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Abstract

Remote photoplethysmography (rPPG) is a non-invasive
technique used to measure vital signs such as pulse rate.
As the heart beats, blood volume changes in the microvas-
culature of the skin cause alterations in the light absorp-
tion pattern. As rPPG signals can be captured using most
smartphone and tablet cameras, the integration of rPPG
technology has the potential to streamline the triaging pro-
cess within emergency department settings but also to be an
invaluable tool for continuous monitoring within the home
environment. This paper describes an approach for deriv-
ing pulse rate from rPPG tailored specifically towards pae-
diatric cases with higher pulse rates than adults, demon-
strating a root mean square error of 8.2 beats per minute
using frequency domain analysis. Further, this work details
the data collection methodology employed in a paediatric
emergency department, discussing the unique challenges of
the data collections process.

1. Introduction

Measuring vital signs is an important part in triaging chil-
dren in hospital settings, but is also an important compo-
nent of home health monitoring [12, 18]. Changes in vi-
tal signs can indicate a deterioration in health before other
symptoms appear in cases of infection [3, 17]. A commonly
used tool to track the vital signs in paediatrics is the Paedi-
atric Early Warning Score (PEWS), combining vital signs
into a single risk assessment score to monitor treatment ur-
gency [11]. Persistent unexplained tachycardia is used as
an early identifier of potential paediatric sepsis [13]. Sep-
sis, a systemic inflammatory response associated with in-

fection, contributes to 19% of deaths across the world, and
untreated infections can develop into sepsis quickly [5]. De-
veloping sepsis is more likely in children with pre-existing
conditions, and carries a mortality rate of nearly 50% in the
most vulnerable group [22].

Despite the importance of monitoring vital signs in pae-
diatric patients, it is not without challenges. Accurate mea-
surements can be time consuming and require expensive,
calibrated equipment as well as trained staff to use it. Addi-
tionally, paediatric patients can find the measuring process
painful or stressful, and stress itself leads to a change in
vital signs, affecting the reliability of the measurement.

To avoid stress in children when measuring their vi-
tal signs, a non-obtrusive, non-contact method can help
achieve more reliable vital sign measurements, especially
in the lower age range. In an effort to achieve cost-efficient
vital sign monitoring, research has been focused on photo-
plethysmography (PPG). PPG signals represent the changes
in blood volume in the skin by measuring changes in re-
flected light. PPG signals can be collected using a contact
sensor (such as a pulse oximeter), but these sensors could
still cause distress to paediatric patients.

Verkruysse et al. (2008) first demonstrated the feasibil-
ity of remote PPG (rPPG) to extract heart and respiration
rates using ambient light and consumer-grade cameras [20].
Since then, there has been a rapid expansion of research in
the use of cameras for remote patient monitoring, surveyed
recently by McDuff [9]. For example, rPPG was shown to
successfully compute pulse rate within 1.4bpm compared
to an automatic sphygmomanometer [7]. While the use of
consumer-grade cameras opens up a cost-effective monitor-
ing method for both clinical and home use, there remain
challenges. Remote PPG is sensitive to changes in ambient
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light, which affect signal quality, and to subject movement,
a particular issue in younger children [6, 8].

Remote technologies for pulse rate monitoring have a
wide range of applications in paediatric patients. rPPG
methods could open up home- and tele-monitoring via a
smart device, but also monitoring in NICU/PICU; contact-
less monitoring reduces infection risk and is also less dis-
tressing for the infants. Aarts et al studied the pulse rate in
19 infants in the NICU using a camera approximately 1 me-
ter away from the patient [1]. Although this method worked
well even in the relatively dim lighting, patient movement
was a problem for signal quality and accuracy [1]. Bal also
performed a study with rPPG signals from 2 healthy pa-
tients and 7 PICU patients captured using a laptop webcam
[2]. Both these studies show promise for rPPG as a vital
sign monitoring tool, but only use a small sample set.

In this paper, we describe the data collection process of
a large quantity of high quality facial videos for rPPG ex-
traction in a Paediatric Emergency Department (PED). We
discuss the challenges with collecting data and describe the
use of two different pulse rate algorithms on the recovered
signals: one based on time domain analysis already in use
for adult pulse rate recovery, and one based on frequency
domain analysis specifically designed to recover pulse rates
from noisier signals with a wider range of pulse rates.

