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Abstract

Microscopy images often feature regions of low signal-
to-noise ratio (SNR) which leads to a considerable amount
of ambiguity in the correct corresponding segmentation.
This ambiguity can introduce inconsistencies in the segmen-
tation mask which violate known biological constraints. In
this work, we present a methodology which identifies ar-
eas of low SNR and refines the segmentation masks such
that they are consistent with biological structures. Low
SNR regions with uncertain segmentation are detected using
model ensembling and selectively restored by a masked au-
toencoder (MAE) which leverages information about well-
imaged surrounding areas. The prior knowledge of biologi-
cally consistent segmentation masks is directly learned from
the data.

We validate our approach in the context of analysing
intracellular structures, specifically by refining segmenta-
tion masks of mitochondria in expansion microscopy images
with a global staining.

1. Introduction
Modern microscopes enable precise visualization and anal-
ysis of cellular structures and biological processes. How-
ever, microscopy images are often affected by uneven sig-
nal quality. This can be due to various reasons like the bi-
ological sample itself and its preparation, the staining pro-
cess, inadequate exposure times or photon-induced bleach-
ing. Such degradation in image quality not only compro-
mises the visual examination of biological specimens but
also impedes subsequent analysis steps. For example, the
resulting regions of low SNR pose a challenge for com-
puter generated segmentation masks as they offer substan-
tially more room for interpretation and this ambiguity re-
sults in the lack of a well defined corresponding segmenta-
tion ground truth.

Nevertheless, the inherent self-similarity of biological

Biologically Valid Biologically Invalid Reconstruction

Figure 1. Comparison of a biologically valid segmentation
mask, a biologically invalid segmentation masks and our pro-
posed reconstruction Left: Example showing a segmentation
mask which is biologically plausible showing cristae invagina-
tions (green) surrounded by matrix (yellow), the inner mem-
brane being surrounded by intermembrane space (blue) and over-
all smooth boundaries. Middle: A segmentation mask that vio-
lates the biological constraints with separated cristae areas and
fragmented boundaries. Right: The same example adhering to bi-
ological constraints again after applying our MAE refinement.

structures often provide constraints to perform effective sig-
nal amplification and refinement. In this paper, we use
the concrete example of mitochondria imaging to propose
a new post-processing framework for resolving highly am-
biguous regions of poor signal quality to enhance the phe-
notypical analysis of cellular organelles. As depicted in
Figure 1, it is known that mitochondria are formed by a
double membrane structure [19] and these membranes typ-
ically form smooth structures without any fragmentation.
Moreover, the inner membrane forms invaginations, called
cristae, which therefore should mostly be surrounded by
area of the inner membrane, called matrix, and cannot ap-
pear independently.

The typical approach for image segmentation is to pre-
dict a probability distribution over the possible classes for
each pixel and output the class with the highest likelihood.
If the underlying image offers a lot of ambiguity, however,
the segmentation model can produce segmentation masks
which are not coherent with the biological prior knowledge
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as dependencies among labels are only indirectly accounted
for through the shared context.

These segmentation mistakes are problematic as they can
introduce artifacts in subsequent analysis steps. The exam-
ple in Figure 2 shows how the resulting skeletonisation of
the inner structure of the mitochondria shows several loops
and branches which would bias any resulting length mea-
surement without additional post-processing steps.

Addressing this challenge can be divided into two sub-
problems: how can we identify areas of possibly poor stain-
ing quality and subsequently, what is the appropriate strat-
egy to deal with them? Sticking with the example of mito-
chondria, one naive approach would be to exclude all mito-
chondria which are somewhere affected by some poor imag-
ing. However, this introduces a significant bias into any
subsequent analysis: As longer mitochondria occupy more
area, they are more likely to be affected by some imaging
issue and therefore more likely to be removed.

Previous attempts have been made to impose shape pri-
ors into segmentation models [2]. However, formulating
these priors is challenging as they have to be fine-tuned
manually and the resulting methods suffer from long run
times unsuitable for the large volumes of data produced by
modern microscopes. On the other hand, recent advances in
machine learning suggest that learning such priors directly
from the data offers a superior approach.

When human experts are confronted with a small area of
high ambiguity, they annotate the sample to be consistent
with the well-imaged surrounding area and their knowledge
of the underlying biological structure. This ability has been
gained by having seen a large number of coherent sam-
ples and is made possible by a large degree of local self-
similarity between the mitochondria samples.

