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Abstract

Histopathological images are widely used for the anal-
ysis of diseased (tumor) tissues and patient treatment se-
lection. While the majority of microscopy image process-
ing was previously done manually by pathologists, recent
advances in computer vision allow for accurate recogni-
tion of lesion regions with deep learning-based solutions.
Such models, however, usually require extensive annotated
datasets for training, which is often not the case in the con-
sidered task, where the number of available patient data
samples is very limited. To deal with this problem, we pro-
pose a novel DeepCMorph model pre-trained to learn cell
morphology and identify a large number of different can-
cer types. The model consists of two modules: the first one
performs cell nuclei segmentation and annotates each cell
type, and is trained on a combination of 8 publicly avail-
able datasets to ensure its high generalizability and robust-
ness. The second module combines the obtained segmenta-
tion map with the original microscopy image and is trained
for the downstream task. We pre-trained this module on the
Pan-Cancer TCGA dataset consisting of over 270K tissue
patches extracted from 8736 diagnostic slides from 7175
patients. The proposed solution achieved a new state-of-
the-art performance on the dataset under consideration, de-
tecting 32 cancer types with over 82% accuracy and outper-
forming all previously proposed solutions by more than 4%.
We demonstrate that the resulting pre-trained model can be
easily fine-tuned on smaller microscopy datasets, yielding
superior results compared to the current top solutions and
models initialized with ImageNet weights. The codes and
pre-trained models presented in this paper are available at:
https://github.com/aiff22/DeepCMorph

1. Introduction
Whole slide images (WSI), which are microscopy pho-

tos of stained tissue regions, are an important source of
data for digital pathology. They contain rich visual infor-

mation about tissue cell type composition, cell states, im-
mune system activity, vasculature, cell abnormalities, etc.,
and thus are widely used for the diagnosis and treatment
selection for patients. Over the past years, histopathology
image analysis has proven to be useful for such tasks as
cancer screening and classification [6, 34, 44, 72, 78, 97],
tumor grading [8, 9, 45, 49, 61, 93], patient survival pre-
diction [2, 21, 68, 77, 91, 96], mitosis detection [5, 55, 85],
gene mutant prediction [13, 60, 95], tumor immune infiltra-
tion quantification [1, 79, 94], gene expression [15, 66] and
biomarker prediction [51,84], therefore making it crucial to
develop performant WSI analysis tools.

While initially whole slide images were analyzed man-
ually by pathologists, during the past years machine learn-
ing based approaches were gradually adopted for this task
as they allowed for more accurate and efficient data pro-
cessing. The first attempts were based on traditional com-
puter vision methods [41, 70, 80] using handcrafted feature
descriptors such as histograms of oriented gradients, Ga-
bor filters, SIFT features, etc. These approaches were later
significantly outperformed by convolutional neural network
(CNN) based models [7, 14, 73, 81, 90] that were trained in
an end-to-end fashion and did not require any manual fea-
ture engineering. Recently, vision transformer (ViT) archi-
tectures were also proposed for WSI classification and re-
trieval problems, often demonstrating superior performance
on these tasks [29, 36, 48, 92, 98]. A typical approach to
adapt these models for WSI analysis has been to use an ex-
isting neural network architecture and train it from scratch
or initialize the model with weights obtained on the Ima-
geNet dataset [31, 39, 44, 60, 66, 89]. Since numerous WSI
datasets contain only tens or hundreds of samples, a sig-
nificant limitation arises: while larger network architec-
tures with millions of parameters may have the potential to
learn more robust features and attain greater accuracy when
trained on histopathology data, their practical performance
is often constrained by insufficient training data and overfit-
ting problems [39]. One recently presented approach to deal
with this problem is to pre-train models in an unsupervised
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Figure 1. Overview of the proposed DeepCMorph network architecture. The model consists of two separate modules: the first one performs
nuclei segmentation and cell type annotation. Its outputs are then stacked together with the original histopathology image and are passed
to the second module performing the final classification task.

manner using contrastive learning on a large corpus of di-
verse whole slide images. This led to a significant accuracy
boost when tuning the obtained networks on WSI classifi-
cation tasks [50,87,88]. In this paper, we follow a different
approach — rather than optimizing the network to gener-
ate representative features for each WSI patch, we suggest
pre-training the model to learn cell morphology. Specifi-
cally, the model is trained to segment nuclei and classify
cell types on histopathological slides. This information is
directly integrated into the model and combined with the
corresponding H&E stained image to make predictions on
the final downstream task.

