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Abstract

In this paper, we introduce a novel unsupervised net-
work to denoise microscopy videos featured by image se-
quences captured by a fixed location microscopy cam-
era. Specifically, we propose a DeepTemporal Interpo-
lation method, leveraging a temporal signal filter inte-
grated into the bottom CNN layers, to restore microscopy
videos corrupted by unknown noise types. Our unsuper-
vised denoising architecture is distinguished by its ability
to adapt to multiple noise conditions without the need for
pre-existing noise distribution knowledge, addressing a sig-
nificant challenge in real-world medical applications. Fur-
thermore, we evaluate our denoising framework using both
real microscopy recordings and simulated data, validat-
ing our outperforming video denoising performance across
a broad spectrum of noise scenarios. Extensive exper-
iments demonstrate that our unsupervised model consis-
tently outperforms state-of-the-art supervised and unsuper-
vised video denoising techniques, proving especially effec-
tive for microscopy videos. The project page is available at
https://maryaiyetigbo.github.io/UMVD/

1. Introduction

In biomedical research, microscopy imaging have enabled
scientists to observe and analyze biological structures at cel-
lular and molecular levels [1, 8, 9]. These videos, how-
ever, are characteristically captured at fixed locations, lim-
iting the field of view to specific areas of interest within the
neural landscape. This fixed location feature, while bene-
ficial for focused studies, introduces unique challenges in
video denoising, leading to persistent noise patterns that
are difficult to differentiate from actual biological signals
[3, 4, 21, 23, 35].

In particular, the noise in microscopy videos, emanating
from diverse sources such as photon shot noise, background
fluorescence, and detector electronics, not only varies in
type (Poisson and Gaussian) but also fluctuates in intensity

Figure 1. Denoising results of our method, supervised (RVRT
[15] ASwin [17]), and unsupervsied SOTAs (Deepinterpolation
(DeepI) [12], UDVD [24], RDRF [30]) on simulated two-photon
calcium imaging. Our technique showcases superior denoising ca-
pabilities. The red arrow indications in the clean image highlight
specific signals that were either not adequately reconstructed by
other methods in their noise-reduced images or were excessively
smoothed

across different frames due to variations in lighting condi-
tions, specimen responses, and camera sensitivity. Tradi-
tional video denoising techniques often rely on detecting
and leveraging motion between frames to distinguish noise
from signal [2, 10–13, 34].

In the context of microscopy videos with fixed locations,
the absence of extensive movement can limit the effective-
ness of these approaches, making it difficult to apply con-
ventional denoising techniques designed for more dynamic
videos. Furthermore, the varying frame rates in microscopy
videos, especially calcium imaging recordings, add an addi-
tional layer of difficulty, as they require adaptive processing
techniques capable of handling these temporal variations
without compromising the integrity of the neural signals be-
ing observed. Therefore, creating effective denoising meth-
ods for microscopy videos that can account for static frames
while accurately isolating and eliminating noise is signifi-
cantly important for biological and neurological research.

Many state-of-the-art (SOTA) video denoising methods
[5, 14–17, 27, 28, 31, 33] rely heavily on supervised learn-

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

6874



ing, which require noisy/clean pairs during training. Al-
though they present good denoising performance on videos
captured by regular RGB cameras, the supervised video
denoising methods show limited generalization ability in
medical imaging, where obtaining clean reference images
is unrealistic and almost impossible. Various unsupervised
approaches address this challenge by optimizing the noisy
frames and exploring the motion between frames [2, 10–
13, 34]. Nevertheless, SOTA unsupervised video denoising
networks, i.e. UDVD [24], Wang et al. [30], have inherent
limitations. Firstly, they employ the backbone network ar-
chitectures of the Multi-Frame2Frame [7, 28] and Laine et
al. [11], which extensively exploits information from neigh-
boring pixels, both spatially and temporally, to reconstruct
the missing data and eliminate noise. These approaches
prove effective primarily for low frame rate videos or videos
featuring fast-moving objects or view changes, and easy to
overfit to noise when the input videos exhibit slow-moving
objects with consistent backgrounds. However, it is com-
mon for microscopy videos, e.g., one-photon calcium imag-
ing, containing static but fluctuating noisy background with
only a few intermediate signal spikes throughout the record-
ing, thus can pose extreme challenges to these motion-based
denoising techniques, as shown in Fig. 1.

