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Abstract 
 

Negative emotions have been identified as significant 
factors influencing driver behavior, easily leading to 
extremely serious traffic accidents. Hence, there is a 
pressing need to develop an automatic emotion 
classification method for driver health monitoring and 
road safety improvement. Most of the existing methods 
predominantly focus on single modalities, resulting in 
suboptimal classification performance due to the 
underutilization of heterogeneous information. In this work, 
we propose a novel non-contacting dual-modality driver 
emotion classification network (DECNet) to address these 
limitations. DECNet consists of three key modules: 1) 
facial video modality processing module; 2) driving 
behavior modality processing module; 3) fusion decision 
module. Meanwhile, we introduce a combined multi-task 
learning strategy within DECNet to improve the efficacy in 
the driver emotion classification task. To evaluate the 
effectiveness of the proposed DECNet, we conducted 
experiments on the PPB-Emo dataset, the experimental 
results showcase the superiority in terms of accuracy (≥ 
6.12% Acc-7) and F1-score (≥ 7.25% F1-7) compared to 
existing state-of-the art methods. The model and code will 
be available at https://github.com/fqfqngxhs/DECNet.git 

1. Introduction 
During vehicular operation, driver’s emotion is inevitably 
influenced by multiple factors (e.g., the surrounding 
environment, psychophysiological states, traffic conditions 
etc.), which may lead to risky driving behavior and even 
serious traffic accident especially when the significant 
emotional fluctuation occurs [1, 2, 3]. Timely and accurate 

recognition of emotional state is beneficial for the 
execution of healthcare and safety measures, as well as for 
the establishment of a congenial and structured driving 
ambiance within the framework of a smart city [37, 38]. 

Emotion classification technology typically monitors 
drivers' emotions by analyzing physiological signals such 
as facial expressions [9-13, 15-20], voice [14, 39], 
electrocardiography (ECG) [40, 41], 
electroencephalography (EEG) [4, 5], and 
electromyography (EMG) [42, 43] using various deep 
learning approaches. According to the signal acquisition 
methods, driver emotion classification technology can be 
roughly divided into two categories, i.e., the contact 
methods [4-8, 40-43] and non-contact methods [9-20, 39]. 
For the contact methods, drivers are always required to 
wear some contact sensors during driving. Although these 
methods may appear to perform well due to the accurate 
measurement, the process of signal acquisition can 
adversely affect driving behavior, particularly in 
emergency situations. 

Different with the contact methods, non-contact 
methods employ sensors that do not require physical 
contact (e.g., near-infrared cameras) to classify emotions, 
thereby minimizing impact on driving performance and 
fostering a safer, more comfortable driving environment. 
Xiao et al. [9] proposed a transfer learning model to realize 
emotion classification based on facial expressions. Du et al. 
[10] combined facial skin information with RGB 
component variations for driver emotion classification. In 
[11], a driver emotion classification method by fusing local 
binary patterns and facial features was proposed, which is 
able to address the problem of varying illumination 
conditions. Li et al. [12] proposed a driver emotion 
recognition model considering both facial expressions and 
cognitive process features for driver emotion classification. 
Mou et al. [13] proposed a multimodal fusion framework 
that incorporates a hybrid attention mechanism to fuse non-
invasive multimodal data from eyes, vehicles, and 
surrounding environment for driver emotion classification. 
A speech-based emotion classification network was 
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proposed [14], leveraging both global acoustic and local 
spectrogram features for accurate emotion detection. Meng 
et al. [15] developed Emotion-FAN, a hybrid network 
combining deep Convolutional Neural Networks (CNN) 
with frame attention for emotion classification. Similarly, 
Zhao et al. [16] proposed a dynamic facial expression 
recognition method (Former-DFER) that can address the 
occlusion and non-frontal poses issues during driving. In 
[17], a clip-ware emotion-rich feature learning network 
(CEFLNET) for robust video-based facial emotion 
expression classification was proposed. A dynamic facial 
expression classification network using intensity-aware 
loss (IAL) was developed [18], which can address the 
problem of large intra-class and small inter-class 
differences. In [19], a self-supervised facial video masked 
autoencoder (MARLIN) was proposed for accurate facial 
expression recognition, learning universal facial 
representations from non-annotated videos. Wang et al. [20] 
created a multi-3D dynamic facial expression learning 
network (M3DFEL) to address inexact labeling issues and 
enhance driver emotion classification accuracy. 