Nuclei morphology plays an important role in under-
standing cell development and underlying cellular pro-
cesses. Deviations from normal nucleus shape are often
good indicators of external stress and thus are informa-
tive markers for a number of diseases, e.g. breast can-
cers [11, 56], carcinomas [20] or prostate cancers [10]. Nu-
cleus morphology also changes during cell cycle progres-
sion and allows to identify actively dividing cells, which is
a key characteristic of mutated cancer cells. Besides that,
nuclei segmentation is additionally used for cell identifica-
tion and counting: as accurate segmentation of the entire
cell is very difficult in general due to invisibility of cell
membranes (defining cell boundaries) on microscopy im-
ages, nuclei are usually used for recognition of single cells
and their positions. Due to its vital role for histopathol-
ogy image analysis, a large number of different nuclei
segmentation datasets have been proposed over the past
years [22, 25–28, 47, 52, 57, 58, 71, 82, 82, 83]. Various ef-
ficient deep learning-based solutions were also developed
for this task [27,30,32,33,37,67,74], making it possible to
achieve precise nuclei segmentation results for various cell
types. In this work, we build the segmentation part of our

model on top of the previous solutions, further enhancing
its robustness by combining multiple datasets and applying
extreme data augmentations.

Additionally, the cell type composition differs between
healthy and diseased tissues and can serve to analyze dis-
ease progression. For instance, having large amounts of
immune cells in a specific tissue region is generally asso-
ciated with a strong inflammatory response [69]. In tumors,
immune cell infiltration is strongly correlated with posi-
tive disease progression and improved patient survival [53].
Therefore, an ability to distinguish between non-immune
and immune cells and their subtypes might significantly im-
prove the predictive power of the model. As several nu-
clei segmentation datasets provide additional cell type an-
notations [22, 26, 27, 82], we explicitly use this informa-
tion for training our segmentation module that generates
both nuclei segmentation and cell type annotation maps.
In this paper, we demonstrate that such information al-
lows to achieve a significant accuracy boost, outperforming
the latest transformer-based models trained on millions of
histopathology images while also being more interpretable.

Our main contributions are:

• We propose a novel histopathological image analysis
DeepCMorph model that explicitly learns cell mor-
phology: its segmentation module is trained to identify
different cell types and nuclei morphological features.

• The segmentation module is independent of the classi-
fication block; this allows to train it on all previously
published nuclei classification and cell type annotation
datasets and leverage this information when training
the classification model part.

• Unlike the recently proposed transformer-based foun-
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Figure 2. Sample images used for training the segmentation DeepCMorph module. Top row – original H&E stained image patches, middle
row – target nuclei segmentation maps, bottom row – cell annotation maps. For latter, red color encodes lymphocytes, green: epithelial
cells, blue: plasma cells, orange: neutrophils, magenta: eosinophils, yellow: connective tissue.

dation models [50, 87, 88], this solution is trained in
a fully-supervised fashion, which lowers the training
time and computational resources by an order of mag-
nitude: for example, compared to the CTransPath [88]
model that requires 250 hours of training on 48 Nvidia
V100 GPUs, our network can be trained on only one
GPU in less than one week.

• We apply extreme input data regularization to ensure
that the model is not prone to learning any potential
batch effect present in the data.

• The model is pre-trained on 8 publicly available
segmentation datasets and a large-scale Pan-Cancer
TCGA dataset containing over 270K histopathological
image patches. On this dataset, DeepCMorph estab-
lished a new state-of-the-art result, bypassing all pre-
vious solutions by over 4% of accuracy.

• We show that that pre-trained model can be easily
tuned on smaller datasets for tissue classification with
excellent accuracy.

• The proposed model has a fully convolutional architec-
ture and can therefore be applied to images of arbitrary
resolutions and aspect ratios.

• We publicly release the codes and pre-trained mod-
els to facilitate the development of new performant
histopathological image analysis tools.

2. Datasets
This section describes nuclei segmentation, cell type an-

notation and tissue classification datasets that are used for
training the segmentation and classification model blocks.