In this paper, we present an unsupervised denoising
method using DeepTemporal Interpolation, tailored for mi-
croscopy videos, which can effectively denoise videos with
varied noise types and intensities. Our method consists of
two main components: a feature generator (Gϕ) and a De-
noiser (Dθ), as shown in Fig. 2. Distinct from conventional
unsupervised methods, which directly use adjacent frames
to interpolate the missing central frame, such as DeepInter-
polation [12] and Zheng et al. [34], or utilize neighboring
pixels for central pixel estimation as seen in UDVD [24]
and RDRF[30], our technique employs a temporal filter on
the feature maps produced by a sequence of CNN layers
(Gϕ) prior to processing by the Denoiser (Dθ). Our overall
pipeline is illustrated in Fig. 2. The major contributions of
our work include:

• We propose a novel unsupervised video denoising ap-
proach tailored for microscopy videos. Instead of mak-
ing complex modifications to the network architecture,
we apply a temporal filter to the feature map generated
by the feature generator which is fed into the denoiser, ef-
fectively mitigating the overfitting challenge commonly
encountered in unsupervised models.

• Through comprehensive evaluations using both real and
simulated medical imaging datasets, our model outper-
forms supervised and unsupervised denoising methods.

• Our technique also represents a significant advancement
in denoising videos containing non-Gaussian noise types,
an area where many existing CNN-based models struggle.

2. Related Work

Supervised Video Denoising Networks Supervised deep
learning-based approaches [7, 13, 19, 28, 32] have demon-
strated superior performance in video denoising. DVDNet
[27] leverages UNet [22] blocks to process five successive
neighboring frames, aiming to denoise the central frame
with optical flow to compensate for motion explicitly. Fast-
DVDnet [28] improved on [27] and performs implicit mo-
tion compensation through the architecture design. Vision
Transformer-based methodologies such as those presented
in VRT [14], RVRT [15], ASwin [17] and Song et al. [26]
leverage transformer architectures to exploit temporal infor-
mation in the video, thereby enhancing their noise reduction
efficiency. A notable limitation in these supervised tech-
niques is the need for training datasets comprising noisy and
clean pairs, which may not always be feasible in real-world
settings. Moreover, these models are generally tailored for
specific noise types. This potentially constrains their ver-
satility when confronted with different noise conditions, re-
sulting in diminished performance on noise patterns not en-
countered during training.

Unsupervised Video Denoising Networks Unsupervised
video denoising methods mitigate the challenge of requir-
ing noisy/clean video pairs. Noise2Noise [13] demonstrates
comparable image denoising performance with supervised
one by learning the underlying clean image from pairs of
noisy images. Frame2Frame [7] extended this concept to
video denoising by treating sequential frames as pairs of
noisy images and employing optical flow techniques to esti-
mate motion. However, the performance of this method can
be limited by inaccuracies in motion estimation. Dewil et
al. [6] extends single-image approach in [7] by introducing
a self-supervised fine-tuning framework which adopts Fast-
DVDnet [28] as the backbone network. The Noise2Void
method [10] introduced a ’blind-spot’ technique which es-
timates each noisy pixel by considering neighboring pixels
without including the noisy pixel itself. Laine et al. [11] en-
forced the blind-spot concept through architectural design.
The state-of-the-art (SOTA) unsupervised video denoising
method, i.e. UDVD [24], integrated the blind-spot network
(BSN) in [11] into the FastDVDnet [28] framework. Wang
et al. [30] increases the receptive field of the BSN and also
includes a transformer network to capture temporal infor-
mation. These methods have the limitation of overfitting
noise when neighboring frames have very similar structures
and require complex training. Zheng et al. [34] developed
an unsupervised loss function during training to provide an
unbiased estimator. However, this approach requires prior
knowledge of noise distribution, which might not be avail-
able when denoising real videos.