Our method aims to imitate the process followed by a
biologist and we demonstrate how it improves the segmen-
tation quality of mitochondria imaged with a global ’pan’-
staining using expansion microscopy [4, 18]. The ’pan’-
staining binds to multiple proteins and generates signal
throughout the entire specimen.

We first show that the disagreement between an ensem-
ble of models provides a good approximation for the under-
lying image quality. Once areas of low SNR are identified,
we train a masked auto-encoder (MAE) to reconstruct bi-
ologically plausible segmentation masks from a corrupted
segmentation masks. For inference, we specifically mask
the area of high ambiguity and use the trained MAE to re-
construct the segmentation output consistently with the sur-
rounding area to form biologically coherent predictions. We
show that our method produces more sound segmentation
masks than competing post-processing methods like condi-
tional random fields (CRF) and leads to fewer artifacts in
the subsequent analysis.

2. Related work
2.1. Uncertainty detection

Common methods to quantify prediction uncertainty in-
clude Bayesian neural networks (BNN), Monte Carlo drop-
out methods and deep ensembles [1, 8]. While BNN [10]
offer a theoretically elegant solution to capture the uncer-
tainty in the model weights, they suffer from high compu-
tational complexity. Monte Carlo drop-out methods [7] ap-
proximate the posterior predictive distribution by multiple
forward passes of the same input through the network while
omitting random subsets of neurons, but might be poorly
calibrated and sensitive to hyper-parameter choices [3].

Deep ensembles [14] are conceptually simple as they
only require retraining the same model with different ini-
tialisations and the prediction uncertainty is computed by
investigating the difference in the individual predictions.

2.2. Shape Constraints

Popular approaches to include shape priors in segmentation
models are conditional random fields (CRF) and active con-
tour models (ACM) [2]. CRFs are typically used as a post
processing step and build a neighbourhood graph that al-
lows to incorporate information about adjacent pixels into
the prediction. However, the approach is limited by high
computational cost for large neighbourhoods except when
additional constraints are imposed on the neighbourhood in-
fluence [13].

ACMs on the other hand are based on the idea of itera-
tively transforming an initial outline to minimise some en-
ergy function. This energy function again needs to be fine-
tuned to the application at hand and the resulting models
have a limited adaptability to datasets showing a large vari-
ety of shapes and object sizes as typically encountered with
the inner structure of mitochondria.

Another approach attempts to capture the shape in a
lower dimensional space through an autoencoder. Larraz-
abal et al. [15] pass the initial segmentation mask through
an autoencoder to smooth out low frequency information
to regularise the final shape. However, compared to our
method, their approach works globally without focusing on
ambiguous areas and requires handcrafting a deterioration
function to train the autoencoder.

3. Method
In order to formalise our method, let us denote the glob-
ally stained image by X ∈ RH×W where H,W denote the
height and width of the image. Moreover, we denote the
set of possible segmentation labels by C and the associated
segmentation mask by Y ∈ CH×W .

The standard practice for image segmentation in the deep
learning framework is to train a network fθ parameterised
by θ to predict a probability distribution Pfθ [Yi|X] over C
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Figure 2. Poor segmentation as a consequence of low SNR: The red rectangle highlights an area in which the global staining [18] is
unclear and shows how this leads a segmentation mask that is biologically inconsistent. This introduces artifacts in subsequent analysis
steps like the skeletonisation [16] which is shown in orange. The Tom20 staining in red (which is known to bind to the outer membrane
of the mitochondria) shows that the highlighted area is still part of the inner membrane and not outside or on the boundary. This Tom20
staining is not used in any subsequent analysis.

for each pixel i given the input X . The final prediction
is subsequently chosen as the label which maximises this
probability ŷi = argmaxc∈C Pfθ [Yi = c|X].

This approach is based on the assumption that condi-
tional on the input X , the pixel labels are independent and
we can factorise the overall probability over individual pix-
els P[Y |X] =

∏
i P[Yi|X].

However, let us consider pixel i in more detail and
rewrite the global probability accurately as

P[Y |X] = P[Yi|X,Y−i]P[Y−i|X] (1)

where Y−i denotes all remaining pixels. If pixel i is poorly
stained and shows a low SNR,X provides little guidance for
the associated segmentation label of this pixel. Therefore,
in this work we explore the assumption that it is therefore
better predicted by its surrounding pixels, i.e. P[Yi|X,Y−i]
might be better approximated by P[Yi|Y−i] than P[Yi|X] for
poorly stained pixels. When we denote the area of unclear
staining by U and the remaining, reliable pixels by R, we
therefore propose to predict the final segmentation accord-
ing to the factorisation

P[Y |X] = P[YU |YR] ·
∏
i∈R

P[Yi|X] (2)

in which we follow the conditional independence assump-
tion only for reliable pixels in R.