2.1. Nuclei Segmentation and Annotation Datasets

As our goal is to obtain a robust nuclei segmentation /
cell type annotation model module that can be applied to
tissues from various organs, we used the majority of previ-
ously published datasets proposed for these tasks. In par-
ticular, we combined data from 8 segmentation datasets de-
scribed below to ensure a large diversity of tissue types, pa-
tients and imaging conditions:

• Lizard dataset [26] contains 291 H&E stained
histopathological images of colon tissue with 495179 la-
beled nuclei. Besides providing target nuclei segmenta-
tion maps, this dataset also annotates the type of the cell
corresponding to each nucleus: epithelial cells, connec-
tive tissue cells, lymphocytes, plasma cells, neutrophils and
eosinophils. The Lizard dataset is itself a combination of
six different databases: DigestPath, CRAG [25], GlaS [71],
CoNSeP [27], PanNuke [22] and TCGA [28] that were col-
lected in total from 16 different centers and three countries,
which ensures the diversity of the data from both biological
and technical perspectives. The images are provided at 20×
magnification.

• CryoNuSeg dataset [52] contains 30 annotated H&E
stained images of resolution 512×512 pixels with 7596 nu-
clei downloaded from the TCGA [28] database. Histopatho-
logical images from this dataset correspond to ten different
human organs: adrenal gland, larynx, lymph node, medi-
astinum, pancreas, pleura, skin, testis, thymus and thyroid
gland, and are provided at a magnification of 40×.

• MoNuSAC dataset [82] contains 209 annotated H&E
stained images with 31411 nuclei downloaded from the
TCGA [28] database. This data corresponds to 46 patients
from 32 hospitals and four organs: breast, kidney, lung and
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Adrenocortical Carcinoma Bladder Urothelial Carcinoma Brain Lower Grade Glioma Breast Invasive Carcinoma Cervical Squamous Carcin. Cholangiocarcinoma Colon adenocarcinoma Esophageal Carcinoma

Glioblastoma Multiforme Squamous Cell Carcinoma Kidney Chromophobe Kidney Clear Cell Carcinoma Kidney Papillary Carcinoma Liver Hepatocellular Carcin. Lung Adenocarcinoma Lung Squamous Cell Carcin.

Neoplasm B-cell Lymphoma Mesothelioma Ovarian Cystadenocarcinoma Pancreatic Adenocarcinoma Pheochromocytoma Prostate Adenocarcin. Rectum Adenocarcinoma Sarcoma

Skin Cutaneous Melanoma Stomach Adenocarcinoma Testicular Germ Cell Tumors Thymoma Thyroid carcinoma Uterine Carcinosarcoma Uterine Endometrial Carcin. Uveal Melanoma

Figure 3. Sample H&E stained image patches for 32 different cancer types from the Pan Cancer TCGA dataset [44].

prostate. The images are provided at 40× magnification.
• BNS dataset [57] contains 33 annotated H&E stained im-
ages of resolution 512×512 pixels with 2754 nuclei. The
data corresponds to breast cancer, the images are provided
at 40× magnification.
• TNBC dataset [58] contains 50 annotated H&E stained
images of resolution 512×512 pixels with 4022 nuclei. The
data corresponds to 11 patients and breast organs, the im-
ages are provided at 40× magnification.
• KUMAR dataset [47] contains 30 annotated H&E
stained images of resolution 1000×1000 pixels with 21623
nuclei. The data corresponds to 30 patients and seven or-
gans: breast, kidney, liver, prostate, bladder, colon and
stomach. The images are provided at 40× magnification.
• MICCAI (CPM)–15/17 datasets [83] contain 79 anno-
tated H&E stained images with 10475 nuclei downloaded
from the TCGA [28] database. The images correspond
to four different cancer types: non-small cell lung cancer,
head and neck squamous cell carcinoma, glioblastoma mul-
tiforme and lower grade glioma, and are provided at both
20× and 40× magnification.
• PanNuke dataset [22] contains 7901 annotated H&E
stained images of resolution 256×256 pixels with 216400
nuclei from 19 different organs. Segmentation maps pro-
vided in this dataset were generated automatically and then
revised by humans. Because of this, the targets for difficult
or ambiguous cases are not very accurate [26] as they are
limited by the performance of the used FCNN neural net-

work. In this work, PanNuke dataset is used only for initial
model pre-training.