The most related to our approach is DeepInterpolation
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Figure 2. Our DeepTemporal Interpolation Pipeline. The feature generator Fϕ extracts distinctive features using three depthwise convolu-
tional layers, and a temporal filter enhances denoising accuracy by adjusting feature map weights based on spatial-temporal proximity to
the central frame, overcoming challenges in handling high frame rate videos and slow-moving objects.

[12], which uses U-Net as a backbone network. It denoises
videos by omitting the central frame and leverages neigh-
boring frames’ similarity for interpolation. However, this
method struggles when handling scenarios with high noise
intensity. In contrast, our innovative model seamlessly in-
tegrates a temporal filter into the feature map generated by
stacked CNN layers. By allocating higher weights to dis-
tant frame feature maps and lower weights to proximate
ones, our model addresses the rapid convergence to noisy
content seen in high frame rate videos due to redundancy
in nearby frames, especially when the noise level is high.
Consequently, our method showcases more resilient denois-
ing performance than DeepInterpolation and other unsuper-
vised approaches in UDVD and RDRF.

3. Unsupervised Video Denoising
Our goal is to generate denoised video {V̂t|t = 1, 2, ...T}
given a sequence of noisy video input, {Vt|t = 1, 2, ...T},
where T is the total number of frames in the input video.
In each iteration, a subset of contiguous frames {Vt|t =
1, ...c, ...N} is taken as input, with N indicating the batch
frame count and c denoting the central frame’s index.
These frames are then passed through the feature genera-
tor Gϕ, producing the corresponding feature maps {Ft|t =
1, ..., N}. Then, the temporal filter {γt}Nt=1 weights these
feature maps {Ft}Nt=1, assigning diminished values to fea-
tures nearer the central frame compared to those more dis-
tant. Next, the resulting weighted feature maps are concate-
nated and fed into the Denoiser Dθ, producing the denoised
central frame V̂c. A comprehensive visualization of our
pipeline is provided in Fig. 2.

3.1. Feature Generator Gϕ

Given a batched frames {Vt}Nt=1, the feature generator
Gϕ produces feature maps {Ft}Nt=1 aligned with the input

frames. We utilize depth-wise convolution layers to expe-
dite the training phase, eliminating the need to process each
frame individually through Gϕ. Unlike standard 2D con-
volutions that apply a multi-channel filter to the entire in-
put depth, allowing for channel mixing, depthwise convo-
lution maintains the separation of input channels and gen-
erates the output feature maps independently. Specifically,
our feature generator integrates three depth-wise convolu-
tion layers. Each depthwise group generates feature map
Ft ∈ RC×H×W for Vt, where C is the number of out-
put channels, while H and W represent the input image’s
height and width, respectively.

3.2. DeepTemporal Interpolation

Upon generating the feature maps Ft at the initial stage, we
introduce the DeepTemporal Interpolation method that ap-
plies a set of weighted parameters to the feature maps. This
filter plays a crucial role in enhancing denoising accuracy.
Unlike DeepInterpolation [12], we do not need to remove
the central frame from the input. Instead, our temporal filter
is distinct in its ability to adjust the weight of each feature
map based on its temporal proximity by setting the values of
the central frame’s feature map to zero, while diminishing
weights are assigned to the feature maps of close neighbor-
ing frames. This unique weighting allows our approach to
manage the intricate temporal similarities within high frame
rate and slow-motion videos more effectively, addressing
the shortcomings of existing models. This strategy prevents
the model from mapping the inherent noise patterns in the
target and surrounding frames. Notably, the temporal fil-
ter offers a new paradigm for video denoising, overcoming
the limitations of current methods in handling high frame
rate videos and slow-moving objects, which is common in
microscopy videos. The temporal filter weights the feature
map using Eq 1.
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where k = ⌊M/2⌋, and ⌊.⌋ denotes the floor function.
We apply the weights {γt|t = 1, ..., N} to the feature

maps by performing an elementwise multiplication. This
ensures that the weight of feature map Fc at index c is zero,
and the weights of the first and last feature map in the batch
(F1 and FN ) are one. This operation is depicted in Eq 2.