Non-contact driver emotion classification methods are 
safer and more comfortable. However, they still suffer 
from two main limitations. Specifically, (1) Most of 

existing driver emotion classification methods rely on 
single modality (e.g., facial video). Some related modality 
data (e.g., driving behavior modality) and coupling relation 
between different modalities have not been fully explored; 
(2) The feature extraction in existing emotion classification 
methods is more suitable for single-modality data, how to 
supervise feature extraction from different modalities is a 
critical problem.  

Based on this, a dual-modality non-contact driver 
emotion classification network (DECNet) is proposed in 
this work, which aims to deal with the two outlined 
research gaps in the field of driver emotion classification. 
The main contributions are three-folds: (1) Different with 
the most of exiting driver emotion classification methods, 
a dual-modality driver emotion classification network 
based on facial video and driver behavior (i.e., DECNet) is 
proposed, enabling efficient utilization of heterogeneous 
information to improve the classification performance. (2) 
Compared with single-task learning strategy, a multi-task 
learning strategy with combined loss function is designed, 
which is beneficial to supervise feature extraction from 
different modalities. (3) A series of comparative 
experiments and analysis (including ablation analysis and 
effectiveness analysis) are carried out. The experimental 
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Figure. 1. Overview of the proposed DECNet 
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results demonstrate that the proposed DECNet has 
advantages in terms of classification accuracy and F1-score. 

2. Method 
The overview of the proposed DECNet is depicted in Fig. 
1. It consists of three main modules, i.e., the facial video 
modality processing module (Sec. 2.1), the driving 
behavior modality processing module (Sec. 2.2), and the 
fusion decision module (Sec. 2.3). The corresponding dual-
modality input signals injected to the DECNet include the 
video signals (i.e., facial videos) and driving behavior 
signals (i.e., steering wheel position, gas pedal position, 
brake pedal force, forward direction acceleration, lateral 
acceleration, forward direction velocity, lateral velocity, 
and vertical velocity). The output of the DECNet is the 
discrete emotion classification result. Fig. 1 illustrates the 
signal acquisition devices (e.g., near-infrared camera, the 
position sensor, the acceleration sensor, etc.) and the 
corresponding signal examples for DECNet. Notably, 
different with the contact sensors, these non-contact 
devices have almost no effect on driving performance, 
beneficial to develop a safe and comfortable driving 
environment. 

2.1. Facial Video Modality Processing Module 
In facial video modality processing module, each input 
video sample is converted into a 16-frame facial image 
sequence with the size of 112×112, denoted as 
XFVℝ163112112. For each frame of the facial image, 
features are initially extracted using a two-dimensional 
convolutional layer followed by three residual 
convolutional blocks. The feature map is denoted as 
MℝCHW, where C, H´, and W´ represent the channel 
number, height, and width of the feature map, respectively. 
Subsequently, the feature map is flattened into a one-
dimensional sequence denoted as MfℝQC, where 
Q=H∙W. The spatial transformer comprises spatial 
positional embedding and S-layer spatial encoders. In the 
spatial positional embedding process, the spatial positions 
are encoded by: 

 0    1, 2, ,f
p p pz m e p Q= +               (1) 

where mf 
p and ep are visual word embedding and learnable 

position embedding, respectively.  
The encoded result z0 

p  is then fed into the S-layer spatial 
encoders. In the l-th layer of the spatial encoder, the self-
attention computation can be achieved by: 

( , ) ( , ) 1( )l k l k l
p Q pq W LN z −=                        (2) 
( , ) ( , ) 1( )l k l k l
p K pk W LN z −=                         (3) 

( , ) ( , ) 1( )l k l k l
p V pv W LN z −=                       (4) 

where q(l,k) 
p , k(l,k) 

p , and v(l,k) 
p  denote the query, key, and value 

vectors. LN(·) represents the layer normalization. W(l,k) 
Q , W

(l,k) 
K , and W(l,k) 

V  are all weight matrices for the k-th head in the 
l-th layer, where k1, ‧‧‧, K, and K=8 denotes the total 
number of attention heads. For the k-th attention head, the 
self-attention weight λ(l,k) 

p  is calculated by: 
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where C' represents the latent dimensionality of each 
attention head.  