Since the datasets use different approaches for storing
images and annotations, they were first converted to the
same data representation format: all data samples were
transformed into 4-channel PNG images, where the first 3
channels encoded RGB image values, and the last one – the
target segmentation and / or cell type annotation maps. This
allowed to significantly simplify data pre-processing and re-
duce the size of the entire dataset from 40 GB to less than 2
GB. Overall, the combined dataset contains over eight thou-
sand histopathological images, sample H&E stained input
data and target segmentation maps are shown in Fig. 2. The
instructions for downloading this data are provided on the
official project webpage 1.

2.2. Tissue Classification Datasets

We consider four different histopathological datasets for
training the classification DeepCMorph module. The large-
scale Pan Cancer TCGA dataset is used for initial model
pre-training and benchmarking its predictive capacity. The
other three datasets are mainly used to assess DeepCMorph
generalization abilities and its performance on other tissue
subtypes. A detailed description of the considered datasets
is provided below:

• Pan Cancer TCGA dataset [44] was obtained by
processing 8736 diagnostic slides downloaded from the

1https://github.com/aiff22/DeepCMorph

6916



Figure 4. The original image patch (top left, denoted by blue frame) and training patches generated by the proposed data augmentations.

TCGA [28] database and belonging to 7175 patients. For
each WSI image, pathologists selected a number of repre-
sentative patches corresponding to tumor regions. Overall,
the dataset contains over 1.6 million patches extracted at 6
different magnification factors for 32 different cancer types,
which list is provided in Fig. 3. The authors performed color
normalization using [63] to reduce the potential batch ef-
fect. Due to a large diversity, this dataset is perfectly suited
for pre-training complex deep learning models for various
histopathological tissue classification tasks. In this work,
we consider the largest magnification factor of 20× (0.5
µm/pixel) and split the dataset randomly into training, vali-
dation and test parts using 70:15:15 ratio, which resulted in
188210, 41750 and 41750 patches, respectively. Notably,
the splits were stratified per patient, i.e., images from a sin-
gle patient were present only in the train or test set.

• NCT-CRC-HE dataset [40] contains 100K 224×224 px
image patches extracted from 136 colorectal adenocarci-
noma samples from the National Center for Tumor Dis-
eases (NCT). Nine tissue classes are present in the dataset:
adipose, background, debris, lymphocyte, mucus, smooth
muscle, normal colon mucosa, cancer-associated stroma
and colorectal adenocarcinoma epithelium. All images are
color normalized. A separate set of 7180 image patches
from 50 patients with colorectal adenocarcinoma is used for
testing.

• Colorectal cancer (CRC) dataset [41] contains 5000
150×150 px image patches corresponding to eight tissue
types: epithelium, simple stroma, complex stroma, lym-
phoid follicles, debris, mucosal glands, adipose and back-
ground. Because of its small size, this dataset serves as a
good benchmark for model generalization abilities. We split
the dataset randomly into training, validation and test parts
using 8:1:1 ratio.

• UniToPatho dataset [8] contains 8699 patches of res-
olution 1812×1812 px extracted from 292 WSIs. It was
designed for colorectal polyp classification and adenomas
grading task and has six tissue classes: normal tissue, hy-
perplastic polyp, tubular adenoma (low-grade and high-
grade dysplasia) and tubulo-villous adenoma (low-grade
and high-grade dysplasia). Training / test data splits are
explicitly provided by the authors.

2.3. Data Augmentations

Since the majority of our datasets contain heterogeneous
data where samples corresponding to different classes (dis-
eases) are often collected by different institutions, a pro-
nounced batch effect might be present in the data. Batch
effect refers to the consequence of variations in tissue
processing techniques across different labs or pathologists
that may introduce distinct signatures specific to each site.
These signatures can then be utilized to uniquely iden-
tify the corresponding WSIs. [35]. Recently, Fang et al.
demonstrated that neural networks can even recognize cam-
era sensor models directly from images [17], illustrating
how microscopy equipment and image post-processing soft-
ware might also introduce unique and identifiable signa-
tures. Following the results from [17] indicating that such
signatures are greatly destroyed by applying data augmen-
tations, we adopted a similar strategy to mitigate any batch
effect that might be present in the data. We used the follow-
ing data augmentations:

• Random image rescaling (by 0–20%),

• Random change of image aspect ratio (by 0–10%),

• Random image rotation (by 0–360 degrees),

• Random image sharpness adjustment (by 2×),

• Random image brightness adjustment (by 0–50%),

• Random image hue adjustment (by 0–10%),

• Random image contrast adjustment (by 0–70%),

• Random image saturation adjustment (by 0–30%),

• Addition of random Gaussian noise to images.