F′
t = γt ⊙ Ft ∀t ∈ 1, ..., N. (2)

Through this innovative application of the temporal fil-
ter, our method is able to provide robust denoising for high
frame rate and slow-motion videos, effectively overcoming
the challenges that limit current state-of-the-art approaches.

3.3. Denoiser Dθ

Given the weighted feature maps {F′
t|t = 1, ..., c, ..., N},

the Denoiser Dθ generates a denoised central frame V̂c as
in Eq 3. The Denoiser Dθ model is a U-Net [22] architec-
ture with three encoders and two decoder layers. The con-
catenation of {F′

t}Nt=1 serves as the input to Dθ, enabling it
to explore temporal correlations within adjacent frames.

V̂c = Dθ([F
′
1, ...F

′
N ]). (3)

All convolutional layers in the network utilize ReLU ac-
tivation functions except the output layer. It is important
to note that the integration of skip connections between
input and output layers in U-Net inherently amplifies the
network’s sensitivity to high-frequency details present in
the input tensor, encompassing the inherent noise. Conse-
quently, assigning a value of γc = 0 is imperative to guaran-
tee the exclusion of any original central frame information
from being transferred to Dθ. We found that even marginal
values for γc can prompt the U-Net to rapidly converge to-
wards the noise during training.

4. Training Details.

In our implementation, we take a stack of N = 7 contigu-
ous frames. We adopt training protocols consistent with
other unsupervised image and video denoising techniques,
such as Laine et al. [11] and UDVD [24]. Specifically, the
input tensor is partitioned into overlapping patches of size
128× 128 in spatial dimensions, from which we predict the
denoised central patches. This procedure, which is a form
of data augmentation, significantly augments the number of
training samples, thereby enhancing the denoising perfor-
mance. It is essential to note that while we utilize these
cropped patches during training, the full-resolution tensor
was used for denoising during the inference phase.

We employ the l2 loss function in Eq 4 to minimize the
difference between the model’s output V̂c and the reference
central noisy frame VC

L = ||V̂c −Vc||22. (4)

5. Experiments
We carried out a series of evaluations to assess the efficiency
of our method. Our results show that our approach sur-
passes many SOTA video denoising techniques, including
both supervised and unsupervised methods. Additionally,
our ablation studies offer valuable understanding regarding
the importance of key components within our methodology.

5.1. Datasets

We evaluated our method across diverse datasets, compris-
ing both real noisy sequences in the case of calcium imag-
ing and those infused with synthetic noise. For the natural
video, sequences were contaminated with a range of noise
types and intensities to simulate various challenging con-
ditions. For medical imaging, we used real-world noisy
videos primarily from fluorescence microscopy and calcium
imaging. We used the recordings from neural recordings of
freely moving mice for one-photon imaging. To evaluate
with two-photon imaging, we simulated realistic calcium
imaging, which also has the ground truth clean imaging.

Real-world Dataset Our real-world dataset comprises
one-photon calcium imaging recordings procured locally
from freely behaving transgenic mice (Drd1-Cre and Drd2-
Cre) during cocaine/sucrose self-administration experi-
ments. This calcium imaging technique, critical in neuro-
science, allows for real-time visualization of neuronal ac-
tivity. However, these recordings are often degraded by
noise, making denoising an essential preprocessing step.
For these recordings, single-channel epifluorescent minia-
turized miniscopes were employed, capturing the fine de-
tails of the neuronal activity. Given that this dataset pos-
sesses complex noise levels and lacks reference ground-
truth clean videos, it provides a valuable practical demon-
stration of our model’s application to real-world scenarios.

For fluorescence microscopy, we utilized the microscopy
recordings of live cells obtained from [29]. We used the
GOWT1 cell recording (Fluo-C2DL-MSC) and mesenchy-
mal stem cell recording video (Fluo-N2DH-GOWT1). Sim-
ilar to the one-photon calcium imaging, this data has no
ground truth clean video.