Then, the output of the l-layer spatial encoder zl 
p can be 

obtained by: 
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where W represents the projection matrix, MLP(·) means 
the MLP mapping, and λ (l,k) 

p,p’  denotes the self-attention 
weight. 

The feature embedding x´tℝF for each frame is 
computed by: 

 ' ( ( ))  1, 2, 16tx GAP g Mr t=            (9) 

where MrℝCHW denotes the refined feature map, g(·) 
represents the convolution operation, and GAP(‧) denotes 
global average pooling.  

The temporal transformer module consists of temporal 
positional embedding and T-layer temporal encoder. The 
input for the temporal encoder can be expressed by:  

 0
' ' ''   ' 0,1, ,16t t tz x e t= +            (10) 

where et represents the learned temporal positional 
embedding.  

Notably, when t=0, the learnable vector x´0 represents 
the embedding of the class token.  

Within each temporal encoder, the calculation of query, 
key, and value vectors follows the same procedure as in the 
spatial encoder. The output zT 

0  of the class token from the 
terminal layer of the temporal encoder represents the facial 
video features. The emotion classification results ŷ1 can be 
yielded by.  

7
1 0ˆ ( )Ty FC z=                          (11) 

where FC(‧) denotes a fully connected network, 7 
represents the number of categories for facial expressions 

2.2. Driving Behavior Modality Processing 
Module 

Eight types of driving behavior data are selected, namely, 
steering wheel position, gas pedal position, brake pedal 
force, forward direction acceleration, lateral acceleration, 
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forward direction velocity, lateral velocity, and vertical 
velocity. The data is sampled at a frequency of 60 times per 
second, with each sample spanning a duration of 3 seconds. 
The input for the behavior modality can be represented as 
XDBℝ8180. The driving behavior modality processing 
module comprises two residual blocks, designed to 
mitigate the vanishing gradient problem. Each residual 
block contains three inception units. An average pooling 
layer is employed to average the output features across the 
temporal dimension. Within the inception unit, the initial 
component is the bottleneck layer, a one-dimensional 
convolutional layer with a kernel size of 1 and a stride of 1, 
aiming at reducing the number of feature channels to 
improve computational efficiency. The subsequent 
component is one-dimensional convolution with different 
kernel sizes (i.e., 39, 19, and 9) and strides (i.e., 19, 9, and 
4) applied to the same input, enabling the capture of 
features across different spatial extents. 

To mitigate the model’s sensitivity to minor noise, a 
parallel Max-Pooling operation followed by a one-
dimensional convolution is applied in inception unit. The 
output features from each convolution are concatenated 
and processed through a BatchNorm layer. Then, the 
output of the BatchNorm layer is combined with the 
original input XDB and then subjected to an additional 
inception layer. After a global average pooling and a fully 
connected network, the classification results are yielded by: 

7
2 DBˆ ( )y FC F=                          (12) 

where FDB represents the features extracted from the 
driving behavior modality, and ŷ2 is the classification result 
associated with the driving behavior modality. 

2.3. Fusion Decision Module 
In fusion decision module, the features derived from both 
the facial video modality processing module and driving 
behavior modality processing module are merged through 
a concatenation unit. Then, the emotional classification 
result ŷ can be obtained by: 

ˆ ( )y FC F=                                  (13) 
14

0( , )S
dbF cat z F=                       (14) 

where cat(‧) denotes the concatenation operation, F 
represents the concatenated feature vector. 

