to a 256×192 in CTW, and the output flow maps
are up-resized then applied to the clothing images.

2. Additional Ablation Study
2.1. Ablation Study of CTW vs. CTF

We further qualitatively and quantitatively evaluate the ef-
fectiveness of our proposed Conditional Texture Warping
(CTW) and Conditional Texture Fusing (CTF) by ablation
study with GAN-based generators designed by HR-VITON
[1]. Specifically, regarding the ablation study of CTW,
we replace the CTW by the GAN-generated flow maps for
warping clothes. For the ablation study of CTF, we re-
place the CTF by the GAN-based try-on generator to syn-
thesize try-on results. The visual comparison Fig. 1 demon-
strate that our CTW better stabilizes the warped texture, pre-
venting clothing texture over-distortion (highlighted in red).
Besides, our CTF fuses textures with consistency prevent-
ing unmatched color and texture degradation (highlighted
in green). Moreover, Sec. 2.1 shows that our proposed LA-
VTON with CTW and CTF surpasses the two ablation mod-
els replaced by GAN-based generators respectively in all 4
evaluation metrics, outperforming the ablation models by
64.5% in terms of Kernel Inception Distance (KID).

Figure 1. Ablation study of CTW and CTF.

2.2. Sampling Strategy

By using DDIM sampling, the reverse process can be per-
formed in few steps. We analyze the effect of different sam-
pling steps in CTW module by the warped clothes. In Fig. 2,

Method Paired Unpaired

SSIM↑ LPIPS↓ FID↓ KID↓

X + CTF 0.851 0.136 12.06 0.329
CTW + Y 0.887 0.114 11.96 0.307
CTW + CTF (Ours) 0.899 0.099 9.80 0.109

NOTE: We describe the KID as a value multiplied by 100.

Table 1. Ablation study for CTW and CTF. X represents GAN-
generated flow maps and Y is the GAN-based try-on generator.

we overlay the warped clothes onto the target person image
to compare their alignment. The results manifest that using
DDIM with step = 1 provides a rough alignment of the
clothes with the person’s shape. However, the patterns on
the clothes appear distorted and cannot be preserved well.
On the other hand, the results obtained with step = 5 and
10 preserve the clothing features well, and most areas are
aligned accurately. Notably, the alignment is better for the
cuffs in step size 10. To evaluate the performance of dif-
ferent steps, we calculated the IoU between the mask of
warped clothes and the clothes region of the human image.
The IoU for step sizes of 1, 5, 10, and 50 are 80.1%, 80.6%,
81.6%, and 82.1%, respectively. The IoU improves with an
increase in DDIM steps, suggesting better alignment of de-
tails in the generated images. However, the improvements
in IoU tend to plateau when the step size becomes larger, as
the increase in steps may not result in significant quality im-
provements. Therefore, to strike a balance between image
quality and computational efficiency, we set the number of
steps to 10. This configuration allows the proposed method
to produce satisfactory results while maintaining reasonable
computational demands.

Figure 2. Comparison of different sampling steps.



Figure 3. Ablation study on the effect of architecture design. Lclothes helps align the warped clothes with the shape of the human body,
while Lseg ensures the generated human segmentation corresponds to the warped clothes, resulting in good generation results. Both losses
can improve the alignment of the warped results.

2.3. Training Objective

We conducted experiments to investigate the effectiveness
of the training objective in CTW for clothing alignment in
VITON-HD dataset. The results are summarized in Fig. 3
and Sec. 2.3. Firstly, we experimented with the objec-
tive of predicting noise ϵ instead of x0. During training
on higher-resolution images, the model predicting noise ϵ
encountered stability issues and was prone to collapse, a
phenomenon also reported in [2]. In contrast, training the
model to predict x0 maintained higher stability and better
alignment in high resolutions. Therefore, we compared the
model’s performance of predicting noise ϵ at a lower reso-
lution, which was 4× lower than our full model prediction.
While it worked adequately, it led to obvious misalignment
on arms, as shown in Fig. 3. Moreover, we experimented
with different loss functions to assess their impact on cloth-
ing alignment, as illustrated in Fig. 3. In addition, Sec. 2.3
presents the quantitative results of using different training
losses. Specifically, training with only Lflow resulted in
rough alignment of the clothes, while adding Lclothes and
Lseg significantly improved all metric scores. Using both
losses together achieved the best performance in terms of
clothing alignment and overall image quality.

Method Paired Unpaired

SSIM↑ LPIPS↓ FID↓ KID↓
Ours (predict ϵ) 0.892 0.137 11.91 0.332
Ours (w/o Lseg , Lclothes) 0.893 0.134 11.31 0.272
Ours (w/o Lclothes) 0.892 0.137 11.42 0.281
Ours (w/o Lseg) 0.892 0.135 11.40 0.290
Ours 0.899 0.099 9.79 0.109

NOTE: We describe the KID as a value multiplied by 100.

Table 2. Quantitative comparison for different training objectives.