We simulated realistic two-photon calcium imaging data
using neural anatomy and optical microscopy (NAOMi)
[25] to perform the qualitative evaluation on realistic imag-
ing with ground truth. We generated two datasets with
1,000 and 1,500 frames, respectively, with the field of view
(FOV) of 150x150 µm2 and 500x500 µm2 respectively.
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High Frame Rate RGB Video Dataset. To validate our
model’s generalization capabilities across a broad spectrum
of video content, we extend our evaluation beyond mi-
croscopy imaging to include color video data captured with
RGB cameras. This approach ensures a comprehensive
evaluation under diverse noise types and intensities, show-
casing the model’s adaptability to real-world applications.
To achieve this, we corrupted the video sequence with syn-
thetic noise, employing three noise types: Gaussian, Pois-
son, and Impulse (Salt-and-Pepper). We used the LIVE
YouTube High Frame Rate (LIVE-YT-HFR) [18] datasets
to evaluate on high frame rate RGB video. This dataset
features a wide array of video sequences, each captured at
various frame rates per second (fps) and subject to differ-
ent compression levels. Specifically, our evaluation concen-
trated on sequences captured at 120fps. This demonstrates
the robustness of our model across various high frame rate
video scenarios, further affirming its efficacy and wide-
ranging applicability in video denoising tasks.

To simulate varying intensities of Gaussian noise, we
used standard deviation values (σ) of 30, 50, and 90. In-
tensities of Poisson noise (photon shot noise) were varied
by setting the maximum event count (λ) to 30, 50, and 90.
For Impulse noise, which appears as random white or black
pixels due to sudden signal changes, we used pixel ratios
(α) of 0.2, 0.3, and 0.4 to indicate different noise levels.

5.2. Experimental Setup

We benchmarked our DeepTemporal Interpolation against
SOTA unsupervised video denoising techniques DeepInter-
polation [12], UDVD [24], RDRF [30], and also against
the supervised paradigm, RVRT [15], and ASwin [17].
All models were implemented using the PyTorch frame-
work [20] and NVIDIA A100 GPU was used for execution.
We adopted the ADAM optimizer with default parameters.
Over a span of 25 epochs, each iteration employed an in-
put stack as the mini-batch, targeting the central frame’s de-
noising. An early stopping strategy was used to mitigate
potential overfitting, halting the training process in the ab-
sence of notable loss decrement. The inception learning rate
was fixed at 1e− 3, and was systematically halved every 10
epochs.

For the supervised video denoising methods, i.e. RVRT
[14] and ASwin [17], we use their publicly available pre-
trained model, which was already trained under various
noise conditions to generate the denoising results. Specif-
ically, for ASwin, we used the model trained for blind de-
noising of real-world noisy video. For UDVD [24], we train
individual video sequences using the UDVD-S model. The
training process for UDVD-S followed a blind denoising
approach, minimizing the mean squared error (MSE) with-
out any assumptions regarding the noise parameters. Sim-
ilar to UDVD, we also trained each video sequence sepa-

rately for DeepInterpolation [12]. For RDRF [30], we gen-
erated the denoising result for the color video data using
the pre-trained model provided by the authors. We specif-
ically pass the noisy input to the model without giving any
prior information about the noise parameters. However,
we trained the model from scratch on each video record-
ing for the microscopy dataset. All implemented models
were trained and evaluated on the same datasets, ensuring
consistency in our comparative analysis.

It’s worth noting that while specific unsupervised im-
age/video denoising methodologies, including Laine et al.
[11], UDVD [24] RDRF [30], Zheng et al. [34] boost their
efficacy by introducing random noise to clean reference
frames in the training phase, we deliberately refrained from
employing such strategies. Utilizing these techniques can
result in overfitting to a particular noise characteristic, often
Gaussian, and a specific noise intensity. This, in turn, de-
grades the model’s adaptability to real-world, varied noise
situations. Consequently, our training strategy only utilizes
the inherent noisy video frames as input, avoiding the addi-
tion of any noise during training.