2.4. Multi-task Learning Strategy 
During the training process, the dual-modality driver 
emotion classification task is decomposed into three 
subtasks. Specifically, the subtask 1 solely employs the 
features from the facial video modality; The subtask 2 
exclusively utilizes the features from the driving behavior 
modality; The subtask 3 integrates the features from both 
the facial video modality processing module and driving 

behavior modality processing module. The overall loss 
function for training of DECNet Loss can be obtained by: 

1 2 3Loss Loss Loss Loss  = + +              (15) 

1ˆ1 ( , )Loss CrossEntropyLoss y y=                (16) 

2ˆ2 ( , )Loss CrossEntropyLoss y y=                (17) 

3ˆ3 ( , )Loss CrossEntropyLoss y y=                (18) 
where y represents the target labels, CrossEntropyLoss(‧) 
denotes the cross-entropy loss function. Loss1, Loss2, 
Loss3 represent the loss functions for subtask 1, subtask 2, 
and subtask 3, respectively. Parameters α, β, γ represent the 
weight assignments for Loss1, Loss2, Loss3. 

3. Experiments 

3.1. Experimental Setup 
The proposed DECNet is trained and tested on a server 
equipped with dual NVIDIA GeForce RTX 4090 GPUs 
using the open-source PyTorch platform. The batch size 
was set to 128, and the learning rate was initially set to 0.01, 
with a reduction by a factor of 10 every 100 epochs. 
Training was terminated at the 300th epoch. The Stochastic 
Gradient Descent (SGD) optimizer, with a momentum of 
0.9 and weight decay of 0.0001, was utilized for parameter 
optimization. To enhance the robustness of the model, the 
random cropping and horizontal flipping operations were 
applied to facial video frames. Meanwhile, Gaussian 
random noise was introduced to the driving behavior data 
to more accurately mimic the real signal acquisition 
process in a driving environment. 

In this study, the driver emotions were categorized into 
seven classes, i.e., surprise, fear, disgust, happiness, 
sadness, anger, and neutral. The driver emotion 
classification accuracy (Acc-7), Macro F1 score (F1-7), 
averaged accuracy (Acc), and F1-score (F1) [26] were 
applied to evaluate the driver emotion classification 
performance. Meanwhile, considering the efficiency 
requirement of in-vehicle systems, the computational 
complexity [27] was also used as an evaluation metric.  

3.2. Dataset 
The PPB-Emo dataset [25] is currently the only publicly 
available multimodal dataset for driver emotion 
classification. It comprises physiological data, facial 
videos, and driving behavior data from 40 participants 
across 240 valid driving tasks. The samples for each 
emotion in the dataset are evenly distributed. For time-
series driving behavior data, the linear interpolation and 
normalization are conducted. For time-series driving 
behavior data, the linear interpolation and normalization 
are conducted. For near-infrared facial video, face 
alignment is performed to standardize the position of the 
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face. In the PPB-Emo dataset, the 5-fold cross-validation is 
employed to evaluate the proposed DECNet, in which one-
fold of the samples is used for testing, while the remaining 
samples are used for training. 

3.3. Model Hyperparameter Optimization 
We investigate the impact of hyperparameters on the 
classification performance, focusing on the effects of 
varying the depths of the spatial transformer, temporal 
transformer, and inception unit. The initial number of 
layers for spatial encoder, temporal encoder, and inception 
unit is set as 1, 1, 6 respectively. Three evaluation metrics 
including Acc-7, Macro F1, and computational complexity 
are collected in Tab. 1.  

Setting Metrics 

S T I Acc-7 
(%) 

F1-7 
(%) 

Complexity  
(GFLOPs) 

1 1 6 77.87 77.90 8.33 
3 1 6 79.00 79.18 9.15 
1 3 6 81.63 82.49 8.40 
3 3 6 80.37 80.56 9.23 
6 3 6 78.16 78.21 10.46 
3 6 6 80.67 80.70 9.33 
6 6 6 80.29 80.34 10.57 
1 3 3 77.58 77.53 10.53 
1 3 9 80.21 80.43 10.61 

Table 1. The impact hyperparameters on model performance 

The corresponding visualized results are demonstrated in 
Fig. 2. 

