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Abstract

Estimating uncertainty of a neural network is crucial in
providing transparency and trustworthiness. In this paper,
we focus on uncertainty estimation for digital pathology
prediction models. To explore the large amount of unla-
beled data in digital pathology, we propose to adopt novel
learning method that can fully exploit unlabeled data. The
proposed method achieves superior performance compared
with different baselines including the celebrated Monte-
Carlo Dropout. Closeup inspection of uncertain regions re-
veal insight into the model and improves the trustworthiness
of the models.

1. Introduction
Modern digital pathology has witnessed significant progress
in recent years. Harnessing the learning power of deep neu-
ral networks, researchers have developed advanced analysis
methods for histopathology images [6, 17, 20]. However,
despite the strong prediction power of deep learning mod-
els, doctors and caregivers remain concerned when deploy-
ing them in clinical settings for diagnosis and prognosis.
The lack of trust is due to various factors. The black-box
deep neural networks, with millions or even billions of pa-
rameters, can potentially overfit and make over-confident
predictions even when they are wrong. Furthermore, an-
notating these large histology images with fine-grained se-
mantic labels such as tumor, tumor infiltrating lymphocytes
(TIL), etc., is extremely time-consuming and error-prone.
Thus, the models are often trained with limited and poten-
tially noisy labels. To use these models safely, we need
information beyond the prediction.

In this paper, we propose to compute model uncertainty
for histopathology images. In recent years, uncertainty es-
timation has caught attention in the machine learning com-
munity [12]. Model uncertainty empowers different down-
stream analysis tools. In an active learning pipeline, uncer-
tainty allows one to select uncertain data for expert verifica-

tion. In semi-supervised learning, predictions on unlabeled
data with low uncertainty can be used as pseudo-labels and
be included in the training set. Finally, being able to visu-
alize uncertainty and visualize the data on which the model
is confused can significantly increase transparency and thus
trustworthiness of AI models, especially in healthcare [5].

To estimate uncertainty, earlier works use an ensemble
of models and aggregate their prediction. For example,
Monte-Carlo Dropout (MCDropout) method obtains an en-
semble of models by randomly knocking out neurons [11].
Alternatively, one may use a surrogate function to approx-
imate the uncertainty, and then train the neural network to
fit the surrogate function. For example, Moon et al. [22] de-
fine the surrogate function as the probability of correctness
of each training datum. Despite the strong performance,
the correctness surrogate function, however, requires every
training data to be labeled, and thus cannot be used to learn
from large amount of unlabeled data, as in the case of digi-
tal pathology. Li et al. [21] proposed to use consistency as a
surrogate function for uncertainty calibration. The method
uses the consistency of the model’s prediction on a datum
through the training process. It does not require labels, and
thus can fully exploit the large amount of unlabeled data.

In this paper, we propose a novel method for uncertainty
estimation in digital pathology. To fully utilize both the la-
beled and unlabeled data, we propose to combine both the
correctness surrogate function and the consistency surro-
gate function for uncertainty estimation. We demonstrate
the power of the proposed method in the task of tumor
prediction, which can be used to measure Tumor-TIL spa-
tial relationships, and provide important information for di-
agnosis and prognosis [20]. We show that the proposed
method is superior than previous methods including the cel-
ebrated MCDropout. Furthermore, we carry out a thorough
quantitative and qualitative analysis. Closeup inspection
of uncertain regions reveals insight into the model and im-
proves the trustworthiness of the models.
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2. Related Works