This approach leaves us with two tasks: Firstly, finding
the pixels with potentially ambiguous staining and therefore
possibly inconsistent segmentations and secondly, learn-
ing the unconditional distribution P (YU |YR) for applying
a prior of consistent annotations to this area. Our proposed
pipeline is summarised in Figure 3.

3.1. Identification of Low SNR

We define an area of unclear staining as a set of pixels
U ⊂ {1, ...,H · W} in which X does not carry enough
information by itself to produce an unambiguous segmenta-
tion mask YU . This implies that in a well calibrated model,
we would expect the predicted probability P[YU |X] to be
fairly uniform and therefore have a high entropy. However,
deep learning based learning are known to be overly confi-
dent [11].

We therefore use the prediction entropy of an ensemble
of models trained on different subsets of the annotated data
as deep ensembles have been shown to be able of identi-
fying uncertain predictions more accurately [1, 3, 5]. We
expect such capability to be even stronger in our setting
as we can exploit that the annotated training data also in-
cludes ambiguous areas. This allows to create a diverse set
of models within the ensemble as individual models settle
on different associations between ambiguous areas and the
segmentation labels during their training process.

Moreover, this method aligns well with our approach of
a post-processing step as it does not require to modify the
original segmentation algorithm.

To capture the disagreement among models in the en-
semble we compute the average prediction p̂ci over the mod-
els for class c and pixel i. Subsequently, we compute the
Shannon entropy Hi = −

∑C
c=1 p̂

c
i log(p̂

c
i ) which is nor-

malised into [0, 1] as our indicator of the associated uncer-
tainty.

3.2. Segmentation Prior

Once the ambiguous areas in the overall image with po-
tential inconsistent segmentations are identified, we predict
these pixels based on its surroundings following P(Yi|Y−i)
instead of P(Yi|X).
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Step 1: Train MAE to Reconstruct Valid Segmentation Masks

Step 2: Apply MAE to Ambiguous Areas

Masked ReconstructionGlobal Staining

Ensemble Entropy

Majority Vote

MAESegmentation
Ensemble

Input Target

MAE

...

Figure 3. In the first step we train a Masked-Autoencoder (MAE) to construct biologically coherent segmentation masks from partial
segmentations while ignoring random patches (greyed out). In the second step, we apply an ensemble of models to the global staining to
compute the majority vote and ensemble entropy. Subsequently, we remove the patches with a high ensemble entropy and reconstruct them
using the MAE. Background patches far from the segmentation mask are ignored as well. The shown example patch corresponds to the red
rectangle from Figure 2.

Our aim is to learn an approximation to P(Yi|Y−i) =∫
P(Yi|x, Y−i)PV (x)dx as a prior for what biologi-

cally valid segmentation masks look like by integrating
P(Yi|x, Y−i) over the distribution of biologically plausible
image patches PV (x). The intuition behind this approach
is that the segmentation masks of the mitochondria show a
high degree of local self-similarity. Therefore, given a large
pool of mitochondria, it is possible to learn a model that is
able to reconstruct small missing areas coherently from its
surroundings.

Inference: While MAEs were originally designed as a
self-supervised pre-learning technique, we use it as a gener-
ative model and apply it directly to the segmentation mask
of an initial segmentation model. Specially, after the MAE
is trained, we use the predictions of the initial segmentation
model to generate a first segmentation mask and identify ar-
eas of possible unclear staining based on the ensemble en-
tropy. We then divide the initial segmentation of sizeW×H
into L smaller patches of size w × h and filter out patches
with a mean uncertainty above some hyperparameter τthres.
The remaining patches are forwarded through the MAE to

reconstruct the uncertain patches and filled in to produce the
final segmentation as shown in Figure 3.

This approach is motivated by the observation that
MAEs are able to act as very efficient generative models
[20]. Moreover, while implementing this method with a
convolutional neural network needs careful consideration in
order to avoid information leakage [17] from the masked ar-
eas, the architectures of a vision transformers (ViT) [6] and
masked autoencoders (MAE) [12] align very closely with
our requirement of ignoring specific areas in the input and
allow for a straight forward implementation.