5.3. Quantitative Evaluation

To evaluate our proposed method, we used two metrics
in the domain of image and video denoising: the Peak
Signal-to-Noise Ratio (PSNR) and Structural Similarity In-
dex Measure (SSIM) As shown in Table 1, our method
outperforms the unsupervised methods, RDRF and UDVD,
across various noise categories on the RGB video dataset.
While the supervised RVRT and ASwin models demon-
strate good denoising performance on Gaussian noise, their
performances significantly drop relatively on other noise
types, especially in scenarios with high noise levels. Addi-
tionally, the findings in Table 2 demonstrate that our method
surpasses supervised and unsupervised techniques on the
simulated two-photon calcium imaging dataset. This cor-
roborates our model’s efficacy in denoising across various
datasets and noise scenarios, showcasing its broad applica-
bility and effectiveness.

5.4. Qualitative Comparison

The visual comparison of our model against other models
on microscopy datasets as shown in Figures 1, 3, and 5,
highlights the denoising effectiveness on two-photon cal-
cium imaging. Our model demonstrates an exceptional
ability to remove noise while retaining crucial signal de-
tails in calcium imaging. A detailed inspection in Figure
3 reveals that our technique successfully recovers intrinsic
high-frequency information, often lost or overly smoothed
in other methods. Similarly, the comparison results of one-
photon imaging in Figure 6 show our model’s proficiency
in denoising and preserving finer details. Additionally, Fig-
ure 4 illustrates the superiority of our approach in denois-

6878



Figure 3. This figure presents a comparative analysis of denoising performance between our approach and that of other established methods,
including RVRT, Aswin, DeepInterpolation, UDVD, and RDRF, on Two-Photon (2P) calcium imaging data simulated using NAOMi to
produce realistic imaging with a ground truth reference. The outcomes illustrate that our model successfully denoises the video data while
preserving relevant signals and avoiding obscuring critical information. Conversely, the denoising outputs from alternative methods reveal
their limitations in accurately recovering underlying signals.

Figure 4. Visual Comparison on Flourescence Microscopy

ing fluorescence microscopy datasets over other supervised
and unsupervised techniques, further affirming our model’s
robust denoising capabilities across various scenarios. Fig-
ure 7 shows the extracted traces of two region-of-interests
(ROIs) manually drawn from the simulated two-photon cal-
cium imaging.

5.5. Ablation Study

We conduct an ablation study to explore the influence of
various components on our model’s effectiveness.

Influence of the DeepTemporal Interpolation. This
study probes the critical contribution of the Temporal Fil-
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Figure 5. Additional visual comparison of two-photon calcium imaging

Figure 6. Denoising results on one-photon calcium imaging recordings of freely behaving transgenic mice

Figure 7. Comparative Traces of Two Example ROIs from the
simulated calcium imaging.

ter (TF) in our framework. In the experiment, we feed the
output from the feature generator straight to the Denoiser

and evaluate the denoising performance using the variant
without TF, denoting as Gϕ + Dθ. The results presented
in Table 3 underline that the TF plays a substantial role in
enhancing denoising efficiency.

Impact of Frame Rates Variation. In our study, we
systematically examined the performance of our model
across various frame rates, focusing primarily on high-
speed videos. We subjected the LIVE-YT-HFR dataset to
varying frame rates, including 120, 98, 82, 60, 30, and 24
fps, while introducing different noise types and intensities.
Table 4 provides a detailed breakdown of our findings.

Notably, as evidenced by the results, our model show-
cases consistently superior denoising performance at higher
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Gaussian Poisson Impulse

σ = 30 σ = 50 σ = 90 λ = 30 λ = 50 λ = 90 α = 0.2 α = 0.3 α = 0.4

LIVE-
YT-HFR
120fps

RVRT 30.75/0.80 29.61/0.83 18.12/0.22 27.68/0.78 27.27/0.92 17.64/0.22 23.84/0.63 17.32/0.19 13.98/0.09
ASwin 15.50/0.40 15.55/0.41 15.90/0.42 15.12/0.39 14.86/0.39 14.29/0.39 15.81/0.42 16.10/0.42 16.18/0.42
DeepI 30.25/0.87 28.18/0.82 22.94/0.71 28.09/0.89 26.36/0.88 23.25/0.86 23.86/0.75 21.15/0.67 19.06/0.61
UDVD 28.47/0.84 25.66/0.76 22.15/0.65 29.37/0.87 26.24/0.84 22.18/0.74 22.48/0.68 20.24/0.61 18.45/0.57
RDRF 25.80/0.58 20.08/0.35 15.35/0.18 25.43/0.65 22.39/0.53 18.99/0.41 16.79/0.23 14.61/0.16 13.14/0.12
Ours 31.67/0.90 28.70/0.85 22.82/0.75 30.82/0.92 28.72/0.89 24.76/0.88 24.44/0.82 21.29/0.74 19.23/0.67