2. Data collection

2.1. Collection method

Data collection took place in the PED at Sunderland Royal
Hospital. Children were recruited with ages ranging from
birth until their 18th birthday presenting to the PED and,
in the opinion of the treating clinical team, able to partici-
pate in the research study. Pre-set targets were in place to
ensure a spread across all age ranges and, where possible,
skin tones. There were no other clinical inclusion/exclusion
criteria ensuring that we achieved a broad range of health
states. This encompassed febrile and afebrile children,
along with those presenting with illnesses such as respira-
tory diseases and otherwise well children, for example those
with minor physical injuries. By including all paediatric
ages and multiple health states we were able to test vital
sign measurements over a wide range as well as providing
an opportunity to research classification algorithms able to
distinguish between ill and well children. The protocol for
data collection is described in detail in [10].

To extract rPPG signals, high quality (non-compressed)
videos were collected using a purpose-built data collection
app on an iPad 10 for a duration of 1 minute. Collecting the
video instead of a derived signal allows for post-processing
with different signal extraction techniques, which is needed
due to the uncertainty about the best rPPG signal extrac-
tion method to use for paediatric patients. While in pre-

Age (years) Number of patients Successful facial videos

0-5 126 116
5-11 110 203
11+ 110 220
All combined 346 539

Table 1. Overview of collected dataset.

vious adult studies a camera sampling rate of 30 frames
per second was used [23], we used the newer iPad 10 in
this study to enable data capturing at 60 frames per second.
This higher frame rate should help in recovering the higher
pulse rates often seen in children. Videos were recorded
on the data collection app, at the same time as vital signs
were collected from the patient. In most cases the pulse rate
was captured using a pulse oximeter, but a small subset of
patients had an ECG, with the aim to time align the ECG
recording to the rPPG waveform.

In an effort to overcome the problem of signal degrada-
tion associated with patient movement, we designed a game
within the data collection app to motivate them to keep still.
By keeping their face still, the young patient was rewarded
with a giraffe animation over their face. The longer they
could keep still in the same position, the more points they
were given, and milestones of points were rewarded with
an animation of confetti across the screen. A screenshot of
this game can be seen in Figure 1. The hospital room in
which data collection took place was well-lit with overhead
panel lighting. No additional bright lighting was used to
avoid distressing the patients. A well-lit environment is al-
ways important, but even more so when the screen is used
to display the animation shown in Figure 1 to avoid the light
changes causing noise in the signal.

2.2. Dataset overview

In total, we had 346 paediatric patients taking part. For
older participants, two facial videos per patient were
recorded. For younger patients, a combination of facial
videos and chest/back videos were taken. In this study
we only focused on pulse rate measurements from facial
videos, of which there were 539 in total. Signal extraction
was successful on 78% of these videos, with 4.6% contain-
ing signals from patients with skin tone 5 or 6 on the Fitz-
patrick scale. Sometimes a signal could not be detected due
to too much movement or talking in the video. In Table 1
an overview of the dataset is shown split by age, and Fig-
ure 2 shows an overview of the dataset used for pulse rate
analysis split by age and sex.

Some age categories were harder to recruit than others.
Teenagers were commonly unwilling to take part, because
they did not wish to take part in a clinical study while not
feeling well. Parents/guardians of toddlers often chose to
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Figure 1. Screenshot of the data collection app showing the giraffe
animation and confetti as a result of reaching a score milestone as
seen in the tracker on the bottom right of the screen. The top of the
screen also shows a count down to the end of the recording, using
a numerical count down as well as a moving progress bar.

Age Non-compliant Refusal Successful
(years) (%) (%) (%)

0-5 4.6 32.8 62.7
5-11 0.5 34.2 65.3
11+ 0 41.2 58.8
All combined 2.3 35.4 62.3

Table 2. Overview of recruitment percentages and reasons for not
taking part in different age categories. Patients were classed as
non-compliant if data collection was attempted, but unsuccessful,
and as a refusal if they (or their parents/guardian) did not wish to
take part in the research trial.

opt out because they did not feel sitting still for a minute
for the video was achievable, and some patients in this
age group had to be withdrawn for non-compliance. An
overview of the reasons not to participate and the recruit-
ment success rate in each of the age categories is shown in
Table 2.