Patch-wise Cancer Prediction. In the field of digi-
tal pathology, especially with a focus on breast cancer
histopathology, the evolution from traditional handcrafted
feature extraction to the adoption of Convolutional Neural
Networks marks a significant advancement. Veta et al. [26]
utilized fast radial symmetry and marker-controlled water-
shed segmentation for nuclei extraction, while Basavanhally
et al. [1] employed a geodesic-based active contour model
focusing on both morphological and textural features of seg-
mented nuclei. Spanhol et al. [25] explored the BreaKHis
dataset to classify histopathological images as benign or
malignant, indicating the challenge of maintaining accuracy
at higher magnifications. Cruz-Roa et al. [6] proposed a
CNN model for automatic classification of invasive ductal
carcinoma in whole slide images, which represented a sig-
nificant step towards automating the differentiation between
invasive and non-invasive images. A detailed study by Le
et al. [20] focuses on utilizing CNNs for analyzing breast
cancer whole slide images (WSIs), emphasizing the signif-
icance of spatial relationships between tumor regions and
tumor-infiltrating lymphocytes (TILs).

Uncertainty Estimation. Uncertainty estimation in digital
pathology can be approached through confidence calibra-
tion and ordinal ranking. Confidence calibration methods,
as discussed in seminal works by Platt [24], Guo et al. [16],
and others, focus on aligning a model’s confidence with
the actual probability of correct predictions. Ordinal rank-
ing, on the other hand, prioritizes the order of confidence
levels among predictions, as explored by Geifman and El-
Yaniv [13] and Lakshminarayanan et al. [19], to ensure the
model’s predictions are consistently reliable. For reducing
uncertainty of training model, there are several approaches.
MC-Dropout, as outlined by Gal and Ghahramani [11], of-
fers a practical framework for uncertainty estimation by
simulating Bayesian inference, allowing for dynamic uncer-
tainty evaluation. Correctness Ranking Loss [22] empha-
sizes the model’s accuracy on the available labeled dataset,
making it an essential method for enhancing the quality of
predictions in scenarios where direct supervision is limited.
Consistency Ranking Loss, introduced by Li et al. [21],
is particularly effective in semi-supervised settings, where
it utilizes both labeled and unlabeled data to improve the
model’s confidence estimation.

Our work integrates these methodologies to advance the
field of digital pathology, aiming to improve model accu-
racy and the reliability of automated diagnostic systems. By
exploring these cutting-edge approaches to uncertainty esti-
mation, we contribute to the ongoing development of more
precise and trustworthy AI tools in medical imaging.

3. Method
We propose to train uncertainty calibration using the con-
sistency ranking method [21] paired with the tumor patch
classification method [20]. This enables us to take advan-
tage of the large amounts of freely available unlabeled data
to get better calibrated uncertainty.

3.1. Semi-supervised Learning with Uncertainty
Calibration

We train our tumor prediction model on patches extracted
from WSIs. The model learns to predict whether a patch is
tumor positive or negative. During inference, a WSI is tiled
into non-overlapping patches and the predicted patch-wise
probabilities form the tumor predicted probability map.

The training dataset is comprised of n labeled patches
and p unlabeled patches and is represented as D = (X,Y ),
and U , respectively, such that, X = {x1, ..., xn} is the set
of labeled image patches, Y = {y1, ..., yn} is the set of cor-
responding labels, yi ∈ {0, 1}, and U = {xn+1, ..., xn+p}
is the set of unlabeled image patches.

Consistency Ranking Loss. In this paper, we explore the
use of the Consistency Ranking Loss [21] to train our tumor
prediction model and calibrate the model’s uncertainty. The
consistency ranking loss uses the consistency of the model’s
predictions on the training patches to estimate the uncer-
tainty of the model. For each patch, highly consistent pre-
diction across training epochs indicates higher confidence
and thus lower uncertainty. Similarly, less consistency or
more fluctuations in the model’s prediction for a patch in-
dicates more uncertainty. Hence this relative measure of
consistency can act as a surrogate function of the model’s
uncertainty. The consistency loss tries to make the pre-
dicted probability values reflect this uncertainty surrogate
function. Since the consistency measure does not rely on
data labels, it can be applied on unlabeled patches, making
it suitable for semi-supervised learning.