2.4. Sensitivity Analysis for Loss Weights

For the hyper-parameters λclothes and λseg corresponding
to the designed losses in our CTW module, we conducted
experiments involving a multiplication factor of 100 to as-
sess their sensitivity. The quantitative results are illustrated
in Sec. 2.4, while the qualitative outcomes are presented
in Fig. 4. The results reveal that when λclothes is exces-
sively large, distortion in clothing occurs. This distortion
arises due to pixel-wise loss causing significant gradients
in the model, making it challenging for the model to learn
the original distribution of flow, and failing to preserve the
original texture. On the other hand, if λseg is too large, the
model focuses more on generating the segmentation map
and fails to learn the accurate warping, and further misses
the alignment between warped clothes and the segmentation
map. Hence, we set λseg = 1 and λclothes = 0.2 for our
full model to have the best quality.

λclothes λseg
Paired Unpaired

SSIM↑ LPIPS↓ FID↓ KID↓
20 1 0.838 0.156 11.89 0.258
0.2 100 0.843 0.139 10.43 0.160
0.2 1 0.899 0.099 9.79 0.109

NOTE: We describe the KID as a value multiplied by 100.

Table 3. Quantitative comparison for different loss weights.

2.5. Training of Conditional Texture Fusing module

In Conditional Texture Fusing module, we employed a
scheme where the clothing image is multiplied by the
clothes masks to help the model address the issue of mis-
alignment in warped clothes. In the full model, the scheme



Figure 4. Comparison of different λ settings in CTW module.

of Ccond is derived as follows:

Train : Ccond = Ic ⊙W(Cmask, x̂0), (1)

Test : Ccond = Cwarp ⊙ Ŝc, (2)

To demonstrate the effectiveness of this masking scheme,
we conducted experiments without this scheme, i.e.,

Train : Ccond = Ic, (3)
Test : Ccond = Cwarp. (4)

As shown in Fig. 5, when the model is trained and tested
without the mask, the generated clothing appears artifacts
along the edges (the red circle) whenever the clothes are
slightly misaligned. Additionally, the body parts of the gen-
erated results are also unnaturally occluded (the blue circle)
when the clothes go beyond the intended region.

3. Occlusion Results
Fig. 6 illustrates cases of occlusion, demonstrating that our
model is capable of generating good results even when the
arms obstruct the clothing.

4. Failure Cases
Failure cases of our model are usually caused by complex
poses in target human images or incorrect clothing masks.
To illustrate the failure examples, we provide the following:
Complex Pose. As Fig. 7 shows, artifacts occur when the
target person is in complex poses. When there are large
movements in the input person, such as raising their hands
above their heads, our CTW module tends to produce incor-
rect warping, leading to artifacts in the output image. The
reason is that complex poses are very rare in the VITON-
HD dataset, making it difficult for the model to learn effec-
tively with limited data. We will tackle this issue in future
developments.

Figure 5. Comparison of different Ccond in CTF module. The
column of w/o masking is the results of using only Ic and Cwarp

as Ccond in training and inference time.

Figure 6. Occlusion cases.

Figure 7. Failure cases of complex poses.

Incorrect Mask. As Fig. 8 shows, when predicted cloth-
ing masks are failed, it leads to failure try-on results. The
clothing mask in the data may sometimes be inaccurate, es-
pecially when the color of the clothes is too similar to the
background. Incorrect clothing masks make it hard for the



model to accurately recognize the shape of the clothes, lead-
ing to erroneous warping and incorrect generation results.
HR-VITON mentions the use of a discriminator to handle
such cases, but this problem has not been fundamentally re-
solved. We also look forward to optimizing and resolving
this issue in future method designs.

Figure 8. Failure cases of incorrect masks.

5. Additional Qualitative results
We provide additional qualitative comparisons in Figs. 9
to 14. Fig. 9 shows that our method outperforms others in
generating low artifact results even in simple clothing types,
e.g., plain color thin strap vests, T-shirts, and shirts. Mean-
while, Figs. 10 to 12 demonstrate our method’s efficacy in
preserving clothing shape with complex decorations, e.g.,
puff sleeves, cross-strap vests, turtleneck shirts, etc. Specif-
ically, the example in Fig. 10 highlights our ability to pre-
serve the special shape of sleeves, e.g., puff sleeves, shoul-
der pad on T-shirt, and text/line design on side arm. Fig. 11
includes side bow tie design and cross-strap vests, which are
rare clothing styles in the VITON-HD dataset. Our method
accurately generates try-on results for these special designs.
Fig. 12 demonstrates the performance on preserving pat-
terns around the neckline and bottom of clothes. Addition-
ally, Figs. 13 and 14 showcase the outperforming texture-
preserving capabilities of our method.
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Figure 9. Additional comparison with state-of-the-art try-on methods. Our method outperforms others in generating low artifact results
even in simple clothing types, e.g., plain color thin strap vests, T-shirts, and shirts.



Figure 10. Additional comparison with state-of-the-art try-on methods. It highlights our ability to preserve the special shape of sleeves,
e.g., puff sleeves, shoulder pad on T-shirt, and text/line design on side arm.



Figure 11. Additional comparison with state-of-the-art try-on methods. Our method accurately generates try-on results for side bow tie
designs, cross-strap vests, which are rare clothing styles in the VITON-HD dataset.



Figure 12. Additional comparison with state-of-the-art try-on methods. It demonstrates the performance on preserving patterns around the
neckline and bottom of clothes.



Figure 13. Additional comparison with state-of-the-art try-on methods. Our method showcase the outperforming texture-preserving
capabilities.



Figure 14. Additional comparison with state-of-the-art try-on methods. Our method showcase the outperforming texture-preserving
capabilities.
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