These augmentations are applied to all nuclei segmen-
tation, cell type annotation and the Pan Cancer TCGA
datasets. Sample results of such augmentations are demon-
strated in Fig. 4, indicating that color-, scale- and texture-
related batch effect should be generally eliminated due to
the considered extreme scales.

3. Proposed Method
This section provides the architectural and training de-

tails of the proposed DeepCMorph model (Fig. 1) that con-
sists of two independent segmentation and classification
modules described below.
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3.1. Segmentation Module

We aimed to design a solution capable of processing ar-
bitrary resolution images, thus we chose a fully convolu-
tional segmentation model with a U-Net [65] like structure.
Its high-level architecture is shown in Fig. 1: a normal 3-
channel RGB image is first processed by the EfficientNet-
B7 [76] encoder. Its outputs are then passed to a decoder
module consisting of 4 upscaling blocks, each one with
two subsequent convolution and one transposed convolu-
tion layers. Three skip connections are used to pass fea-
tures obtained at the beginning of EfficientNet blocks 2, 3
and 4 with 192, 288, and 480 feature maps, respectively, to
the decoder module. The decoder produces two outputs of
the same resolution as the input image: nuclei segmenta-
tion map (1 channel) and cell type annotation map (7 chan-
nels corresponding to 7 cell annotation classes). The model
is trained with a combination of the Binary Cross Entropy
(BCE) loss applied to nuclei segmentation maps and the
Categorical Cross Entropy (CCE) loss function applied to
cell type annotation maps:

BCE(y,p) = − 1

N

N∑
i

(yilog(pi) + (1− yi)log(1− pi)),

CCE(y,p) = − 1

N

N∑
i=1

C∑
c=1

yi,c · log(pi,c),

where y is a matrix of the ground truth labels and p is a
matrix of predicted values for each pixel and sample. The
segmentation module was trained in multiple stages:

1. First, the PanNuke dataset was used for initial model
pre-training and then discarded during all later steps.

2. Next, the combined nuclei segmentation datasets were
used for model training. At this stage, the cell type
annotation data was ignored and only BCE loss used.

3. After convergence, the model was subjected to a fur-
ther round of training with the addition of cell type an-
notation data. We used an equal amount of BCE and
CCE loss at this step.

4. Pre-trained EfficientNet-B7 encoder model was further
tuned on the Pan Cancer TCGA dataset [44] indepen-
dently of the decoder model to distinguish between
32 cancer types. Experimental results revealed that
this procedure significantly improved the quality of the
learned feature maps of the EfficientNet-B7 encoder.

5. Steps 2-3 were repeated again, this time using the
EfficientNet-B7 encoder already trained on both nuclei
segmentation and cancer tissue classification tasks.

After segmentation module training, the module’s weights
were frozen and its predicted nuclei segmentation and cell
type annotation maps were used as additional inputs to the
classification DeepCMorph module.

3.2. Classification Module

The classification module of the DeepCMorph model is
also based on the EfficientNet-B7 architecture. This model
stacks the original RGB histopathology image with the seg-
mentation and annotation maps from the segmentation mod-
ule, thus its input has 11 feature maps (3 RGB + 1 nuclei
segmentation + 7 cell type annotation). The outputs of the
last EfficientNet-B7 global average pooling layer are passed
to a dense layer with a softmax activation function that pro-
duces the final model predictions. We should note that this
pooling layer allows the network to handle images of arbi-
trary sizes as it averages each of 2560 feature maps from
the last model layer, thus producing 2560 features irrespec-
tive of the input image resolution. Dropout with a rate of
0.2 is additionally applied here to achieve higher feature ro-
bustness. The model is trained to minimize the Categorical
Cross Entropy (CCE) loss function on classification tasks.
The training process of this module also involved multiple
stages, we provide a summary of all steps below:

Step 1: As random / ImageNet weights are not perfectly
suited for model initialization for the considered tasks, we
first pre-trained the classification module to perform the
same nuclei segmentation and cell type annotation task as
described in the previous section. We added an additional
decoder block and trained the model using the same proce-
dure (steps 1–5) as was applied to the segmentation module.
The main difference here is that no skip connections be-
tween the encoder and decoder were used, given we targeted
feature accumulation in the last (bottleneck) EfficientNet-
B7 layer. At this stage, instead of the segmentation and an-
notation maps from the segmentation module, random noise
was introduced. This allowed the EfficientNet-B7 model
to learn to analyze the input histopathological rather than
solely functioning as an autoencoder that compressed the
input features and propagates them to the output layer.

Step 2: Once model pre-training on the segmentation task
was done, random noise used in the previous step was re-
placed with real feature maps from the segmentation mod-
ule, and the model was tuned for additional 5 epochs on
the same segmentation task. The goal of this step is to let
the model perform integration of the learned histopatholog-
ical image processing features with the feature maps from
the segmentation module, while not completely repurpos-
ing its filters to only encode the input segmentation / anno-
tation maps. To determine the appropriate stopping point
for training, we monitored the accuracy on the validation
set. Following a small initial decrease, we noticed a rapid
increase, indicating successful integration.

Step 3: During the last step, the decoder was removed from
the classification module and the pre-trained EfficientNet-
B7 model was finally tuned on the final downstream tissue
classification task.

6918



Method Dice Score Binary PQ Multi PQ
DeepCMorph, Extreme Data Augmentations 0.8365 0.714 0.340
DeepCMorph, Moderate Data Augmentations 0.8406 0.728 0.368

Table 1. Nuclei segmentation (Dice Score) and annotation (Panop-
tic Quality Score) accuracy on combined segmentation datasets.

3.3. Implementation Details

The model is implemented in PyTorch [59] and trained
on four Nvidia 2080 Ti GPUs with 12 GB of RAM. At
each step, model parameters were optimized using the
Adam [43] algorithm with a learning rate of 1e–4 till model
convergence (if not stated otherwise) and then additionally
tuned with a learning rate of 2e–5. The segmentation mod-
ule was trained on 224×224 px image crops with a batch
size of 36. The resolution of the input images received by
the classification module depended on the task and dataset,
for images of size 224×224 px the batch size was set to 64.
The entire DeepCMorph model has 89M parameters.

4. Experimental Results
This section provides and analyzes experimental results

obtained with the DeepCMorph model. First, we assess the
performance of the segmentation module on nuclei segmen-
tation / cell type annotation data. Next, we check the results
obtained on the Pan Cancer TCGA dataset and compare
DeepCMorph performance to the previously proposed so-
lutions. Finally, we check the generalization ability of the
proposed model on three other tissue classification datasets.

4.1. Nuclei Segmentation and Annotation Results

After the segmentation module was trained on a combi-
nation of the previously described datasets, we first briefly
analyzed its performance to ensure a high quality of the
generated segmentation and annotation maps. Numerical
results obtained on the hold-out test set showing both the
segmentation (Dice Score) and annotation (PQ Score) qual-
ity are presented in Table 1. They indicate that the model
is able to accurately segment nuclei and annotate cell types
for different human organs and tissue types, which was also
confirmed by visual observations of segmentation results.
One can also notice that the proposed excessive histopatho-
logical image augmentation approach leads to only minor
accuracy degradations while making the model consider-
ably more resistant towards potential batch effects.

We additionally benchmarked DeepCMorph segmenta-
tion performance separately on the Lizard [26] dataset. Nu-
merical results shown in Table 2 indicate that it performs

Method Dice Score
U-Net [26, 65] 0.735
Micro-Net [26, 62] 0.786
HoVer-Net [26, 27] 0.828
DeepCMorph [Segmentation Module] 0.832

Table 2. Segmentation accuracy results on the Lizard [26] dataset.

