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Abstract

Optical Pooled Screening (OPS) is a powerful tool com-
bining high-content microscopy with genetic engineering to
investigate gene function in disease. The characterization of
high-content images remains an active area of research and
is currently undergoing rapid innovation through the appli-
cation of self-supervised learning and vision transformers.
In this study, we propose a set-level consistency learning
algorithm, Set-DINO, that combines self-supervised learn-
ing with weak supervision to improve learned represen-
tations of perturbation effects in single-cell images. Our
method leverages the replicate structure of OPS experi-
ments (i.e., cells undergoing the same genetic perturbation,
both within and across batches) as a form of weak supervi-
sion. We conduct extensive experiments on a large-scale
OPS dataset with more than 5000 genetic perturbations,
and demonstrate that Set-DINO helps mitigate the impact
of confounders and encodes more biologically meaningful
information. In particular, Set-DINO recalls known biolog-
ical relationships with higher accuracy compared to com-
monly used methods for morphological profiling, suggesting
that it can generate more reliable insights from drug target
discovery campaigns leveraging OPS.

1. Introduction

High-content imaging combined with quantitative image
analysis can be used to characterize cellular responses to
genetic and chemical perturbations, and provides a power-
ful platform for target and drug discovery [4, 10, 34]. De-
spite the prevalence of this approach in the pharmaceuti-
cal industry, arrayed screening still suffers from limitations
due to the high cost of scaling to large genetic and chem-
ical libraries. Recently, Optical Pooled Screening (OPS),
has been proposed as a cost-effective method for conduct-
ing high-content genetic screens at the whole-genome level
[14, 28, 31, 35]. However, one caveat of pooled screens is

that cellular phenotypes are captured at the single-cell level,
in contrast to arrayed screens, where fields of hundreds of
cells receive the same treatment. This necessitates new re-
search into methods for capturing cellular representations
under perturbation that are robust to the high degree of noise
and variability present in single-cell data. [5, 15, 31].

CellProfiler remains one of the most widely used tools
for extracting expert-defined features (also referred to as
“engineered” features) from high-content images [7, 32].
However, recent studies have focused on training deep
learning algorithms, such as weakly supervised learning
[3, 27], generative modeling [5] and self-supervised learn-
ing (SSL) [13, 23, 24, 31], to extract learned representations
from high-content images. Among those methods, DINO
[6] has emerged as a promising technique for extracting
information-rich representations, and outperformed other
approaches in a recent head-to-head comparison [13, 23].

While SSL frameworks are powerful feature extractors,
they are unfortunately susceptible to learning unwanted
confounding factors [13, 23]. Such factors can include
plate-to-plate variation, well-position effect, and experi-
mental conditions, all of which can influence image inten-
sity, contrast, and texture. Despite efforts toward optimal
experimental design, confounding factors remain a persis-
tent challenge in high-content screening. Weakly super-
vised DINO [11, 17] was proposed to address the sensitiv-
ity of SSL to confounders by sampling image pairs across
experimental batches and thus encouraging DINO to learn
batch-invariant representations. This approach has been
shown to improve the quality of learned representations on
downstream biological tasks [11, 17, 18]; however, it has
not yet been applied in the setting of single-cell images from
optical pooled screens.

In this study, we develop an SSL framework explicitly
for single-cell images. Inspired by [11, 17], we adopt a
cross-batch sampling strategy in an attempt to learn rep-
resentations that are invariant to confounders. However,
we observed that DINO training with cross-batch sampling
collapses due to the strong cell-to-cell variation exhibited
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in single-cell data. To address this challenge, we combine
cross-batch sampling with set-level representation to char-
acterize cell populations undergoing a specific perturbation.

Our main contributions in this study include:
1. We propose weakly supervised set-consistency learning

(Set-DINO), a novel representation learning framework
designed specifically for single-cell images from optical
pooled screens. To the best of our knowledge, this is
the first time that set-level representation has been com-
bined with DINO to facilitate self-supervised represen-
tation learning on noisy samples.