More formally, we train our model f(x;W ) : X →
[0, 1] using both labeled (X,Y ) and unlabeled data U .
For every data point xi, its predicted classification ŷti =
arg maxy∈{0,1}f(xi;W

t), where W t denotes the model’s
weights at the t-th epoch.

We define a sample’s training consistency as the fre-
quency of obtaining the same prediction in consecutive
epochs throughout the training:

ci =
1

T − 1

T−1∑
t=1

1{ŷti = ŷt+1
i } (1)

For each patch xi from the collective set X∪U , we use κi to
denote the model’s maximum softmax output for xi. If the
training consistency of one data point, ci, is less than that of
another, cs, then the κi should also be less than κs, thereby
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Figure 1. Schematic representation of the patch-wise cancer prediction workflow. The diagram illustrates the sequential phases involved
in processing and classifying histopathological images for cancer detection. Lce, Lcorr , and Lcon each represent Cross Entropy Loss,
Correctness Ranking Loss [22], and Consistency Ranking Loss [21], respectively.

maintaining a consistent ranking between the training con-
sistency and the model’s confidence in its predictions. The
formula of the Consistency Ranking Loss is:

Lcons(f) =

n+p∑
s=1

n+p∑
i=1,ci<cs

max{0, (cs − ci)− (κs − κi)}

(2)
The goal during training is to adjust the confidence estima-
tor κ so that the difference in confidence closely mirrors the
difference in consistency, ensuring that κs − κi ≥ cs − ci
for all cases where cs > ci. In this way, it is possible that
the difference κs − κi is greater than cs − ci because the
loss only enforces a ranking rather than an exact value dif-
ference.
Correctness Ranking Loss. To make the most of the la-
beled data for confidence estimation, a measure of predic-
tion correctness is utilized as a separate ranking loss, Lcorr,
which is applied only to labeled samples. Correctness of a
sample represents the frequency of correct predictions for

that sample
1

T

T∑
t=1

1{ŷti = yi}. The total loss, L, combines

these elements to optimize the model’s performance:

L = LCE + λ1Lcorr + λ2Lcons (3)

Here LCE is the cross entropy loss on labeled samples. λ1

and λ2 are the weights of the correctness and consistency
losses, respectively.

3.2. Post-Processing and Masking

In the context of breast cancer, regions affected by inva-
sive cancer are often found close to one another [20]. This
means the likelihood of a region being cancerous is influ-
enced by the cancer status of neighboring regions. We con-
struct a comprehensive WSI probability map, H, from the
patch-wise model predictions. H is then refined into an
aggregated probability map, named A. In this aggregated
map, the probability score for a patch is an aggregation of

the scores for that patch and neighboring patches within a
certain distance range. The aggregation function used is the
Max function. This can be formulated as follow [20]:

A(i, j) = Max({H(m,n)|m,n ∈ [
i

w
w, (

i

w
+ 1)w]})

(4)
H(m,n) represents the probability score for a specific patch
located at (m,n) on the map H. Similarly, A(i, j) refers to
the aggregated probability score of a patch at location (i, j),
and the aggregation window of size w is defined as:

[[
i

w
w, ([

i

w
+ 1]w)]× [[

i

w
]w, (

i

w
] + 1)w] (5)

After postprocessing, all patches with probability greater
than or equal to 0.5 are considered tumor positive, and are
considered tumor negative otherwise.

3.3. Implementation Details

Following the data augmentation and training settings out-
lined by Le et al. [20], we adopt the ResNet-34 archi-
tecture [18] initialized with pre-training on the ImageNet
dataset [8] and customized with the last fully connected
layer containing 512 neurons tailored for binary classifi-
cation. The patch size used for training and testing is
350 × 350 pixels at 40x magnification. The patches are
normalized and resized to 224 × 224 pixels before feeding
to the model.

