
Discovering interpretable models of scientific image data with deep learning

Supplementary Material

1. Datasets

Image datasets are identical to those used by [3, 14, 15].

2. Extended methods

2.1. Total Correlation VAE

The VAE is a latent variable model that consists of an en-
coder network parameterized by θ and a decoder network
parameterized by ϕ. The encoder network transforms an in-
put x into its latent space representation z via a two-step
process: first, the computation of µ and σ vectors, then
the sampling of z from a multivariate Gaussian distribution:
qϕ(z|x) = N (µ, σ). Then, the decoder forms a reconstruc-
tion based on the latent space representation z.

In the original formulation, the model is trained using the
following loss function [10].

L(θ, ϕ;x, z) = DKL(qϕ(z|x)||p(z))− Eqϕ(z|x)[log pθ(x|z)]
(1)

This loss function is composed of two terms. The first
penalizes the Kullback-Leibler divergence (DKL(· || ·)) be-
tween the latent space distribution qϕ(z|x) and a prior, cho-
sen as the isotropic unit GaussianN (0, I). The second max-
imizes the marginal likelihood of the original data given this
latent space representation. This latter term acts as a recon-
struction loss, which penalizes differences between the re-
constructed output, and the original input. This is typically
calculated in practice using the mean squared difference.
Meanwhile, the KL divergence term regularizes the latent
space to promote a continuous representation of the under-
lying input data.

One key contribution of the VAE is its ability to construct
disentangled latent spaces, where different latent variables
encode semantically distinct features of the data. This is
particularly true in the β-VAE variant, where the two loss
terms are differently weighted, with more prominence given
to the KL divergence term [4, 8].

The β-TCVAE operates in a similar vein [5]. Here, each
data sample is indexed by a uniform random variable n.
Hence, the expected value of the KL divergence term over
the dataset can be separated into three components:

Ep(n)[DKL(q(z|x) || p(z))] =

DKL(q(z, n)||q(z)p(n)) + DKL(q(z)||
∏
j

q(zj))+∑
j

DKL(q(zj)||p(zj)),

where j represents the latent dimension. We can inter-
pret the first two terms as mutual information (MI) terms,
and weight the three terms differently using the coefficients
α, β and γ [5]:

Ep(n)[DKL(q(z|x) || p(z))] =

αIq(z;n) + βCq(z1, z2, ..., zL) + γ
∑
j

DKL(q(zj)||p(zj)),

where L is the dimension of the latent space. The first
term Iq(z;n) measures the mutual information between the
choice of dataset index n and the corresponding latent vec-
tor z, under the empirical data distribution q(z, n). Intu-
itively, a lower value of this ”index-code MI” might repre-
sent a higher clustering concentration within latent space of
samples throughout the dataset.

The second term Cq(z1, z2, ..., zL) represents a multi-
variate generalization of mutual information called the to-
tal correlation, applied over the latent dimensions. This es-
sentially indicates the shared information between latent di-
mensions. Penalizing this term (i.e., high β) would encour-
age disentangled representations, as information about the
value of one latent variable would provide little information
about the values of the rest [5].

Lastly, the third term measures the dimension-wise KL
divergence of the latent space distribution; this fulfils the
regularization objective.

For feature extraction, we used a convolutional β-
TCVAE. The encoder consisted of four convolutional lay-
ers, with 8, 16, 32 & 64 filters respectively, followed by a
fully-connected layer with 256 units, then the sampling lay-
ers, each with 32 units. The 32-dimensional latent space
representation is then projected back to image space using
a decoder network with the reverse architecture, using up-
sampling layers. The β-TCVAE was trained for 5 epochs,
using a batch size of 256 and a learning rate of 0.0005, with
the Adam optimizer. Flips and 90° rotations were used as
augmentation.

2.2. Cell state classification

For the Dense CNN we used four convolutional layers with
8, 16, 32 & 64 filters respectively. For the Dense Head,
we used four fully-connected layers with 32, 16, 16, 16 and
2 units respectively, with the latter layer providing the fi-
nal outputs. Scheme 1 & 2 models were trained using a
dropout rate of 0.3, while the Sparse Head was trained with
no dropout. The Sparse Head contained the same architec-
ture and initial connectivity as the Dense Head. These con-
figurations were chosen such that Scheme 1, 2 & 3 models

all contain a similar number of parameters (∼380,000 for
Scheme 1 and ∼316,000 for Schemes 2 & 3).