From Tab. 1 and Fig. 2, it is observed that when the 
number of layers for spatial encoder, temporal encoder, and 
inception unit is set to 1, 3, and 6, DECNet achieves 
optimal classification performance. 

80
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Figure 2. The impact of hyperparameters on classification performance 

3.4. Experimental Results 
In this part, a comparative analysis between the proposed 
DECNet and contemporary state-of-the-art models 

(including Emotion-FAN [15], Former-DFER [16], 
CogEmoNet [12], CEFLNET [17], IAL [18], MARLIN 

Method 
Surprise Fear Disgust Happiness Sadness Anger Neutral Average Complexity 

(GFLOPs) Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc-7 F1-7 

[15] 68.49 67.57 66.18 67.16 84.09 80.43 84.21 84.96 68.18 65.93 70.89 73.68 80.00 81.75 73.49 74.50 1.16 

[16] 61.19 63.08 56.25 53.33 70.83 74.73 81.58 80.00 71.62 69.74 61.54 63.16 84.72 85.31 69.94 69.91 10.49 

[12] 73.33 68.75 62.16 64.79 80.39 78.10 71.01 75.97 67.57 69.44 80.30 69.74 75.29 81.01 72.44 72.54 15.51 

[17] 46.03 44.27 38.55 40.25 70.97 65.67 59.78 68.75 64.00 64.43 68.00 56.67 85.19 87.62 60.13 61.09 25.53 

[18] 79.10 76.26 60.94 57.35 81.25 82.11 75.00 78.62 64.86 66.21 64.10 68.03 86.11 82.12 72.65 72.96 15.26 

[19] 75.00 66.18 59.46 68.75 82.35 73.04 78.26 71.05 60.81 62.94 62.12 62.60 70.59 78.43 69.10 68.84 101.85 

[20] 76.62 76.62 79.71 73.83 68.89 72.94 68.18 70.87 81.16 75.17 70.15 71.76 80.23 84.66 75.57 75.12 9.18 

Ours 79.45 79.45 86.76 77.63 88.64 87.64 82.46 83.93 77.27 79.53 74.68 79.19 88.57 89.21 81.84 82.37 8.40 

Note: Best results are highlighted as first, second, and third. 
Table 2. The comparative results of DECNet in the driver emotion classification against state-of-the-art methods 

 
Figure 3. The comparative results between  DECNet and state-of-the-art models 
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[19], M3DFEL [20]) is conducted on the PPB-Emo dataset. 
The corresponding results are summarized in Tab. 2, with 
corresponding visualizations displayed in Fig. 3. DECNet 
exhibits superior performance, securing top 2 positions in 
terms of accuracy, F1-score, and complexity. Specifically, 
for the driver emotion classification task, DECNet 
achieves the improvements on accuracy and F1-score in 
surprise, fear, disgust, and neutral emotion classification 
tasks over state-of-the-art methods. Meanwhile, the 
classification performance of happiness, sadness, and 
anger emotions also achieves the top two rankings, slightly 
outperforming other competitors. Notably, the average F1-
score and accuracy win the first place over currently 
advanced approaches.  

Fig. 4 illustrates the convergence curves of accuracy and 
loss on training and testing sets. Except for the M3DFEL 
model and the MARLIN model, the proposed DECNet 
outperforms other competitors on the training set. The 
M3DFEL model and the MARLIN model exhibit inferior 
performance on the testing set, and the proposed DECNet 
achieves the improvement over all the state-of-the-art 
methods on the testing set. The main reason for this may 
be the occurrence of overfitting in the M3DFEL and 
MARLIN models. The proposed DECNet model 
converges rapidly with a variable learning rate, confirming 
the efficacy of our learning rate adjustment strategy. 
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Figure 4: The convergence curves of accuracy and loss on training and 
testing sets. (a) Acc-7 in training phase (b) Loss in training phase (c) Acc-
7 in testing phase (d) Loss in testing phase 

3.5. Ablation Analysis 
To assess the significance of the facial video modality and 
the driving behavior modality, along with the efficacy of 
the multi-task learning strategy, the modality ablation 
experiment and multi-task learning ablation experiment are 
conducted in this part. 