Method BA, % Accuracy, %
VGG16 based solution [44] 30.7
ResNet-18 based solution [23] 33.5
ResNet-18 based solution [3] 54.1
CTransPath [88] features + SVM 73.38
UNI (ViT-Large foundation model) [12] 65.7 –
EfficientNet-B7 (ImageNet initialized weights) 75.89
EfficientNet-B7 (Pre-trained on nuclei segmentation) 78.72
CTransPath [88] tuned on the TCGA dataset 78.77
DeepCMorph, Extreme Augmentations 71.81 82.00
DeepCMorph, Moderate Augmentations 72.79 82.73

Table 3. Accuracy results on the Pan Cancer TCGA dataset [44].
BA here stands for Balanced Accuracy score.

comparably or slightly better than other conventional deep
learning based segmentation methods. As the initial exper-
iments demonstrated that the DeepCMorph tissue classifi-
cation accuracy is almost unsusceptible to small nuclei seg-
mentation and annotation errors as they can be tolerated by
the classification module, this performance was considered
as sufficient for our further experiments.

4.2. Pan Cancer TCGA Data Classification

We first trained the model on the Pan Cancer TCGA
dataset. As it contains 32 different cancer types and data
from thousands of patients, it works as a severe bench-
mark for histopathological tissue classification models, be-
ing able to reveal the differences in their predictive capacity
due to high task complexity. We compared the performance
of our model against CNN-based solutions previously pro-
posed for this dataset [3, 23, 44]; a recent UNI [12] founda-
tion vision transformer model pre-trained on 100K diagnos-
tic H&E-stained WSIs; CTransPath [88] foundation trans-
former model pre-trained with contrastive learning on 15M
unlabeled patches cropped from WSIs; two EfficientNet-B7
models: one with ImageNet initialized weights and one pre-
trained on our combined segmentation datasets.

The results for all models are presented in Table 3. Deep-
CMorph achieved an accuracy of 82.7%, outperforming the
second best CTransPath foundation model that was addi-
tionally fine-tuned on the considered dataset by almost 4%.
An advantage of 7% was obtained over the UNI model
when considering the balanced accuracy reported by the
authors. The importance of learning cell morphology was
demonstrated by EfficientNet-B7 results: the first model
trained starting from ImageNet weights demonstrated an ac-
curacy of only 75.9%. Pre-training EfficientNet-B7 on nu-
clei segmentation and cell type annotation task improved
the accuracy to 78.7%, still leaving a gap of 4% compared
to the DeepCMorph that is using explicit annotations.

Same as with the DeepCMorph segmentation module,
we can notice that the proposed extreme data augmentation
leads to an accuracy drop of less than 1%. The resulting
model still outperforms all other solutions by over 3% while
being insensitive to variations in staining, noise, sharpness
and lighting conditions, thus significantly reducing the im-
pact of any potential batch effect present in the data.
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Method BA, % Accuracy, %
DenseNet based solution [42] 90.3 92.9
VGG19 based solution [40] 94.3
Inception-v3 based solution [86] 94.8
ResNet-50 based solution [75] 94.8
VGG16 based solution [4] 95.3
CONCH (ViT-Base foundation transformer model) [50] 93.0 –
iBOT (ViT-Large transformer model) [19] 94.4 95.8
DINO (ViT transformer model) [38] 94.5 95.9
Ensemble of 4 models (DenseNet, IncResNetV2, Xception and custom) [24] 96.16
EfficientNet-B7 (ImageNet initialized weights) 94.76 96.18
Ensemble of 5 models (Same as [24] + VGG16) [46] 96.26
CTransPath [88] 96.52
DeepCMorph 95.59 96.99

Table 4. Accuracy results on the NCT-CRC-HE-7K validation
dataset [40]. BA stands for Balanced Accuracy score.

4.3. Results on the NCT-CRC-HE Dataset

NCT-CRC-HE is a popular dataset with a large number
of previously proposed deep learning solutions. We tuned
the DeepCMorph model on this dataset, initializing it with
weights obtained on the TCGA classification task, and as-
sessed its performance on the conventional NCT-CRC-HE-
7K test split. Table 4 shows the results for different methods
obtained on this task. With an accuracy of 96.99%, Deep-
CMorph outperformed all other solutions, including visual
transformer based CONCH [50], iBOT [19], DINO [38]
and CTransPath [88] models that were pre-trained on a
large cohort of histopathological data. We should addition-
ally highlight a relatively good performance of the baseline
ImageNet-initialized EfficientNet-B7 model that achieved
an accuracy of 96.18%, which is comparable to the results
of more complex solutions. This also justifies the choice of
the DeepCMorph backbone as the underlying EfficientNet-
B7 model has a powerful architecture allowing to identify
and learn complex patterns from histopathological data.