Figure 2. Histogram of number of videos collected in each age
category split by sex.

2.3. Validation procedure

The performance of two different pulse rate algorithms will
be compared. The performance will be compared based on
the root mean square error (RMSE) from the ground truth,
as well as the method’s success rate in returning a result. In
addition to the overall performance in the full dataset, the
performance for different age categories will also be studied
separately.

3. Pulse rate extraction

In this section the two different algorithms for pulse rate
calculations are described. The first algorithm, time do-
main pulse decoding, has been used by Lifelight® in adult
populations [7, 19]. We developed the second algorithm,
frequency domain pulse decoding, specifically tailored to
the noisier signals from children as well as to the higher
pulse rates found in children. Before the pulse rate can be
extracted, the rPPG signal needs to be extracted from the
video. A face detection algorithm is used on each frame
of the 60 second long video to determine the average face
position as well as the stability of the face. The face detec-
tion algorithm from OpenCV extracts 68 facial landmarks
[15], which we use to calculate the location of different re-
gions of interest. The regions of interest only get calculated
once and remain fixed for the duration of the measurement.
In Figure 3 an example of the extracted facial landmarks is
shown with the two regions of interest that we use for pulse
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Figure 3. An example of the extracted facial landmarks from a
video. The two regions used for signal derivation are shown in
relation to the averaged facial landmarks.

rate calculation: the forehead and the mid-face region. The
mid-face region is drawn based on the position of the eyes
and width of the face, while the forehead region is based on
the position of the eyebrows. On top of these two smaller
regions, the signal is also collected from the full face. The
average red, green and blue values for each frame in these
regions is calculated and all 3600 data points (60 second
recording at 60fps) for each color channel are saved as the
time-domain rPPG signal for all three regions (the full face,
mid-face and forehead region).

3.1. Time domain pulse rate recovery

The Lifelight® algorithm, described in detail in [19],
uses the green channel for its pulse rate calculation. No
changes were made to this algorithm to assess the accu-
racy in the paediatric population. Before the time do-
main data is assessed, a bandpass filter is used to remove
both low-frequency disturbances from the signal (such as
breathing and movement) as well as high-frequency distur-
bance above 4Hz. This filtered signal is used to calculate a
smoothed first derivative [14]. Each peak in the first deriva-
tive corresponds with the fiducial point of a pulse, and the
number of peaks and the distance between the peaks can
be used to calculate the pulse rate. By calculating the dis-
tance between peaks, we can also detect when a specific
part of the signal contained noise instead of pulsatile infor-
mation. The difference between noise and a pulsatile signal
is determined by the time domain regularity of the intervals
between fiducial points. Unusually long or short intervals
are discarded when calculating the pulse rate, but when too
many unusual intervals are found, no pulse rate is returned

as the signal quality is deemed too low. To calculate the
pulse rate we use Equation 1,

pulse rate =
60

τ
, (1)

where τ is the mean of the realistic intervals between fidu-
cial points.

3.2. Frequency domain pulse rate recovery

Similar to the time domain pulse decoding algorithm, the
first step of spectrally decoding the pulse rate is signal
cleaning. However, instead of using bandpass filters, the
plane-orthogonal-to-skin (POS) method by W. Wang et al is
used [21]. This method is particularly effective in extracting
the pulsatile rPPG signal from facial videos. After combin-
ing the red, green and blue channels to extract the rPPG sig-
nal for both the forehead and the midface regions, the sig-
nal is used in a spectral power density calculation. For this
calculation we use Welch’s method, an algorithm designed
to balance the trade off between frequency-resolution and
noise robustness [16].

The first step of Welch’s method is to divide the signal
into overlapping segments, in our case 512 frames (roughly
8.5 seconds of data). Subsequently, windowing is applied
to each segment to reduce spectral leakage and the power
density spectrum of each segment is calculated. An average
of all calculated spectra from one video is created, and from
this average the peak frequency bin within the range of age
determined plausible heart rates (60-200 bpm) is selected as
the calculated pulse rate for the measurement. In Figure 4
an example of a calculated spectrum is shown as well as a
short segment of the POS rPPG signal that was used for the
input. The ground truth pulse rate for this example was 143
beats per minute, and while the pulsatile signal is not clearly
visible in the rPPG signal, it can be extracted from the av-
eraged spectral power density, which calculates a pulse rate
of 141 beats per minute.