Models from Schemes 1, 2 & 3 were trained for 100
epochs, using a batch size of 64, with flips and 90° rotations
as augmentation. For Scheme 3, we used a dense-training
warm up period of Twarmup = 20 epochs.

2.3. Sparsity: RigL

As with other similar algorithms, RigL aims to find the op-
timal topology of non-zero weights, given some fixed, pre-
determined sparsity value S. It achieves this with iterative
cycles of pruning and re-growth, implemented every ∆T
training iterations (where ∆T is a hyperparameter). Be-
tween each cycle, the network uses gradient descent to find
the optimal weight values, as usual. At the beginning of
training, (1 − S) ×N l weights of each layer are randomly
deactivated, where N l represents the total number of con-
nection weights at layer l. When inactive, the connection
weights are set to zero and they do not update between train-
ing iterations. At every subsequent pruning step, the small-
est (1−S)×N l×α weights (in terms of weight magnitude)
are deactivated. Then, at every re-growth step, the same
number of weights is chosen for re-growth, this time based
on the magnitude of their associated loss gradient. Hence,
the top (1−S)×N l×α inactive weights, based on gradient
magnitude, are re-grown, with their initial weight value set
to zero.

This way, the sparsity value of S is maintained through-
out training, with each layer possessing S × N l active
weights at all times. Hence, RigL belongs to the class of
pruning techniques that does not redistribute sparsities be-
tween layers during training. S, ∆T , and the update frac-
tion α are all hyper-parameters to be chosen prior to train-
ing.

Following Evci et al. [7], we specify a network-wide
value for S but allocate to different layers l a separate spar-
sity value sl. We use the Erdős-Rényi scheme [12], in which
the layer-specific sparsities scale according to 1− nl+nl+1

nl×nl+1 ,
where nl is the number of input neurons at layer l. The ac-
tual values for sl are chosen such that S =

∑
l s

lN l

N , where
N is the total number of connections in the network. There-
fore, the number of inactive connections in each layer is not
S ×N l but sl ×N l.

We also attenuate the update fraction α as training pro-
gresses, using a cosine annealing schedule as the decay
function:

fdecay(t;α, Tend) =
α

2

(
1 + cos

(
tπ

Tend

))
[6]. (2)

With RigL, it has been reported that the annealled schedule
slightly outperforms a schedule of constant α [7]. The use
of this schedule adds an additional hyper-parameter Tend,
after which the weight topology does not update.

In our study, we adapt RigL by adding two modifications.
Firstly, rather than randomly pruning (1−S)×N l weights
at the beginning of training, we train the model as a dense
network for a pre-specified ”warm up” period Twarmup. We
observed that this method delivered superior performance
results and identified a consistent set of relevant inputs be-
tween training runs, benefits we did not observe when ran-
domly pruning at the beginning. We hypothesize that prior
dense training allows for the development of useful connec-
tion paths, which are then reinforced and retained when the
first pruning step is implemented after Twarmup.

Secondly, we implement two post-training pruning steps
that eliminating the following types of connection weight:
1. Leaf weight: Connections that feed into a non-output-

layer neuron that has no output connections. These con-
nections do not contribute to the output layer at all.

2. Bias weight: Connections that emerge from a non-input-
layer neuron that has no input connections. These are
called ”bias weights” because at each forward pass, they
simply add a fixed value to their target neuron, which is
the product of the source neuron’s bias and the connec-
tion weight value. These ”bias weights” can be removed
and compensated by adjusting the bias of the target neu-
ron1.

The criteria are implemented in this order. This post-
training procedure does not affect the operation of the
model at all, but it removes superfluous connection weights,
allowing for a more useful assessment of model sparsity. To
allow for the innocuous removal of bias weights, we do not
use batch normalization when training sparse networks.

2.3.1 Hyper-parameter tuning

As described in Sec. 2.3, RigL operates using a small set of
hyper-parameters: the sparsity value S (which is the frac-
tion of weights set to zero), update fraction α and update
interval ∆T , as well as the end-step Tend for the update
fraction decay schedule. Hyper-parameter search was con-
ducted on three of these four values - all except Tend, which
was set to Tend = 0.75.