2. We apply Set-DINO to a large-scale OPS dataset of more
than 5000 essential genes where it achieves a signifi-
cantly better performance compared to both engineered
features and the standard DINO framework. Through
extensive experiments, we demonstrate that Set-DINO
leverages the weak supervision provided by cell repli-
cates to extract cell representations that are both less sen-
sitive to confounding factors and contain more biologi-
cally meaningful information.

2. Related Work
2.1. Deep learning for high-content images

Deep learning has been extensively applied to the task of
morphological profiling of high-content images. For exam-
ple, weakly supervised learning using perturbation labels
was applied to images from arrayed screening in [27], yield-
ing improved performance at identifying treatments with
the same mechanism of action (MoA) or genetic pathway,
as compared to engineered features. However, leveraging
perturbation labels as weak supervision may potentially re-
sult in learning spurious representations that falsely dis-
criminate between different genetic perturbations with simi-
lar morphological effects. Not to mention the many genetic
perturbations that have negligible effects on cell morphol-
ogy.

Self-supervised consistency learning provides an elegant
solution to this problem, because it doesn’t assume “neg-
ative” relationships between samples from different per-
turbations. Furthermore, SSL and Vision Transformers
(ViT) have recently achieved state-of-the-art performance
in learning representations from natural images that can
generalize to downstream tasks [6, 19]. Sivanandan et al.
[31] and Doron et al. [13] applied similar methods to high-
content images, and demonstrated that embeddings from
DINO with ViT led to improved performance. Masked
auto-encoders (MAE) have also been shown to outperform
weakly supervised baselines in uncovering biological re-
lationships [24]. Further, in [23], several SSL techniques
including SimCLR, DINO, and MAE were compared and
DINO embeddings achieved the best performance in terms
of reproducibility and target prediction for compound per-

turbations.

2.2. Removing nuisance in morphological profiles

Batch effect is a central challenge in learning biologi-
cal meaningful representations from high-content imaging
data. Numerous batch correction techniques have been
developed and successfully applied to mitigate unwanted
variations in morphological profiles [13, 18, 23]. How-
ever, those methods may not fully benefit deep learning ap-
proaches, as they are typically applied as a post-processing
step. Sypetkowski et al. applied adaptive batch normaliza-
tion to normalize features during training, using statistics
from individual batches [33]. Their proposed method mit-
igated batch effect and helped the model generalize to un-
seen batches. Inspired by this work, we explore an image
normalization method based on image statistics from con-
trol cells.

Furthermore, numerous methods leverage the replicate
structure of high-content screening data to learn invariance
to batch effects. For example, Cross-Zamirski et al. pro-
posed a weakly supervised DINO model (WS-DINO) to
incorporate the treatment labels in arrayed screening, and
demonstrated improved performance in MoA prediction
[11]. Similarly, cross-domain consistency learning was pro-
posed by Haslum et al. with additional loss terms to force
the model to disregard batch-specific signals [17]. Those
methods follow a rationale similar to supervised contrastive
learning [22], where weak labels improve the robustness
and informativeness of learned representations. Our study
further validates the effectiveness of training SSL algo-
rithms with weak labels, and extends this finding to single-
cell images, requiring the use of a set-level loss. Our re-
sults indicate that while both weakly supervised learning
and SSL approaches have their respective limitations, their
combination can improve representations for high-content
imaging data.

2.3. Modeling population heterogeneity

When analyzing high-content imaging data, profiles of bi-
ological replicates are typically aggregated to represent the
average or median response of a cell population to each per-
turbation [2]. Existing research also suggests that higher-
order statistics such as the dispersion and covariance of
features may provide additional information and improve
performance on downstream tasks [29]. By leveraging
a set-level implementation, we benefit from a smoother,
population-level loss, while retaining single-cell level pro-
files.