Setting 
Surprise Fear Disgust Happiness Sadness Anger Neutral Average 

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc-7 F1-7 

Modality 
ablation 

FV 70.13 70.13 55.07 56.30 62.22 55.45 63.64 66.14 60.87 63.64 73.13 64.05 66.28 73.08 64.718 64.10 

DB 59.74 58.23 53.62 49.66 42.22 42.22 46.97 46.97 42.03 41.13 44.78 46.88 43.02 46.25 47.808 47.33 

FV+DB 79.45 79.45 86.76 77.63 88.64 87.64 82.46 83.93 77.27 79.53 74.68 79.19 88.57 89.21 81.837 82.37 

Multi-task 
ablation 

FV+DB 58.44 53.25 40.58 38.10 31.11 32.18 34.85 34.07 40.58 40.29 41.79 43.75 43.02 48.37 42.380 41.43 

FV+DB 79.45 79.45 86.76 77.63 88.64 87.64 82.46 83.93 77.27 79.53 74.68 79.19 88.57 89.21 81.84 82.37 

Note: FVfacial video modality; DBdriver behavior modality. 

Table 3. Experimental results of ablation analysis on driver emotion classification 

 
Figure 5. Confusion matrix. (a) Driver emotion classification with facial video modality. (b) Driver emotion classification with driving behavior modality. 
(c) Dual-modality driver emotion classification with single-task learning. (d) Dual-modality driver emotion classification with multi-task learning. 
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Modality Ablation 
In the modality ablation experiment, DECNet is 

performed under single modality (either facial video 
modality or driving behavior modality) and dual-modality 
(both facial video modality and driving behavior modality), 
respectively. The results for driver emotion classification 
are shown in Tab. 3.  

For driver emotion classification, the dual-modality 
configuration demonstrates a significant improvement in 
both accuracy and F1-score, compared to single modality 
setting. Specifically, the dual-modality setting exhibits a 
17.12% increase in Acc-7 and an 18.27% improvement in 
F1-7 compared to the facial video modality alone; It shows 
a 47.81% increase in Acc-7 and a 35.04% improvement in 
F1-7 compared to the driving behavior modality alone. The 
confusion matrix in Fig. 5(a) and (b) further illustrate that 
dual-modality setting achieves better classification results. 
This is attributed to the effective integration of data from 
both facial video modality and driving behavior modality, 
significantly improving the classification performance.  
Multi-task Learning Ablation 

In the multi-task learning ablation experiment, DECNet 
is performed with single-task learning strategy and multi-
task learning strategy, respectively. The corresponding 
experimental results are shown in Tab. 3. In driver emotion 
classification, DECNet with the multi-task learning 
strategy shows a significant improvement in   accuracy and 
F1-score compared to single-task learning strategy. 
Specifically, the multi-task learning strategy exhibits a 
39.46% increase in Acc-7 and a 40.94% improvement in 
F1-7 compared to the single-task learning strategy. 
Correspondingly, the confusion matrix in Fig. 5(c) and (d) 
further illustrate that the multi-task learning strategy 
achieves better classification results. This is attributed to 
the multi-task learning strategy can effectively supervise 
feature learning, significantly improving the classification 
performance. 

3.6. Effectiveness Analysis 
We examine the significance of core components within 
the facial video modality processing module, the driving 
behavior modality processing module, and the fusion 
decision module (including spatial transformer, temporal 
transformer, inception unit, and concatenation unit) in the 
proposed DECNet. To investigate the effectiveness of these 
core components in each module, a series of experiments 
are conducted. The detailed comparison results are 
summarized in Tab. 4. 
Evaluation of the Spatial Transformer 

To validate the effectiveness of the spatial transformer 
in extracting spatial features from facial video modality, 
the Convolutional Block Attention Module (CBAM) [29] 

is used to replace spatial transformer. After that, a 
discernible decline in classification performance (−3.55% 
Acc-7, −4.09% F1-7) can be observed. The main reason 
may be that the spatial transformer is able to guide DECNet 
to capture spatial features that are robust to occlusion and 
pose variations. Meanwhile, different with CBAM, the 
self-attention mechanism of spatial transformer facilitates 
the learning of correlations between facial features with 
long-range dependencies. 