4. Experiments and Results
4.1. Experimental Setup

Our experimental design leverages the ResNet-34 architec-
ture to implement various classification methods, including
baseline (Cross-entropy loss), MC-dropout, Correctness,
and Consistency methods. For the MC-dropout method, we
incorporated an additional dropout layer in the ResNet-34
architecture, situated before the final fully connected layer,
with a dropout rate of 0.5 to effectively model uncertainty.
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Figure 2. Model architectures for performance evaluation in our application: Baseline (Cross-entropy Loss), MC-Dropout [11], Correctness
Ranking Loss [22], and the employed Consistency Ranking Loss [21] structure. Lce, Lcorr , and Lcon each represent Cross Entropy Loss,
Correctness Ranking Loss [22], and Consistency Ranking Loss [21], respectively.

This model variant underwent 50 stochastic forward passes
during inference to robustly estimate the prediction uncer-
tainty. The Correctness model is trained on labeled data
and utilized the correctness ranking loss. The Consistency
model is trained on both labeled and unlabeled data, and the
training process utilized both the correctness and the consis-
tency ranking losses. Fig. 2 shows a comparative visualiza-
tion of the training process across the different methods.

Each model was trained over 20 epochs using a mini-
batch size of 256, a momentum of 0.9, and a weight de-
cay of 0.0001, starting with an initial learning rate of 0.01,
which was decreased by a factor of 10 after the 8th and 16th
epochs to fine-tune the learning process. We use stochas-
tic gradient descent [2] to optimize each method. For the
weighted loss in Eq. 3, we set λ1 = λ2 = 0.5

Data augmentation operations applied include: random
patch rotation by up to 22.5 degrees, random vertical and
horizontal flipping, and random adjustments or perturba-
tions to their brightness, contrast, and saturation levels.
During the testing phase, the only preprocessing applied
was normalizing the color channels, with zero mean and
one standard deviation.

4.2. Datasets

The datasets used for training and validation were compiled
from image patches sourced from 102 and 7 breast can-
cer WSIs, respectively, that are part of the Surveillance,
Epidemiology, and End Results (SEER)-Linked Virtual
Tissue Repository (VTR) Pilot Breast Cancer Genomics
Study [10]. We assess the efficacy and generalizability of
our deep learning models with 195 TCGA WSIs, which had
been previously manually labeled by Cruz-Roa et al. [7].

In this study, we explore how uncertainty calibration can
enable us to train tumor prediction model with a limited set
of annotations and yet get higher quality predictions by tak-
ing advantage of the vast amount of the unlabeled data avail-
able. To achieve this, we conduct experiments using only

Table 1. Dataset Distribution for Training, Validation, and Test-
ing in Breast Cancer Detection for showing the composition of
datasets derived from SEER and TCGA sources, detailing the
training and validation sets with specified percentages of labeled
data.

Cancer- Cancer-
Source Purpose ID WSIs (N) Labeled (N) Positive (N) Negative (N)

SEER10 Training Dtr10 102 33,000 11,000 22,000
Validation Dval 7 10,224 4,953 5,271

SEER20 Training Dtr20 102 66,000 22,000 44,000
Validation Dval 7 10,224 4,953 5,271

TCGA Testing Ttcga 195 - - -

10% and 20% random samplings of the training data labels
and treat the rest of the dataset as unlabeled. We refer to
these training datasets as SEER10 and SEER20, respec-
tively. The training and test datasets statistics are shown in
Table 1. Earlier studies have demonstrated the advantage of
incorporating a larger proportion of negative samples com-
pared to positive ones within training with digital pathol-
ogy datasets [3, 20]. Subsequently, we chose a 1:2 ratio of
tumor-positive to tumor-negative patches for training.

4.3. Evaluation Metrics.

In assessing the performance and uncertainty of our models,
we utilize a comprehensive suite of metrics:

F1 score. Evaluates the accuracy of the binary prediction,
that is after applying a threshold=0.5 to the predicted prob-
ability to classify patches as tumor positive or negative.