For this, we used the OPTUNA [1] package, a Python
interface that access several optimization algorithms, in-
cluding grid search and random search, as well as Bayesian
methods such as the tree parzen estimator [2]. We ran the
OPTUNA search for 200 trials, with each trial querying a
unique hyper-parameter configuration. Each trial consisted
of five runs, each being run for a reduced duration of 40
epochs. The value ranges we provided reflect our experi-
ence from prior experiments: 0.95-0.97 for S, 100-200 iter-
ations for ∆T and 0.7-0.9 for α. However, in principle, op-

1We did not use layer or batch normalization to train our sparse net-
works. If this had been used, the extra parameters would have to have been
considered when adjusting the bias of the target neuron.

Algorithm 1 Modified RigL

Input: Network fΘ, dataset D, learning rate η ▷ Θ = un-pruned weights
Sparsity distribution: S = {s1, ..., sL}
Update schedule: ∆T , Tend, α, fdecay

for each training step t do
Sample a batch Bt ∼ D
Lt =

∑
i∈Bt
L(fθ(xi), yi) ▷ L is the loss function

if t < Twarmup then
Θ = Θ− η∇ΘLt ▷ Update dense weights

else
if (t− Twarmup)(mod ∆T) == 0 and (t− Twarmup) < Tend then

for each layer l do
k = fdecay(t− Twarmup;α, Tend)(1− sl)N l ▷ No. to update
Iactive = ArgTopK(|θl|, (1− sl)N l − k) ▷ Connections to keep
Igrow = ArgTopKi/∈Iactive

(|∇ΘlLt|, k) ▷ Connections to grow
θ ← Θ connections included in Iactive ∪ Igrow ▷ Update topology

end for
else

θ = θ − η∇θLt ▷ Update sparse weights
end if

end if
end for
θ ← Prune leaf and bias weights

timization algorithms such as OPTUNA can output sensible
hyper-parameter values in the absence of any prior knowl-
edge (e.g., by setting the range of S to 0.0-1.0). For our
objective function, we used the sum of the validation accu-
racy and the final sparsity (after the post-training pruning
steps), with each of these being averaged over the five runs
associated with each trial. Hence, the goal is both to max-
imize classification performance and minimize the number
of active weights in the final model.

While this hyper-parameter search was done in order to
generally optimize classification performance, the search
for an optimal S has particular significance, for it represents
the maximum sparsity appropriate to a particular task. This
reflects both the complexity of the inputs required and the
complexity of the target function itself. Hence, our objec-
tive function - the sum of the accuracy and the final sparsity
- reflects the principle of Occam’s razor.

The values yielded were S = 0.951, ∆T = 115 and
α = 0.758.

2.4. PySR implementation

We configured our regression models such that they could
choose between four binary operators (+,×,− and ÷) and
six unary operators (x2, ex, log(x), sin(x),

√
x and |x|) in

the expression trees. We penalized all operators, constants
and variables in the tree with a complexity score of 1, except
for the sin(x) (score of 3), ex (score of 2) and log(x) (score
of 2) functions. We used a parsimony value of 0.001 to scale

the complexity score in the overall loss function, and we set
20 as a hard limit on the complexity of our expressions.

3. Neighborhood features
Latent-space traversals for neighborhood and positional fea-
tures are shown in Fig. 1.

4. Sparse model topologies
Topologies for all ten Scheme 3 models are shown in Fig. 2.

���� ��� ����
	
�
�

��

���� ��� ����
	
�
�

��

���� ��� ����
	
�
�

��

���� ��� ����
	
�
�

��

(a) Some latent variables that encode neighborhood features.

���� ��� ����
	
�
�

��

���� ��� ����
	
�
�

���

(b) Latent variables that encode central cell position: z8 (x-position) & z30 (y-position)

Figure 1. Latent variables that encode neighborhood features and central cell position.

Figure 2. Scheme 3 model topologies. Blue connections are positively weighted, red connections are negatively weighted. The thickness
of the connection line is proportional to its weight magnitude. The network flow is up to down, so the top layer is the input layer and the
bottom layer is the output layer.

5. Calculation of head expression size
The goal here is to transform a neural network into a sym-
bolic expression. When a neuron at layer i accepts inputs x
from connected neurons m at layer i−1, the output y of the
neuron will be:

y = f

(
b+

∑
m

xmwmn

)
, (3)

where f is the activation function and wm is the weight con-
necting neuron m at layer i−1 to the present neuron at layer
i. We use the activation function Mish [11], which can be
written as

f(x) = x · tanh(log(1 + ex)). (4)

The expression tree representation of this function is shown
in Fig. 3a. The expression inside f(·) in Eq. Eq. (3) can
likewise be represented by the tree shown in Fig. 3b.