Deep Sets is a popular technique that offers a general
framework for extracting representations from sets of ob-
jects [36]. The concept of set-level representation has been
successfully integrated with SimCLR to improve unsuper-
vised meta-learning performance on natural images [25].
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Dijk et al. applied Deep Sets to pre-extracted single-cell
profiles from CellProfiler, learning an aggregation function
that down-weights noisy cells [12]. The aggregation func-
tion was trained using weakly supervised contrastive learn-
ing, and the resulting profiles prioritize biological signals
over batch effects. In this study, instead of using hand-
crafted features, we explore the possibility of combining
set-level representation with end-to-end training of weakly
supervised DINO to facilitate representation learning di-
rectly from raw images.

3. Methods
3.1. Dataset

We use a publicly released large-scale OPS dataset profiling
CRISPR knockout of 5072 essential genes on cultured hu-
man cells [15]. Four guide RNA (sgRNA) sequences were
used per gene target, and an additional 250 non-targeting
sgRNAs were used as negative controls. The entire sgRNA
library was delivered to a pool of cells, and the experiment
was replicated across 46 wells from 8 plates (each plate has
at most 6 wells).

In total, the dataset contains around 32 million cells, with
a median of 6,000 cells per gene perturbation. The dataset
was released with raw 4-channel images (stained for DNA,
DNA damage, F-actin, and tubulin), metadata including the
sgRNA that each cell received, and precomputed morpho-
logical features. The released features are normalized by
the median and median absolute deviation of non-targeting
controls (NTCs) within the same well.

For the model training and evaluation, we divide the data
from 8 plates into a training set (6 plates with 28 wells), a
validation set (1 plate with 6 wells), and a test set (2 plates
with 12 wells). The model is trained on the training set
and the checkpoints and hyper-parameters are selected on
the validation set. The test set is exclusively used to evalu-
ate the model’s performance and generalizability on unseen
data. In this study, we regard each well as one experimental
batch. The median number of cells with the same sgRNA
in each batch is 29.

3.2. Image preprocessing

We follow the established practice for preprocessing of
high-content images [1, 20, 23]. Images are flat-field cor-
rected, and intensity values are clipped at the 0.1 and 99.9
percentiles, and then linearly re-scaled to [0, 1]. Single-cell
images are then cropped using the cell centroids provided
with the released metadata, and applying a 96-pixel-by-96-
pixel bounding box around each cell.

We evaluate two methods for normalizing the single-cell
images. The first method is image-wise z-score normaliza-
tion (referred to as z-score), a common method where pixel
intensities are image-wise and channel-wise normalized by

z-score for each single-cell image [20]. The second method
is image normalization using statistics of the NTCs from
the corresponding batch (referred to as NTC z-score). In
this approach, each single-cell image is normalized by the
channel-wise mean and standard deviation of pixel intensi-
ties from all NTCs in the corresponding batch. We compare
the performance of both normalization methods in our re-
sults section.

3.3. Set-DINO framework

Similar to the standard DINO [6], Set-DINO consists of a
student branch and a teacher branch (Figure 1). In the stan-
dard DINO framework, a single image with different aug-
mentations is fed into the student and teacher branches and
the model is trained to maximize the similarity between the
embeddings from the two branches.

In Set-DINO, we sample a set of n single-cell images
from cells receiving perturbation p in batch b: Xp,b =
{x1

p,b, . . . , x
n
p,b}. The ith tensor xi

p,b ∈ RC,H,W represents
a multi-channel image of one cell receiving perturbation p
from batch b, where C,H,W denote the number of chan-
nels, height, and width of the image, respectively. Similarly,
we sample a second set of n single-cell images from cells
receiving the same perturbation p from a different batch b′:
Xp,b′ = {x1

p,b′ , . . . , x
n
p,b′}.

The image sets Xp,b and Xp,b′ are fed into the student
network ϕs and teacher network ϕt, respectively, to gen-
erate single-cell latent embeddings. Then, an aggregation
layer Λ aggregates the image-level embeddings to set-level
embeddings:

πp,b = Λ(ϕs(x
1
p,b), ..., ϕs(x

n
p,b)), (1)

πp,b′ = Λ(ϕt(x
1
p,b′), ..., ϕt(x

n
p,b′)). (2)

The embeddings πp,b and πp,b′ represent a consensus of
the cell populations receiving perturbation p in batches b,
and b′, respectively. They are used as a pair of views whose
similarity is optimized during training of the student net-
work ϕs:

L = H(γ(πp,b), γ(πp,b′)), (3)

where γ is a multi-layer perceptron (MLP), and H is the
cross-entropy loss.