AURC and E-AURC. The Area Under the Risk-Coverage
Curve (AURC) and its normalized version Excess-AURC
(E-AURC) [14] compute the risk or the error at different
confidence thresholds. They measure how well the true and
false predictions are separated by their uncertainty.

FPR-95%. The False Positive Rate (FPR) at 95% True Pos-
itive Rate (TPR) measures how often the model incorrectly
labels a patch as tumor when TPR=95%.
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Table 2. Validation of trained model with SEER10 (Dtr10) and SEER20 (Dtr20) datasets, adjusted according to the size of labeled training
data. Superior results are accentuated in bold for quick identification. To simplify the data presentation, we adjusted AURC and E-AURC
figures by a factor of 103, FPR figures by 102, and NLL figures by 10. SEER10 and SEER20 indicate subsets comprising 10% and 20%
of the complete dataset, which were specifically annotated for the purpose of training. The evaluation was conducted using a validation
dataset (Dval).

Model Training Dataset Labeled SEER (N) Unlabeled SEER (N) Method F1↑ AURC↓ E-AURC↓ FPR-95↓ ECE↓ NLL↓ Brier↓
(% of SEER) (Pos / Neg) (Pos / Neg)

ResNet 34

Baseline 0.846 59.46 51.57 78.70 2.38 3.76 23.61
SEER10 33,000 300,724 MCdropout [11] 0.850 66.21 51.57 78.56 3.09 4.15 24.59

10% (11,000/22,000) (88,889/211,715) Correctness [22] 0.838 67.14 50.24 79.24 4.05 4.11 25.19
Consistency [21] 0.853 55.18 41.74 76.07 1.97 3.69 22.57

Baseline 0.840 66.32 49.79 79.41 5.02 4.14 25.31
SEER20 66,000 267,724 MCdropout [11] 0.843 63.76 47.99 78.14 5.65 4.33 25.37

20% (22,000/44,000) (77,889/189,715) Correctness [22] 0.853 60.07 46.49 79.00 4.71 4.03 24.01
Consistency [21] 0.854 55.84 42.56 77.35 1.39 3.62 22.46

Table 3. Performance comparison of patch-wise tumor prediction models on TCGA Whole Slide Images. This table presents the evaluation
results of various methods on the 195 TCGA dataset Ttcga, measured across a range of metrics that assess both accuracy and uncertainty.
Each method’s performance is quantified by F1 score, AURC, E-AURC, FPR-95, ECE, NLL, Brier score, and Hausdorff Dist. The
models have undergone post-processing to assign probabilistic predictions to each patch, which are then compared against the ground truth
annotations to assess their effectiveness in tumor detection. To simplify the data presentation, we adjusted AURC and E-AURC figures by
a factor of 103, FPR figures by 102, and NLL figures by 10.

Model Training Dataset Test WSIs (N) Method F1↑ AURC↓ E-AURC↓ FPR-95↓ ECE↓ NLL↓ Brier↓ Hausdorff Dist↓
(% of SEER) (TCGA)

ResNet 34

Baseline 0.772 139.03 134.80 5.76 4.70 9.11 58.34 190
SEER10 195 MCdropout [11] 0.784 134.76 130.77 6.22 5.54 14.53 62.66 209

10% Correctness [22] 0.783 131.22 127.35 5.74 4.79 11.16 57.56 183
Consistency [21] 0.784 125.51 122.13 4.20 4.53 8.92 55.61 156

Baseline 0.749 155.13 150.02 8.22 8.21 14.05 74.59 217
SEER20 195 MCdropout [11] 0.773 132.94 129.10 5.50 6.02 14.14 61.30 208

20% Correctness [22] 0.760 145.26 140.58 6.03 6.03 12.94 65.27 212
Consistency [21] 0.774 129.19 125.38 4.82 4.82 7.41 53.59 164

Brier Score. The Brier Score [4] quantifies the accuracy
of probabilistic predictions, penalizing more the predictions
that are confident but incorrect, making it a useful tool for
calibration assessment.