It is possible to see that for any given number of source
neurons M , the expression size of the tree in Fig. 3b is
4M +1. Therefore, when one substitutes the tree in Fig. 3b
for each x term in the Mish tree in Fig. 3a, one can calcu-
late the total expression size as 8(M +1). Therefore, a pair
of consecutive layers fully connected to each other, with M
and N numbers of neurons respectively, can be represented
by an expression tree with size 8N(M + 1). This is in the
absence of normalization.

For all our classification heads, no activation was used in
the final layer; therefore, for this layer, the expression size is
simply N(4M+1). For Scheme 2 models with I layers and
layer-wise neuron counts n1, n2, ..., nI , the total expression
size E is therefore

E = nI(4nI−1 + 1) +

I−2∑
i=1

8ni+1(ni + 1). (5)

For Scheme 1 models, this calculation is complicated by
the fact that batch normalization [9] is used. Batch normal-
ization reduces internal covariate shift by normalizing layer-
wise inputs according to the batch-wide mean and variance.
The output y of this normalization is

y =
x− E[x]√
Var[x] + ϵ

· γ + β, (6)

where E[x] and Var[x] represent the batch-wise mean and
variance respectively, ϵ is a small numerical stabilizer and
γ and β are trainable parameters to scale and shift the fi-
nal output. This is done on a per-neuron basis, and before
any activation. Furthermore, the mean and variance terms
are calculated during training, but for our models, they are
frozen during evaluation, so they do not involve any calcu-
lation during the forward pass.

𝑥 tanh

log

+

1 exp

𝑥

×

(a) Mish activation function.

+

𝑏+

×

𝑥! 𝑤!

+...

+

×

𝑥!"# 𝑤!"#𝑥" 𝑤"

×

(b) Addition of neuron bias and input terms.

Figure 3. Expression trees. M is the total number of source neu-
rons.

The expression tree for batch normalization is shown in
Fig. 4. The size of this tree is 12, therefore the size of the
input to activation is 4M + 12, so the total expression size
of the neuron is 8M + 30. The total expression size for
the feed-forward network, again omitting normalization and
activation from the final layer, is then

E = nI(4nI−1 + 1) +

I−2∑
i=1

ni+1(8ni + 30). (7)

Finally, for Scheme 3 models, the expression size can
be calculated by summing 8Mj + 1 (or 4Mj + 1 for the
final layer) over the target neurons with active connections,
where Mj is the number of source neurons connected to

+

𝛽

÷ 𝛾

×

− sqrt

𝑥 E[𝑥] +

𝜖Var[𝑥]

Figure 4. Expression tree for batch normalization.

each target neuron j. More precisely, for layers i with layer-
wise active neuron count Ji, the whole network expression
size is

E =

 JI∑
j=1

4Mj + 1

+

I−1∑
i=1

Ji∑
j=1

8Mj + 1

 . (8)

6. Symbolic expressions obtained
We assessed two strategies for choosing the loss function
and target output values:
1. Hinge loss: Our target values y′ are the ground-truth la-

bels of the cell states, expressed as−1 (for interphase) or
+1 (for metaphase). Our loss function is the hinge loss
[13], widely used in support vector machines, which is
defined as:

L(y, y′) = max(0, 1− y′y). (9)

Hence, y is encouraged to share the same sign with y′.
In this strategy, the neural network outputs are not used;
however, we still use only the four latent variables iden-
tified as relevant by our Scheme 3 models.

2. MSE loss: Our target values y′ are the outputs of a neu-
ral network - in this case, we use our Scheme 3 models.
Our loss function is mean-squared error:

L(y, y′) = (y′ − y)2. (10)

Hence, our symbolic expressions are encouraged to ad-
here as closely as possible to the function learnt by the
neural network.
Tabs. 1 and 2 show the expressions obtained for each.

7. Adversarial attack results
Shown are image-based attacks (Fig. 5) and latent-based at-
tacks (Fig. 6).

0

2

(a) Attacks by Scheme 1 models.

0

2

(b) Attacks by Scheme 2 models.

0

2

(c) Attacks by Scheme 3 models.

0

2

(d) Attacks by Scheme 4 models.

Figure 5. Image-based attacks at ϵ = 0.5. Exp. H1 was used for
(c).