Similar to the standard DINO framework, a stop-gradient
(SG) operator is applied on the teacher network ϕt and the
parameters in the teacher network are updated with an ex-
ponential moving average (EMA) of the student parameters.
We use a ViT backbone for ϕs and ϕt, and a 3-layer MLP
for γ. The aggregation function Λ can be any function that
is invariant to permutations such as feature statistics [25],
Deep Sets [36], or self-attention layers [26]. In this study,
we use the arithmetic mean because of its simplicity and
effectiveness [25].
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Figure 1. Overview of the Set-DINO framework. The inputs are two sets of single-cell images undergoing the same perturbation in
different batches. Each 4-channel image is processed individually by the Vision Transformer (ViT) to generate a set of embeddings. The
projector consists of an aggregation layer, followed by three fully-connected layers. The resulting consensus embeddings from the student
and teacher branches are used to calculate the cross-entropy loss to train the model. After the model is trained, the single-cell image
embeddings from ViT are used as the cell-level morphological features. SG: stop-gradient, EMA: exponential moving average.

The motivation of the set-level representation is to better
characterize the cell population within a specific condition,
while retaining cell-to-cell variation. Moreover, we found
that the set-level representation is necessary for stabilizing
DINO training when applying a cross-batch sampling strat-
egy, due to the large degree of variation in single-cell im-
ages.

The cross-batch sampling strategy can be regarded as
a form of data augmentation using biological replicates.
Compared to common image augmentation techniques such
as rotations and Gaussian blur, the utilization of cell repli-
cates from different batches serves as a more biologically
meaningful form of augmentation. However, despite hav-
ing received the same genetic perturbation, single cells sam-
pled from different batches may demonstrate very different
morphology due to variations in cell states, cell cycle, and
batch-level technical variations. This is especially true con-
sidering that the perturbation effects from many genetic per-
turbations can be extremely subtle [27]. Moreover, due to
the varying effectiveness of the guide RNA, some cells may
“escape” the perturbation, and exhibit a morphology simi-
lar to NTCs. Consequently, contrasting two single-cell im-
ages sampled from different batches may make the network
insensitive to both batch effects and biologically meaning-
ful information. Our experiments in this study demonstrate
that without set-level aggregation, the model collapses, as
excessively strong data augmentation forces the model to
extract very general features that are identical for all cells
in the dataset. To address this problem, we create views
from each experimental batch using a set of cells receiving
the same perturbation. The two sets of cells are assumed to

contain similar distributions in cell states.
In this study, we explore different cell sampling strate-

gies. Given that every gene target in our dataset has four
sgRNAs, we compare sampling cells receiving the same
sgRNA versus those receiving perturbation of the same
gene target. As an ablation study, we also experiment with
sampling sets of cells from the same experimental batch.

3.4. Implementation

In Set-DINO, the data loader samples cellular images based
on perturbation labels. To build one mini-batch, we ini-
tially select NP perturbations, followed by sampling a pair
of batches for each perturbation. Subsequently, for all cells
in a given batch b with perturbation p, we randomly sam-
ple n cells to build the image set Xp,b. We experiment with
n ∈ {1, 4, 8, 16}, and maintain NP ×n = 512 to maximize
GPU utilization. Each epoch consists of 50k mini-batches.

We use ViT-small/16 as the backbone and set the hidden
dimension of the MLP to 2048. The model is trained with
an Adam optimizer for 300 epochs. We follow the same
warm-up and cosine schedule for learning rate and weight
decay as in the standard DINO framework [6], with a base
learning rate of 0.04. The teacher temperature is set to 0.01.
Eight local crops are used for each single-cell image. The
Set-DINO framework is implemented in PyTorch and dis-
tributed over 2 GPUs. With n = 16, the model training
takes 12 days.