4.4. Results on the NCT-CRC-HE Dataset

DeepCMorph results on the Colorectal Cancer (CRC)
dataset are shown in Table 5. As this dataset contains only
625 image patches per class, we used it to check the gen-
eralization ability of the proposed model. Same as in the
previous section, we initialized DeepCMorph with weights
obtained on the TCGA classification task and tuned it for a
few epochs on the CRC data. Despite the small number of
training samples, the model was able to achieve top results
on this task with an accuracy of 98.33%. This shows that the
filters and features learned by the model on the TCGA data
are transferable to other histopathological tasks, making it a
powerful tool for WSI data analysis and classification.

Method Accuracy, %
Conventional CV feature descriptors [41] 87.40
Ensemble of 4 models (DenseNet, IncResNetV2, Xception and custom) [24] 92.83
VGG19 based solution [18] 93.58
KimiaNet (DenseNet based model) [64] 96.80
Ensemble of 6 models (AlexNet, GoogleNet, VGG, ResNet, IncV3 and IncResV2) [54] 97.60
EfficientNet-B7 (ImageNet initialized weights) 96.46
CTransPath [88] 98.20
DeepCMorph 98.33

Table 5. Accuracy on the Colorectal Cancer (CRC) dataset [41].

Method BA, % Accuracy, %
ResNet-18 based solution [8] (σ = 800) 40.0 –
DeepCMorph (TCGA pre-trained) features + SVM 42.51 46.31
DeepCMorph tuned on UniToPatho 47.35 55.81

Table 6. Accuracy results on the UniToPatho dataset [8]. Here,
DeepCMorph is applied to WSI patches of resolution 1812×1812
pixels. BA stands for Balanced Accuracy score.

4.5. Results on the UniToPatho Dataset

UniToPatho dataset is used in different contexts includ-
ing WSI retrieval [87] or hierarchical multi-scale WSI scan
processing [16]. In this work, we focus only on working
with the provided 1812×1812 px WSI patches to demon-
strate that the DeepCMorph model can be used for high-
resolution histopathological image data analysis, unlike
transformer-based models restricted to a specific (usually
small) input image size. Table 6 shows the results of the
proposed solution obtained using two setups: when DeepC-
Morph model pre-trained on TCGA data is used to produce
features for the considered patches that are later classified
with SVM, and when it is additionally fine-tuned on smaller
256×256 px crops and then applied to the original patches
to provide direct predictions. Even the first setup managed
to achieve a higher balanced accuracy (42.51%) compared
to the ResNet-18 model trained on UniToPatho in [8], which
again demonstrates the versatility of the features learned by
the DeepCMorph on TCGA data. After a short additional
fine-tuning, the balanced accuracy improves further, reach-
ing 47.35%. Thus, DeepCMorph can be used to classify or
annotate large-resolution patches or even entire WSI scans
without a need for tile-based image processing and aggre-
gation of the obtained crop-level results.

5. Conclusion

In this work, we considered the problem of histopatho-
logical image analysis and proposed a novel DeepCMorph
model leveraging the understanding of cell morphology for
more accurate tissue classification. DeepCMorph’s seg-
mentation module provides additional nuclei segmentation
and cell type annotation predictions to the classification
module, and is trained on a combination of 8 publicly avail-
able segmentation datasets. The classification module was
first pre-trained on a large-scale TCGA dataset containing
over 270K tissue patches for 32 different cancer types. The
proposed DeepCMorph solution achieved the state-of-the-
art results on four different tissue classification tasks, out-
performing foundation transformer models like CTransPath
pre-trained on millions of WSI patches. Due to a fully-
convolutional architecture, the model can classify images
of arbitrary sizes, avoiding the need for tile-base WSI pro-
cessing. Finally, we open source the proposed solution and
provide pre-trained models to facilitate the development of
efficient histopathological image processing methods.
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