ECE. The Expected Calibration Error (ECE) [23] groups
the predicted probabilities into bins and aggregates the
mean difference between the prediction confidence and the
prediction accuracy in each bin, offering a summary of the
model’s calibration.

NLL. The Negative Log Likelihood (NLL) [15] evaluates
the model’s predicted probabilities against the actual class
labels, emphasizing the cost of being confidently wrong.

Hausdorff Distance. The Hausdorff distance [9] is used
to quantify how similar the boundaries of the predicted and
ground truth tumor masks. It computes the maximum dis-
tance between any point in one image and the nearest in
the other and vice versa. It evaluates how well the model
is performing in terms of accurately delineating the tumor
regions.

To clarify, high F1 score is better, while low AURC, E-
AURC, FPR-95, Brier, ECE, NLL, and Hausdorff Distance
are better. These metrics enable a nuanced evaluation of our

model’s predictive performance and its capability to handle
uncertainty, essential for the reliable detection of tumor in
pathology images.

4.4. Results

We evaluate and compare the trained models, both quanti-
tatively and qualitatively. We first present the quantitative
evaluation performed on patch-wise predictions from the
SEER validation set and on WSIs from the TCGA-BRCA
test dataset. We then present the qualitative results from
predictions on WSIs.

Validation Patch-wise Evaluation. We evaluate the
trained models on patch-wise prediction using validation
patches from the SEER dataset. The results in Table 2 show
that the consistency ranking loss has the best performance
across all metrics. More importantly, it achieves the low-
est score on the uncertainty metrics by a large margin in-
dicating the higher quality of the prediction in terms of the
model’s uncertainty estimation.

Test WSI Evaluation. We test the models trained on SEER
data on TCGA WSIs. The test slides were first patch-wise
processed to generate probability maps and then postpro-
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Figure 3. Comparative visualization of tumor prediction in The Cancer Genome Atlas whole slide images (WSIs) using various method-
ologies based on ResNet-34 trained with Dtr20. The top parts of each element represent the Probability Map. The bottom parts are the
corresponding Uncertainty Map. Columns show the output of the baseline method, MC-dropout, Correctness Ranking Loss, and Con-
sistency Ranking Loss, respectively, with heatmaps reflecting the probability of tumor presence. Probability maps exhibit the model’s
confidence in tumor presence, with warmer tones (red) indicating higher likelihood of tumor (probabilities closer to 1), and cooler tones
(blue) suggesting lower probabilities (closer to 0). The Uncertainty Map indicates that the color becomes more yellow as the values ap-
proach 1, which signifies higher uncertainty. Conversely, the color turns blacker as the values approach 0, indicating higher certainty.

cessed as outlined in Section 3.2. The aggregated proba-
bility maps and the generated binary masks are compared
against the ground truth binary maps. The results in Ta-
ble 3 reflect a comprehensive evaluation of the methods’
performance on the test slides. Similar to the patch-wise
evaluation, the model trained with the consistency ranking
loss achieves best performance in all categories, and espe-
cially in the uncertainty evaluation metrics. This indicates
the higher reliability of the consistency model, which is an
essential factor in medical tasks. Moreover, the evaluation
of the predicted masks of tumor regions using Hausdorff
distance confirms that the consistency model can better han-
dle the ambiguity that often occurs at the tumor boundary.

Qualitative Results. Fig. 3 and Fig. 4 present a qualitative
comparison of four different methods for predicting tumor
in WSIs. The figures illustrate both the probability maps
(odd rows) and the uncertainty maps (even rows) generated
by the models. The uncertainty maps are computed using

the following mathematical formula:

pu = 2× (0.5− |ppr − 0.5|) (6)

where ppr and pu are the predicted probability and uncer-
tainty for patch p in the WSI, respectively. The closer pu
is to 1, the greater the uncertainty of the prediction, indicat-
ing that the model is less confident of the prediction, and
conversely, a pu value closer to 0 signifies higher certainty
in the prediction, implying that the model has a more con-
fidence in its assessment of the patch being tumor or not.
Fig. 5, shows sample zoomed in regions from the results of
the consistency prediction. It illustrates regions with vari-
ous morphological characteristics and how the consistency
model react to these different regions.