We make the Set-DINO framework and the checkpoint
of a trained model publicly available. 1

1https://github.com/Genentech/set-dino
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Table 1. Evaluation of batch-level gene profiles and consensus gene profiles. We compare the performance of profiles from the Set-
DINO framework with the standard DINO framework and engineered features from [15]. “Set-DINO - sgRNA” means that the teacher
and student views are sampled from cells with the same guide RNA, while “Set-DINO - gene target” means that the views are sampled
from cells with the same gene target (multiple guide RNAs). “KNN@k=5” refers to the accuracy of the k-nearest neighbor classifier when
k = 5. All values are displayed in percentages. Best values are highlighted in bold.

Biological Recall
Batch Effect Reproducibility

CORUM CORUM (curated)
↓ KNN
@k=5

↓ GC
@k=5

↑ KNN
@k=5

↑ mAP
↑ Recall

@5%
↑ Recall
@10%

↑ Recall
@5%

↑ Recall
@10%

Engineered features 19.2 31.8 2.58 1.62 25.9 33.0 27.9 35.6

DINO (z-score) 12.6 10.1 0.68 0.41 21.1 28.4 23.5 31.3
DINO (NTC z-score) 21.7 34.5 1.16 0.64 25.4 33.7 28.4 36.9

Set-DINO (z-score) - sgRNA 22.5 42.8 5.48 3.55 27.3 46.2 33.8 43.9
Set-DINO (NTC z-score) - sgRNA 20.2 34.4 5.71 3.71 28.6 37.9 35.0 45.3
Set-DINO (z-score) - gene target 19.2 32.1 6.18 4.10 28.7 37.3 35.2 45.5

Set-DINO (NTC z-score) - gene target 17.3 23.4 6.87 4.51 29.5 38.3 36.1 46.9

3.5. Representation levels

After model training, single-cell embeddings from ViT are
extracted, processed and then aggregated into multiple lev-
els for further evaluation [2].

Single-cell profiles: For Set-DINO and standard DINO
models, the embeddings of the class token from the last
four ViT layers are used as cell-level features. As a base-
line, we also use the engineered features released by [15].
The raw features are normalized using batch-wise normal-
ization based on the median and median absolute deviation
of features from NTCs, aiding in data alignment across dif-
ferent batches and mitigating batch effects [2]. Experimen-
tally, we find that engineered features benefit from Principal
Component Analysis (PCA), but learned features do not. As
a result, we apply PCA to engineered features (after normal-
ization) with a cutoff of 95% variance.

Batch-level gene profiles: Single-cell profiles of cells
with the perturbations of the same gene target from the same
batch are aggregated by an arithmetic mean operation into
batch-level gene profiles. Batch-level gene profiles repre-
sent the cell population with a specific genetic perturbation
from a specific batch.

Consensus gene profiles: Batch-level gene profiles are
batch-wise centered on the means of features from NTCs
and subsequently aggregated across batches to generate
consensus gene profiles. Consensus gene profiles represent
the average morphological changes resulting from individ-
ual genetic perturbations. These embeddings can be used to
infer gene functions and gene-gene relationships.

3.6. Evaluation protocols

We employ multiple metrics to evaluate our learned repre-
sentations on the basis of reproducibility, batch effect and

biological recall.

Reproducibility: After feature processing and aggrega-
tion, we first evaluate the reproducibility of the batch-level
gene profiles, following previous evaluation approaches
[9, 23]. Specifically, a graph is constructed where the nodes
are batch-level gene profiles and the edge weights are given
by the cosine distance between every pair of nodes. Then,
we compute the average precision for the task of predicting
the genetic perturbation of each node from the genetic per-
turbations of its distance-ranked neighbors, which measures
the ability to retrieve the profiles of the same genetic pertur-
bations from different batches against the background of all
other perturbations.