No. Expression Expression size Accuracy

1 z29(z
2
17 + z221)− ee

z3 11 97.6%

2 0.83(z29 − 1.37z3 − |z3|)(z217 + z221 − 0.19)− 1.74 20 97.8%

3 (z29 − z3)(|z17|+ z221)− 2.88 11 97.4%

4 0.74(z29 − 0.62z3)(z
2
17 + z221)− 2.11 15 97.5%

5 (z217 + z221)(z29 − sin(z3))− 2.86 12 97.3%

6 0.74(z217 + z221)(z29 − sin(z3 + 0.18))− 1.99 16 97.4%

7 0.71(z217 + z221)(z29 − z3

1.4
√

|z3|
)− 2.11 19 97.6%

8 (z217 + z221)(z29 − ez3 + 0.71)− 2.03 14 97.4%

9 0.70(z217 + z221)(z29 − z3
z2
3+0.66

)− 2.11 19 97.5%

10 (z29 − 0.44z3)(z
2
17 + z221)− 2.56 13 97.4%

Table 1. Hinge loss models. Symbolic expression, testing accuracy and complexity across ten Scheme 4 models trained using hinge loss.
”Expression size” is the number of nodes in the expression tree. It differs from ”complexity” since the latter is calculated in accordance
with the additional penalty placed on sin(x), ex & log(x).

No. Expression Expression size Accuracy

1 2.32|z17|+ z221 + 4.46z29 − 3.16(0.56z3 + 1)2 − 6.15 18 97.4%

2 z221 + 4.22(
√
|z17|+ sin(z29)− sinz3))− 10.54 16 96.9%

3 z217 + z221 + z29 − 6.00esin(z3) 13 97.0%

4 z217 + z221 + z29 − z23 − 8.20(0.35z3 + 1)2 + 2.13 17 96.9%

5 2|z17|+ z221 + 3.72z29 − 3.72(0.52z3 + 1)2 − 4.94 18 97.3%

6 3.79z29 − |z217 + z221 − 3.93(0.50x3 + 1)2 − 5.49|+ 1.45 19 97.0%

7 z217 + z221 + (z3 + 3.99)(z29 − z3)− 6.85 15 97.4%

8 z217 + (|z21| − z3 + 2.55)(esin(z29))− 10.00 15 97.0%

9 z217 + z221 + 4.32(sin(z29)− sin(z3))− 8.77 18 97.1%

10 (z17 − 0.25)2 + z221 + 3.76z29 − 3.16ez3 − 3.53 18 97.1%

Table 2. MSE loss models. Symbolic expression, testing accuracy and complexity across ten Scheme 4 models trained using MSE loss.

8. Failure modes

One significant benefit of interpretability is that it allows
us to understand how and why our models fail when faced
with out-of-distribution (OOD) data. Such situations can
occur when the data input system produces erroneous out-
puts, or when the training data insufficiently represents the
full range of possible inputs. One common example in auto-
mated microscopy is the collection of blank images, where
all the pixels are zero-valued. This occurrence can arise
from asynchrony between LED illumination and camera

capture during experimental data collection.

Blank images are not part of the training dataset of the β-
TCVAE, therefore we would expect their reconstructions to
be poor (Fig. 7). However, we are also interested in study-
ing the output of our classification models when applied on
them. All ten of our sparse models and all four of the sym-
bolic expressions we analyzed classified these blank images
as interphase. A cursory glance at the latent space encoding
of the blank image reveals why (Fig. 8). In the eccentricity
sub-space (consisting of variables z17 & z21). In the size
sub-space (z3 & z29), the value of z29 is negative; however,

0

1

2

(a) Attacks by Scheme 2 models.

0

2

(b) Attacks by Scheme 3 models.

0

2

(c) Attacks by Scheme 4 models.

Figure 6. Latent-based attacks at ϵ = 1.0. Exp. H1 was used for
(c).

the value of z3 is even lower. With these statements, it is
possible to rationalize how we would obtain a negatively-
valued output from our symbolic expressions, as well as the
one sparse network we analyzed.

Therefore, even though this point in latent space does
not encode any sensible cell image, it is possible to iden-
tify characteristics that explain the interphase classifications
produced by our models. The only un-interpretable aspect
of this classification is in the latent space encoding itself;
since our β-TCVAE is un-interpretable with respect to OOD
inputs, we can only speculate why the blank image was en-
coded to this specific point in the latent space. Neverthe-
less, the interpretability of our downstream models allow us
to explain why they produce interphase classifications given
this particular failure mode. We suggest that similar anal-
yses could be used to study other failure modes in a wide
range of contexts.