4. Results
All successfully extracted facial signals are processed using
the two pulse rate algorithms described in the previous sec-
tion. The forehead region did not outperform the mid-face
region, so for further comparison between the two methods
the mid-face region is used for the frequency domain algo-
rithm. In the time domain algorithm only 68% of the signals
returned a result, while the frequency domain algorithms
shows a much higher success rate of 90%. This is in part
due to the use of POS in the frequency domain method, be-
cause POS is better than bandpass filters at separating rPPG
components from movement artifacts, but also in part due
to the time domain redundancy utilized by the Welch peri-
odogram to concentrate the peak energy at the mean pulse
rate. In Figure 5 scatter plots showing the calculated value
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Figure 4. A section of POS rPPG signal and the calculated av-
eraged spectral power density, showing a peak at 2.35 Hz corre-
sponding to a pulse rate of 141 beats per minute.

Age (years) Time domain Frequency domain
RMSE (bpm) RMSE (bpm)

0-5 27.5 15.4
5-11 13.7 7.5
11+ 8.7 5.4
All combined 14.6 8.2

Table 3. Calculated RMSE in beats per minute for both algorithms
separated by age category.

against the collected ground truth data are shown for both
algorithms on the same dataset. It can be seen that the cor-
relation is higher for the frequency domain method with an
r2 of 0.86 compared to an r2 of 0.53 for the time domain
method.

The RMSE for the frequency domain method is also bet-
ter. In Table 3 an overview of the RMSE is shown for the
different age categories as well as the full dataset. It can
be seen that the frequency domain method outperforms the
time domain method in all age categories, but also that ac-
curate pulse rate calculation in younger categories is more
challenging.

5. Conclusion

In this paper we described the data collection study to col-
lect rPPG signals from paediatric patients in the PED. We
collected two 60-second facial videos on 346 patients, and
were able to use 78% of these videos in our newly proposed
pulse rate recovery algorithm aimed at paediatric patients.
Remote monitoring of vital signs using smart devices is

Figure 5. Scatter plots of time domain algorithm (top) and fre-
quency domain algorithm in the mid-face region (bottom) results
against ground truth.

time efficient in a setting such as the PED, but also opens up
a path towards remote triaging as well as a tool for home-
monitoring in long-term conditions.

The frequency domain based pulse rate recovery algo-
rithm using POS rPPG signals was more accurate and more
successful in calculating pulse rates across all age cate-
gories. On all age ranges combined when comparing the
two datasets, the RMSE for the frequency domain based
pulse recovery was 8.2 beats per minute, while the time do-
main based algorithm achieved 14.6 beats per minute. The
performance for both algorithms was better in the older chil-
dren, due to the better signal quality but also due to the pos-
sible confusion of harmonics of breathing rate and pulse rate
in the younger, especially febrile, children.

Although initial results are promising, further work is
needed before the frequency domain based pulse recovery
algorithm can be deployed for clinical use. A more accurate
result could be achieved by using a finer FFT resolution,
which is currently limited to 2.5 beats per minute. Further
work is also required on improving the robustness of rPPG
signal extraction from the noisiest videos with movement
in the younger children, as well as a more in-depth analy-
sis into the different age categories. We may need to explore
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different settings for the Welch Method for different age cat-
egories to optimise both the success rate and the accuracy
for different ranges of pulse rate, or explore a combination
method where multiple algorithms are combined to reach
more confidence in the calculated pulse rate.

In addition to these changes for improving the pulse
rate extraction, for complete remote monitoring other vi-
tal signs, such as respiration rate and SpO2 also need to be
extracted from the signal.

While there are still challenges to be solved in using
rPPG signals for vital sign monitoring in paediatric pa-
tients, signal cleaning methods and vital sign extraction are
improving continuously. The growing attention to remote
monitoring for hospitalized (paediatric) patients and the in-
terest in applying these technologies to a broad range of
patients indicate the potential for future advancements in
this field. However, this study can be used to inform fu-
ture research designed to establish the safety and accuracy
of novel wireless monitoring devices in hospitalized pae-
diatric patients. Future investigations would benefit from
larger sample sizes, longer monitoring duration, inclusion
of clinical outcomes, and standardized reporting methods
[4].
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