Following this, the mean average precision (mAP) is cal-
culated across all nodes. Also, we calculate the k-nearest
neighbors (KNN) classification accuracy on perturbations
when k = 5. A high mAP and accuracy indicate that batch-
level gene profiles from the same genetic perturbation are
clustered and dissimilar to other genetic perturbations as
well as NTCs. Given that many perturbations exhibit negli-
gible effects and those cells post-perturbation display very
similar profiles to NTCs, the absolute values of mAP and
accuracy are not expected to be high.

Batch Effect: To evaluate the batch effect, we calculate
the KNN classification accuracy on experimental batches
using the same graph described above (k = 5). In addition,
we compute the Graph Connectivity (GC) [23] on the KNN
graph. To calculate GC, subgraphs are constructed by re-
taining only nodes from a certain batch. GC is then defined
as the average ratio of the number of nodes in the largest
connected component and the total number of nodes in the
subgraph. Low batch prediction accuracy and GC values
indicate that the embeddings of cells from different experi-
mental batches are well mixed (i.e., low batch effect).
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Figure 2. Evaluation of consensus gene profiles in identifying gene-gene relationships. (a) Precision-recall curves for predicting gene-
gene relationships according to CORUM and curated CORUM. The curves are drawn by varying cutoff percentiles from top 1% to top
20%. (b) Distribution of cosine similarities between gene pairs. “Gene Sets” contains gene pairs that are involved in the same protein
complex, while “Random” contains randomly sampled gene pairs. (c) The first row contains the full adjacency matrices of the ground
truth graph (leftmost column) and prediction graphs (other columns). The second row provides a zoomed-in view of the adjacency matrix
focused around the exosome. Although self-edges are included in the visualization, they are not considered when calculating biological
recall and precision. All DINO and Set-DINO models shown in this figure were trained with NTC z-score normalization.

Biological Recall: Finally, we evaluate the biological in-
formation in consensus gene profiles by measuring how
well they can infer gene-gene relationships [8]. The bio-
logical “ground truth” is built from the CORUM database
[16], a public collection of manually curated mammalian
protein complexes. A ground truth graph is built by con-
necting every pair of genes in the same protein complex. A
prediction graph is constructed by connecting every pair of
genes whose cosine similarity between the morphological
profiles exceeds a certain percentile of the pairwise simi-
larity distribution. The prediction graph is compared with
the ground truth graph, and the recall of the gene-gene rela-
tionships is calculated using the top 5% percentile and top
10% percentile [8] as cutoffs. In addition, a precision-recall
curve is calculated for further evaluation.

In CORUM, some protein complexes significantly over-
lap with others, potentially causing the involved genes to
dominate the ground truth graph. To avoid this bias, we
utilized a curated CORUM database from [15], which in-
cludes only protein complexes with limited overlap with

other complexes. The full CORUM contains gene-gene re-
lationships from 1263 genes that are perturbed in our OPS
dataset, and the curated CORUM includes a subset of 538
genes.

4. Results and Discussion

4.1. Set-DINO achieves superior performance com-
pared to existing methods

Table 1 shows our results on reproducibility and batch effect
on batch-level gene profiles, as well as the performance of
gene-gene relationship inference using consensus gene pro-
files. The reproducibility metrics and batch effect metrics
should be considered together to assess the quality of the
learned representation. The former evaluates the replicate
consistency and how well the model captures the perturba-
tion effect, while the latter evaluates the model’s resistance
to batch-level confounding factors.

These results show that the standard DINO model with
NTC z-score yields a performance similar to engineered
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Table 2. Ablation study on cell sampling strategies. We compare the performance of three sampling strategies with different numbers
of cells, n. In the same cell(s) strategy the teacher and student views are built from the same set of cells. When n = 1, this is equivalent
to the standard DINO framework. In the within-batch strategy the views are built from two sets of cells from the same batch with the
same perturbation (same guide). In the cross-batch strategy the views are built from two sets of cells from different batches with the same
perturbation (same guide). All values in this table are displayed in percentages. Values are omitted for models trained with the cross-batch
strategy and n ∈ 1, 4 because their training collapsed. All DINO and Set-DINO models shown in this table were trained with NTC z-score
normalization on input images. “KNN@k=5” refers to the accuracy of the k-nearest neighbor classifier when k = 5. Best values are
highlighted in bold.