References
[1] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru

Ohta, and Masanori Koyama. Optuna: A Next-
generation Hyperparameter Optimization Framework, 2019.
arXiv:1907.10902 [cs, stat]. 2

[2] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs
Kégl. Algorithms for Hyper-Parameter Optimization. In
Advances in Neural Information Processing Systems. Curran
Associates, Inc., 2011. 2

[3] Anna Bove, Daniel Gradeci, Yasuyuki Fujita, Shiladitya
Banerjee, Guillaume Charras, and Alan R. Lowe. Local cel-
lular neighborhood controls proliferation in cell competition.
Molecular Biology of the Cell, 28(23):3215–3228, 2017. 1

[4] Christopher P. Burgess, Irina Higgins, Arka Pal, Loic
Matthey, Nick Watters, Guillaume Desjardins, and Alexan-
der Lerchner. Understanding disentangling in β-VAE,
2018. arXiv:1804.03599 [cs, stat]. 1

[5] Ricky T. Q. Chen, Xuechen Li, Roger Grosse, and David Du-
venaud. Isolating Sources of Disentanglement in Variational
Autoencoders, 2019. arXiv:1802.04942 [cs, stat]. 1

[6] Tim Dettmers and Luke Zettlemoyer. Sparse Networks from
Scratch: Faster Training without Losing Performance, 2019.
arXiv:1907.04840 [cs, stat]. 2

[7] Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro,
and Erich Elsen. Rigging the Lottery: Making All Tickets
Winners, 2019. 2

[8] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess,
Xavier Glorot, Matthew Botvinick, Shakir Mohamed, and
Alexander Lerchner. beta-VAE: Learning Basic Visual Con-
cepts with a Constrained Variational Framework. 2016. 1

[9] Sergey Ioffe and Christian Szegedy. Batch Normalization:
Accelerating Deep Network Training by Reducing Internal
Covariate Shift, 2015. arXiv:1502.03167 [cs]. 6

[10] Diederik P. Kingma and Max Welling. Auto-Encoding Vari-
ational Bayes, 2022. arXiv:1312.6114 [cs, stat]. 1

[11] Diganta Misra. Mish: A Self Regularized Non-Monotonic
Activation Function, 2020. arXiv:1908.08681 [cs, stat]. 6

[12] Decebal Constantin Mocanu, Elena Mocanu, Peter Stone,
Phuong H. Nguyen, Madeleine Gibescu, and Antonio Liotta.
Scalable training of artificial neural networks with adaptive

(a) Original.

(b) β-TCVAE reconstruction.

Figure 7. Blank image.

sparse connectivity inspired by network science. Nature
Communications, 9(1):2383, 2018. Number: 1 Publisher:
Nature Publishing Group. 2

[13] Lorenzo Rosasco, Ernesto De Vito, Andrea Caponnetto,
Michele Piana, and Alessandro Verri. Are loss functions all
the same? Neural Computation, 16(5):1063–1076, 2004. 7

[14] Christopher J. Soelistyo, Giulia Vallardi, Guillaume Char-
ras, and Alan R. Lowe. Learning biophysical determinants
of cell fate with deep neural networks. Nature Machine Intel-
ligence, 4(7):636–644, 2022. Number: 7 Publisher: Nature
Publishing Group. 1

[15] Kristina Ulicna, Giulia Vallardi, Guillaume Charras, and
Alan R. Lowe. Automated Deep Lineage Tree Analysis Us-
ing a Bayesian Single Cell Tracking Approach. Frontiers in
Computer Science, 3, 2021. 1

−2 0 2
z3

−3

−2

−1

0

1

2

3

z29

0

2

4

6

8

10

probability density

(a) Size sub-space

−2 0 2
z17

−3

−2

−1

0

1

2

3

z21

0.0

0.5

1.0

1.5

2.0

2.5

probability density

(b) Eccentricity sub-space

Figure 8. Blank image encoding. Gaussian distribution shown
reflects the mean and variance of the encoding.

	. Datasets
	. Extended methods
	. Total Correlation VAE
	. Cell state classification
	. Sparsity: RigL
	Hyper-parameter tuning

	. PySR implementation

	. Neighborhood features
	. Sparse model topologies
	. Calculation of head expression size
	. Symbolic expressions obtained
	. Adversarial attack results
	. Failure modes