A high level inspection of Fig. 3 and Fig. 4, allows us to
make the following observations:
• The consistency model has less noise in its probability

and uncertainty maps. This is depicted by the better struc-
ture visibility in it’s maps and the cleaner delineation of
the tumor regions.
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Figure 4. Comparative visualization of tumor prediction in The Cancer Genome Atlas whole slide images (WSIs) using various method-
ologies based on ResNet-34 trained with Dtr20. The top parts of each element represent the Probability Map. The bottom parts are the
corresponding Uncertainty Map. Columns show the output of the baseline method, MC-dropout, Correctness Ranking Loss, and Consis-
tency Ranking Loss, respectively, with probability map reflecting the probability of tumor presence. Probability maps exhibit the model’s
confidence in tumor presence, with warmer tones (red) indicating higher likelihood of tumor (probabilities closer to 1), and cooler tones
(blue) suggesting lower probabilities (closer to 0). The Uncertainty Map indicates that the color becomes more yellow as the values ap-
proach 1, which signifies higher uncertainty. Conversely, the color turns blacker as the values approach 0, indicating higher certainty.

• The uncertainty maps from the consistency model show
higher uncertainty around the tumor boundary and more
confidence positive prediction inside the tumor. This
agrees with how pathologists perceive the tumor regions
during annotation. On the contrary, all the other methods
show more uncertainty inside the tumor regions.

We hypothesize that the highly structured uncertainty
corresponds to specific morphology in the tumor microen-
vironment. Taking a closer look at the probability maps in
Fig 5, we observe the following characteristics of the con-
sistency method predictions:

• In Fig 5 (A), the uncertain and low probability patches
within the tumor region depict tumor infiltrating lympho-
cytes and stroma.

• In Fig 5 (B), we see two lines of stroma passing through
the tumor regions and the probability map clearly and
sharply captures them with medium to low probability

values.
• In Fig 5 (C), we observe high confidence inside the tumor,

and more uncertainty as the tumor meets the tissue edge.
Similarly in Fig 5 (D), we observe lower probability at
the forefront of the tumor region and more confidence as
we step inside the tumor.

The previous observations show that inspecting the prob-
ability and uncertainty maps can reveal more the insights
about the tumor microenvironment beyond simply finding
the tumor regions. This confirms the value of training with
uncertainty calibration applied on labeled as well as unla-
beled data. It emphasizes the boost in performance that can
be achieved when we have limited supervision, which is of-
ten the case in medical tasks. Moreover, it proves the relia-
bility and trustworthiness of the models, which are essential
in clinical applications and research.
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Figure 5. Comparative analysis of tumor prediction using Consistency Ranking Loss (CRL) demonstrating the transition from Whole
Slide Images to magnified views and the probability map overlays. These overlays provide visual representation of prediction certainty
and uncertainty, with the color spectrum indicating the likelihood of tumor presence—ranging from cooler tones for lower probabilities to
warmer tones for higher probabilities.

5. Conclusion

Our research presents a significant leap in patch-wise tumor
prediction by integrating consistency ranking loss and cor-
rectness ranking loss, allowing us to train with uncertainty
calibration on both labeled and unlabeled data. The pro-
posed approach has shown to bolster the accuracy of pre-
dictions as well as improves the expression of model’s un-
certainty in it’s prediction probability. By adeptly utilizing
both labeled and unlabeled data, our approach directly ad-
dresses the pivotal challenge of sparse data availability in
the field. The resulting method not only deliver more accu-
rate tumor detection but also enhance their trustworthiness,
an issue of great importance to pathologists. The proposed
approach can be extended to other medical tasks for more
reliable models with fewer annotation cost.
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