Table 1. Performance in Denoising Synthetic Noise. This table presents a comparison of average PSNR/SSIM values of denoised
performance on LIVE-YT-HFR datasets. Text highlighted in bold signifies the highest value, while underlined text denotes the second
highest. Our method demonstrates superior performance in most cases and remains highly competitive with the supervised methods.

RVRT ASwin DeepI UDVD RDRF Ours

PSNR 30.05 25.94 28.64 25.75 28.31 35.90
SSIM 0.92 0.90 0.91 0.74 0.92 0.95

Table 2. Denoising performance on simulated 2P Calcium
Imaging. The result shows the average PSNR and SSIM values
on the 2P imaging simulated with NAOMi [25]

Gaussian 30 Poisson 30 Impulse 0.2

PSNR SSIM PSNR SSIM PSNR SSIM

Gϕ + Dθ 21.23 0.42 21.26 0.49 13.88 0.16
Gϕ + TF + Dθ 31.67 0.90 30.82 0.92 24.32 0.82

Table 3. Effect of Excluding Temporal Filter (TF) on Denois-
ing Effectiveness. This table presents a contrast in PSNR/SSIM
metrics for our LIVE-YT-HFR-trained model, comparing denois-
ing outcomes with and without including the temporal filter layer.

Gaussian 30 Poisson 30 Impulse 0.2

fps PSNR SSIM PSNR SSIM PSNR SSIM

120 31.67 0.90 30.82 0.92 24.32 0.82
98 28.83 0.83 28.69 0.88 22.44 0.73
82 29.30 0.85 29.42 0.89 22.67 0.74
60 29.10 0.85 28.90 0.89 22.91 0.75
30 24.29 0.71 24.68 0.76 21.25 0.65
24 23.58 0.68 23.50 0.72 20.43 0.59

Table 4. Impact of Frame Rate Variation. This table show-
cases the PSNR/SSIM metrics across various frame rates from the
LIVE-YT-HFR dataset.

frame rates, particularly at 120 fps across all noise types.
However, the performance starts to wane with lower frame
rate spectrums, especially at 30 and 24 fps. This highlights a
potential limitation of our model regarding denoising videos
with lower frame rates. This degradation in performance at
lower frame rates suggests a possible direction for future
improvements and optimizations to our algorithm.

Different of Number of Input Frames (N) We con-
ducted an ablation study on the number of frames (N ) uti-
lized as the input batch in our model. The findings in Table
5 indicate that N = 7 yields the optimal performance across
different noise types.

N=3 N=5 N=7 N=9 N=11

Poisson 50 27.35 25.81 28.72 26.97 26.23
Impulse 0.2 23.93 24.42 24.44 24.07 24.22

Table 5. Impact of Number of Input Frames. This table displays
the average PSNR values for various numbers of input frames from
the LIVE-YT-HFR dataset.

6. Discussion

We presented a novel unsupervised approach to denoise
microscopy videos, leveraging the DeepTemporal Interpo-
lation based CNN network architecture. We demonstrate
that our unsupervised microsopy video denoising method
achieves outperforming performance on various real-world
micoscopy dataset and diverse noise types by emphasizing
the importance of spatiotemporal features in microscopy
videos. In our future work, we plan to enhance our model’s
efficiency with low frame rate videos. Additionally, we in-
tend to refine our temporal filter to adjust the parameters
dynamically based on observed motion speed. We also aim
to adaptive accommodate the number of input frames in the
denoisng batch according to the speed of moving objects in
the videos.
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