Setting Acc-7 F1-7 
CBAM-T-I-C 78.29 78.28 
S-GRU-I-C 75.37 75.14 

S-BiLSTM-I-C 56.58 56.00 
S-T-Transformer-C 77.04 77.12 

S-T-GRU-C 75.16 74.88 
S-T-LSTM-C 74.32 74.58 

S-T-I-Cross Attention Fusion 78.29 78.52 
S-T-I-Transformer-based Fusion 73.70 73.09 

S-T-I-MISA Fusion 61.38 61.07 
The proposed: S-T-I-C 81.84 82.37 

Note: SSpatial Transformer. TTemporal Transformer. 
S3Inception Unit. S4Concatenation Unit. 

Table 4. Evaluation of core components in DECNet 

Evaluation of the Temporal Transformer 
To demonstrate the effectiveness of the temporal 

transformer in extracting temporal features from facial 
video modality, the Gated Recurrent Unit (GRU) [30] and 
Bidirectional Long Short-Term Memory (BiLSTM) [31] 
are used to replace temporal transformer. After that, an 
obvious reduction in classification performance (GRU: 
−6.47% Acc-7, −7.23% F1-7; BiLSTM: −25.26% Acc-7, 
−26.37% F1-7) can be observed. The reason may be that 
the temporal transformer can effectively learn contextual 
facial features from a temporal perspective. 
Evaluation of the Inception Unit 

To validate the effectiveness of the inception unit in 
capturing time-series features from driving behavior 
modality, GRU [30], Transformer [32], and LSTM [33] are 
used to replace the inception unit. The classification 
performance witnesses a significantly decrease (GRU: 
−6.47% Acc-7, −6.68% F1-7; Transformer: −4.80% Acc-
7, −5.25% F1-7; LSTM: −7.52% Acc-7, −7.79% F1-7). 
The main reason may be that the parallel convolutional 
blocks in the inception unit enable the learning of features 
across different receptive field sizes. 
Evaluation of Concatenation Unit 

Finally, the effectiveness of concatenation unit in 
integrating facial video and driving behavior modalities is 
investigated. Cross-modal attention fusion [34], MISA 
fusion [35], and transformer-based fusion [36], are 
employed to replace the concatenation unit. The 
experimental results demonstrate that there is a significant 
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reduction in classification performance (cross-modal 
attention fusion: −3.55% Acc-7, −3.85% F1-7; MISA 
fusion: −20.46% Acc-7, −21.30% F1-7; transformer-based 
fusion: −8.14% Acc-7, −9.28% F1-7). This decline may be 
attributed to the difficulty of exploring the correlation 
between facial video and driving behavior modalities using 
the self-attention mechanism. 

4. Conclusion 
This paper focuses on the investigation of a driver emotion 
classification network (i.e., DECNet). Specifically, 
DECNet comprises three modules: the facial video 
modality processing module, the driving behavior modality 
processing module, and the fusion decision module. The 
facial video modality processing module enables the 
extraction of high-level facial features from both spatial 
and temporal perspectives; Through the driving behavior 
modality processing module, time-series features from 
different-sized receptive fields can be captured well; The 
fusion decision module effectively integrates features from 
both modalities. Meanwhile, a multi-task learning strategy 
with combined loss function is developed to supervise the 
feature extraction across different modalities, yielding 
reliable driver emotion classification results. To 
demonstrate the superiority of DECNet, a series of 
comparative experiments and analysis (including ablation 
analysis and effectiveness analysis) are conducted with 
state-of-the-art methods on the PPB-Emo dataset. The 
results demonstrate that DECNet achieves the best 
classification performance, offering enhanced precision in 
driver health monitoring and driving safety in smart city. 
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