Training: The strategy to train the MAE for P(Yi|Y−i)
is to first randomly mask out areas and reconstruct the
clearly stained areas from the remaining pixels. Given a
masking ratio ρ, a random subset of ρ · L of all patches
are removed and only the randomly selected patches are
augmented by a positional encoding and then forwarded
through an encoder model h. Moreover, we want to encour-
age the model to be able to work with a variety of masking
ratios as the size of the entropy mask in the inference step
varies and therefore sample ρ ∼ U [0.1, 0.9] uniformly.
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The encoder is a ViT which first transforms the patches
into a latent feature z0 ∈ Rdz which subsequently is passed
through a series of m multiheaded self-attention, MLP and
normalisation blocks to produce the final latent representa-
tion zm. These features are subsequently concatenated with
a learnable mask token for every disregarded patch, the po-
sitional encoder is added and forwarded through a decoder
build on the same architecture as the encoder.

The output of the decoder is passed through a final linear
layer that transforms the output into prediction probabili-
ties [0, 1]|C|. The MAE is then trained to match the original
segmentation as closely as possible in terms of the cross-
entropy loss. In order to ensure that the model only learns
coherent segmentations, the loss function only includes pix-
els i which have an entropy value Hi smaller than some
threshold τtrain while the labels of uncertain pixels are ig-
nored. Additionally, we ignore pixels which are too far from
any mitochondrion in order to prevent the loss from being
dominated by background pixels.

Comparing our method to graphical models like CRFs,
the encoder based on the self-attention blocks can be inter-
preted as constructing a global graph between all present
patches. The random masking scheme therefore corre-
sponds to sampling random subgraphs and learning how
to complete them. However, in contrast to CRFs in which
the interactions between different vertices needs to be hand-
crafted, the MAE allows to learn those dependencies auto-
matically from the data in order to be able to reconstruct the
missing patches.

4. Experiments

4.1. Data

We apply our method to pan-Expansion Microscopy (ExM)
images [18]. The idea behind expansion microscopy is to
physically expand the sample to enable nano-scale resolu-
tion with commonly available microscopes [4]. Compared
to other competing super-resolutions methods this tech-
nique does not require specialised hardware and therefore
promises to make super-resolution imaging more accessi-
ble [9]. Pan-ExM is a variant of Expansion Microscopy that
retains proteins through an iterative 20-fold expansion pro-
cess and then labels all proteins with a global ’pan’-staining.
The combination of the high optical resolution enabled by
the large expansion factor and the contrast that reveals pro-
tein densities as a whole enables the visualization of cellular
ultrastructure similar to Electron Microscopy.

We aim to segment the double membrane structure of
the mitochondria. In our segmentation figures, the inter-
membrane space between the outer and inner membrane is
depicted in blue and presents itself as a dark halo around
the mitochondria in the global staining. Moreover, the in-
ner membrane forms invaginations to increase its surface

Original Global Staining Modified Global Staining

Original Entropy Entropy after Modification

Figure 4. Simulation of unclear staining: The top row shows
a global staining patch before and after we degrade the imaging
quality in the area highlighted by the red circle. The bottom row
shows the corresponding ensemble entropy with brighter colors
corresponding to higher values. The quality degradation leads to
a substantial increase in the predicted uncertainty in the modified
area.

area which are called cristae and shown in green in our fig-
ures. Finally, the space enclosed by the inner membrane
is called matrix, shown in yellow in our figures and can be
recognised by its higher intensity in the global staining.

For our experiments we use twelve image stacks of size
2048×2048 pixel with a z-stack depth between 74 and 234.
Each stack shows parts of one HeLa cell and contains on av-
erage 150 mitochondria. While the vast majority of the mi-
tochondria are clearly stained, this work focuses on a sub-
sample of mitochondria which are partly effected by some
ambiguous staining. We therefore use all of the available
data for training but focus our evaluation on a subset of 100
patches of size 128×128 which visually show clear anoma-
lies and compare them to a set of 100 control patches which
show coherent segmentation masks.

The initial segmentation and entropy masks are provided
by an ensemble of 3D U-Nets trained on a small amount of
manually annotated data.

4.2. Implementation Details

The overall images we consider are of size 128 × 128 and
the sub-patches have size of 4 × 4 pixels. The encoder of
the MAE has a latent dimension of 128 and a depth of 14.
Following the original MAE implementation [12], we use a
lighter decoder with a latent dimension of 64 and a depth of
7. Both models use a twice as many latent dimensions for
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Figure 5. Validity metrics: a: The ’Cristae Boundary Ratio’
blue

blue + red is the proportion of cristae (blue) in the boundary between
the inner structure (cristae + matrix) and the intermembrane space
(blue + red). b: The ’Inner Membrane Background Ratio’ blue

blue + red
refers to the proportion of the boundary between the segmentation
mask and the background (blue + red) which does not consist of
intermembrane space (blue)).

the hidden layer of the MLP.
For the identification of reliable areas in the training we

use a threshold of τtrain = 0.1 while the threshold for the
inference step is set at τthres = 0.4. An implementation
of our method is available at https://github.com/
AlexSauer/BioMaeRef.