Biological Recall
Batch Effect Reproducibility

CORUM CORUM (curated)
↓ KNN
@k=5

↓ GC
@k=5

↑ KNN
@k=5

↑ mAP
↑ Recall

@5%
↑ Recall
@10%

↑ Recall
@5%

↑ Recall
@10%

Engineered features 19.2 31.8 2.58 1.62 25.9 33.0 27.9 35.6

Same cell(s), n=1 21.7 34.5 1.16 0.64 25.4 33.7 28.4 36.9
Same cell(s), n=4 24.2 45.8 1.00 0.54 22.9 30.9 27.3 36.1

Within-batch, n=1 47.1 75.7 0.97 0.53 21.9 30.5 26.3 36.1
Within-batch, n=4 44.2 71.8 0.47 0.28 19.8 29.0 24.9 34.3

Cross-batch, n=1,4 — — — — — — — —
Cross-batch, n=8 20.0 36.2 5.83 3.78 27.7 36.4 34.7 45.1

Cross-batch, n=16 20.2 34.4 5.71 3.71 28.6 37.9 35.0 45.3

features in predicting gene-gene relationships. Notably,
Set-DINO significantly outperforms both of these on the
gene-relationship task using both CORUM and curated CO-
RUM. With the optimal Set-DINO gene profiles, the recall
at top 5% cutoff increases by 8.2% (29.4% relative increase)
on curated CORUM compared to engineered features. Ad-
ditionally, the reproducibility metrics for Set-DINO profiles
markedly surpass those of both DINO and engineered fea-
tures. This boost suggests that Set-DINO’s weakly super-
vised training encourages the model to learn more biologi-
cally meaningful representations.

Interestingly, within the self-supervised setting, the in-
ference performance of gene-gene relationships correlates
with our reproducibility metric. This suggests that combin-
ing weak supervision on perturbation labels with SSL leads
to morphological features that encode biologically mean-
ingful information more effectively.

Furthermore, comparing the guide-level (sgRNA) and
gene-level variants of Set-DINO, we observe that building
views from all cells with the same gene target leads to a
lower batch effect, and a relative increase of over 20% on
reproducibility metrics, and a slight increase in predicting
gene-gene relationships.

Finally, we observe a consistent improvement in all per-
formance metrics when using NTC z-score normalization.
For standard DINO with z-scoring, we note that although
its batch effect metrics are low, it also exhibits low repli-
cate consistency, which indicates that this model has less
capability to extract distinguishable features. Finally, our
batch effect metrics only consider batch-level confounding

factors. Therefore, it is possible that the embeddings from
DINO with z-score are dominated by other nuisance factors,
such as cell positions within the well.

4.2. Set-DINO encodes biologically meaningful in-
formation

We further illustrate the biological information encoded in
consensus gene profiles in Figure 2. Figure 2a compares
recall-precision curves from different methods using cut-
off ranges from top 1% to top 20%, focusing on the high-
precision regime that is required for target discovery. We
note that while standard DINO and engineered features ex-
hibit similar performance, Set-DINO achieves a substantial
performance boost, especially on curated CORUM.

We also observe that gene pairs with known relationships
tend to have higher cosine similarity than randomly sam-
pled gene pairs (Figure 2b). The KS-statistic between the
two distributions is 0.32 on CORUM, and 0.86 on curated
CORUM.

Figure 2c presents the adjacency matrices from the
ground truth graph on curated CORUM, as well as the pre-
dicted graphs from different methods. We find that consen-
sus gene profiles from Set-DINO models achieve higher re-
call in multiple protein complexes. Notably, the gene-gene
relationships in some protein complexes are almost entirely
missed in engineered and DINO profiles but captured by
Set-DINO. Two examples of this are “ribosomal subunits in
mitochondria”, which are critical for mitochondrial trans-
lation [30], and exosomes, which play an integral role in
cell-cell communication [21]. Both of these structures are
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highlighted in Figure 2c.