4.3. Results

Identifying Uncertain Area: In order to test our assump-
tion that poorly imaged areas in the global staining corre-
spond to an increase in the ensemble entropy, we conduct
experiments in which we artificially degrade the imagining
quality for some areas and measure the change in the pre-
diction consistency as shown by Figure 4.

Specifically, we create a mask along the skeleton of the
mitochondrion which is indicated by a red circle in Figure
4. We then take a patch consisting purely of background
and compute the linear interpolation between the original
mitochondrion, some Gaussian noise and the background
to simulate a situation with unclear global staining. This
interpolation is weighted by the distance map of the mask
in order to ensure a smooth transition between the original
image and the added background. The induced change can
be seen in the top row of Figure 4.

As it can be seen in the lower row of Figure 4, we see
a substantial increase in the entropy in the corresponding
area. To quantify the effect in more detail, we repeat the
above procedure for 100 mitochondria and find an increase
of 160% in the entropy associated with these areas and we
see that areas that were in the lowest 10% of entropy orig-
inal are within the top 60% of entropy after the modifica-
tion. Additionally, Figure 6 shows how areas of poor signal
in the global staining are related to areas of inconsistent ini-
tial segmentations and are reliably picked up by the entropy
mask.

Reconstruction of plausible areas: While the previ-
ous experiment suggests that our approach has a good per-
formance of correctly identifying areas of unclear staining
and therefore possible implausible segmentations, it might
also accidentally create false positives and flag areas which

Table 1. Reconstruction accuracy: Dice scores of the reconstruc-
tion for clearly stained regions using different ratios of randomly
masked patches.

Masking ratio 0.1 0.25 0.5 0.75 0.9

Dice Score 0.97 0.97 0.95 0.92 0.86

have been segmented consistently. We therefore test the re-
construction quality of our method for plausible segmenta-
tion masks by randomly dropping patches from the control
group of plausible mitochondria masks and compute the re-
sulting reconstruction accuracy. Table 1 shows that even
under high masking ratios we are able to reconstruct accu-
rate segmentation mask due to the high self-similarities of
the biologically valid structures.

Evaluation: In order to evaluate our entire post-
processing pipeline shown in Figure 3, we focus on several
metrics that approximate whether the segmentation mask
adheres to the biological constraints: We previously dis-
cussed that a biologically valid segmentation mask should
show most of the cristae area surrounded by matrix area
and should include some intermembrane space between the
inner structure and the background. To evaluate the plau-
sibility of the cristae, we therefore compute the length of
the boundary that the cristae forms with the intermembrane
space. To account for mitochondria of different sizes we
compute the ratio of this value to the length of the overall
boundary that the inner structure forms with the intermem-
brane space and call this metric cristae boundary ratio
(Figure 5a). This metric is higher if the segmentation ex-
hibits independent areas of cristae. Additionally, we com-
pute the length of the boundary between any inner structure
and the background and compute to ratio to the length of
the overall boundary length between the mitochondria mask
and the background. We call this metric inner membrane
background ratio and it captures areas of missing inter-
membrane space (Figure 5b).

Moreover, in order to capture the smoothness of the
mask, we calculate the ratio between the boundary length
over the area and look at the number of branches that a
skeleton of the inner part of mitochondrion forms.

In order to interpret these values, we additionally com-
pute these metrics for a control group of biologically con-
sistent segmentation masks that serve as a baseline for our
method evaluation.

Comparison to other methods: We compare our meth-
ods against CRFs that are based on mean field approxima-
tions [13] to allow for long range dependencies and global
convolutional autoencoders (CNN AE) similar to Larraza-
bal et al. [15]. The results are shown in Table 2 and show
that the segmentation masks by our method bring the de-
scribed metrics closest to the metrics of the control group of
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Global Staining Initial Entropy Mask MAE (ours) CRF CNN AE

Figure 6. Reconstruction results: Visual comparison of the initial segmentation, the patches masked based on high entropy levels, the
reconstructed segmentation masks and the global staining that the initial prediction is based on. It can be seen that the MAE reconstructed
masks better respect the biological constraints like no cristae area (green) that is detached from matrix area (yellow) and less fragmented
boundaries.
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Table 2. Segmentation evaluation with respect to biological constraints: The ’Cristae Boundary Ratio’ and ’Inner Membrane Back-
ground Ratio’ are explained in Figure 5. The different methods are evaluated on a subset of 100 mitochondria with visually implausible
segmentation masks. Additional a control group with plausible segmentation masks was evaluated to provide baseline values. Standard
errors are reported in parenthesis.