4.3. Ablation studies on Set-DINO framework

We perform a series of ablation studies to evaluate the effect
of weak supervision in self-supervised learning of cellular
embeddings. See Table 2 for a summary of these results.

Our first observation is that model training tends to col-
lapse if we apply the proposed cross-batch sampling strat-
egy with a small value of n. This phenomenon is likely
due to the substantial differences in cell state distribution
and the general batch-level distribution shift exhibited by
the two sets of cells. Increasing the value of n aids in sta-
bilizing the model during training. Based on our results,
increasing beyond n = 8 has a negligible impact on perfor-
mance.

In addition to cross-batch sampling, we propose two al-
ternative sampling strategies. The first strategy is the “same
cell” approach, in which the identical sets of cells are used
for both teacher and student branches. When n = 1, this is
equivalent to the standard DINO framework. A comparison
of the results from n = 1 and n = 4 reveals that utilizing
a set of images leads to higher batch effects and lower re-
producibility metrics. The recall in gene-gene relation pre-
diction is also lower. These results are likely due to the
averaging done in the aggregation layer, which may reduce
the effect of image augmentation.

The second “within-batch” strategy involves building
teacher and student views by sampling different cells with
the same perturbation from the same batch. In this case, the
differences between the two views mainly arise from the
variation in cell state distributions due to random sampling.
The results indicate that the profiles from within-batch sam-
pling exhibit markedly worse batch effects as well as lower
reproducibility metrics and gene-gene relationship predic-
tion performance. This suggests that in this scenario, the
model extracts primarily batch-related information to en-
sure consistency between the teacher and student branches.

For additional validation, we perform a PCA on the
batch-level gene profiles, and calculate the reproducibil-
ity and batch effect metrics on an increasing number of
Principal Components (PCs) by order. This analysis pro-
vides insight into the amount of perturbation-specific and
batch-specific signals contained in the PCs with the high-
est variances. Figure 3 shows that the batch-specific sig-
nals dominate the high-ranked PCs of gene profiles from
the model trained using the “within-batch” strategy, while
perturbation-specific signals dominate the high-ranked PCs
from the “cross-batch” trained model. In addition, accord-
ing to the metrics we observed on the validation set dur-
ing model training for within-batch sampling (not shown),
batch-specific signals begin to dominate at an early stage in
the training process.

Figure 3. Performance analysis on an increasing number of
principal components. Principal component analysis (PCA) is
performed on batch-level gene profiles. Reproducibility and batch
effect metrics on an increasing number of principal components
are measured.

5. Conclusion

In this study, we propose the Set-DINO model with a
cross-batch sampling strategy that combines weak supervi-
sion and self-supervised learning to obtain better single-cell
representations for cell morphology images. Our results
demonstrate that the proposed framework outperforms es-
tablished baselines using engineered features and the stan-
dard DINO framework in extracting morphological profiles
of single-cell images from a held-out test set. We conduct
ablation studies to confirm that both set-level representation
and cross-batch sampling are critical to achieving success.

Additional evaluation based on prior biological knowl-
edge reveals that the consensus gene profiles learned by Set-
DINO significantly improve the prediction of gene-gene re-
lationships. Thus, we anticipate that the proposed frame-
work could benefit future target discovery and drug dis-
covery research. Furthermore, while this study focuses on
single-cell imaging data from optical pooled screens, Set-
DINO may also be applicable to other single-cell datasets
containing weak labels, as well as single-cell crops from
arrayed cell painting datasets.

One limitation of this study is that a simple arithmetic av-
erage is used in the aggregation layer to fuse the latent em-
beddings from single-cell images to population-level rep-
resentations. Previous studies have explored more sophis-
ticated aggregation methods for computing set-level repre-
sentations [25, 26, 36]. Future work will investigate which
strategy is optimal for feature aggregation.
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