Skeleton Skeleton Boundary to Cristae Inner Membrane
Method End Points Cycles Area Ratio (%) Boundary Ratio (%) Background Ratio (%)

Initial Segmentation 10.90 (0.60) 2.93 (0.37) 14.21 (0.59) 17.50 (1.19) 0.00 (0.00)

CNN AE 5.51 (0.30) 0.08 (0.04) 11.39 (0.22) 2.98 (0.34) 0.76 (0.28)
CRF 6.14 (0.34) 0.81 (0.15) 12.95 (0.49) 13.46 (1.06) 8.46 (1.48)
MAE+X 8.64 (0.50) 1.02 (0.16) 13.13 (0.64) 15.31 (0.87) 0.65 (0.18)
MAE (ours) 5.05 (0.29) 0.18 (0.07) 11.41 (0.39) 8.71 (0.58) 0.36 (0.03)

Control Group 3.55 (0.30) 0.26 (0.14) 12.14 (0.94) 10.09 (0.88) 0.00 (0.00)

biologically valid segmentation masks. We find that CRFs
are able to smooth out the segmentation boundaries but fail
to reproduce biological constraints as seen by the high in-
ner membrane background ratio which indicates that it of-
ten misses some intermembrane space. The CNN AE on the
other hand fails to reconstruct the cristae accurately. Figure
6 shows a visual comparison of the methods.

Test the validity of P(Yi|Y−i): In section 3 we fac-
torised P[Y |X] = P[Yi|X,Y−i]P[Y−i|X] and argued that
for poorly stained regions P[Yi|Y−i] might be a better tar-
get than P[Yi|X], which is given by the initial segmentation
method. In this section we compare how our estimate of
P[Yi|Y−i] compares to P[Yi|X,Y−i]. In order to approx-
imate P[Yi|X,Y−i], we modify our method by attach an
additional encoder with X as the input. This encoder fol-
lows a standard ViT encoder that takes the global staining
as input without any masking and produces a latent repre-
sentation for every patch. We then add this representation
to the latent representation of the segmentation mask if the
patch was present or to the mask token if it was not. Sub-
sequently, the updated representation is forwarded through
the decoder to produce the final segmentation mask. In this
way, we allow our method to be able to access the global
context X as well as the surrounding initial segmentation
masks Y−i and we follow the same training and inference
procedure outlined in section 3.

Comparing the results in Table 2, in which the method is
labeled MAE+X, shows that adding the additional context
deteriorates the performance. We speculate that the model
focuses too much on reproducing the association between
the initial segmentation mask Yi and the inputX rather than
capturing the interactions with the surrounding neighbour-
hood Y−i during the training.

5. Discussion
In this work, we have proposed a post-processing frame-
work which is capable of correcting biologically invalid

segmentation masks. Our framework combines deep en-
semble in order to identify areas of poor signal and lever-
ages the strength of MAEs to learn repetitive patterns and
selectively reconstruct the segmentation masks for these
regions. Our methods has the advantages that it in-
fers the structure of biologically plausible segmentation
masks directly from the data and it can be applied as a
post-processing step independently of the underlying pri-
mary segmentation algorithm. Moreover, the reconstruc-
tion based on the MAE requires a single forward pass and
is therefore able to scale to large data volumes.

One challenge associated with our approach is that the
use of strong priors can detach the prediction to some de-
gree from the observed data. This implies that some valid
structures could potentially be removed or that some of the
segmentation masks which are corrected by our MAE are
actually false positives and should rather be removed com-
pletely. However, since we cannot reliably differentiate be-
tween false and true positives, we argue that it is still bene-
ficial to modify the false positives so that their influence on
any subsequent analysis is limited.

While we demonstrated the effectiveness of our ap-
proach with the example of mitchondria segmentation and
expansion microscopy, in future work we plan to apply the
proposed method to other segmentation tasks in which the
biological structures show large degree of degree of self-
similarity and biological constraints.
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