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1. Metric details
We follow the approach outlined in [3] by using mean ab-
solute error (MAE), root mean square error (RMSE), mean
absolute percentage error (MAPE), and Pearson’s correla-
tion coefficient (r) as evaluation metrics for heart rate (HR).
The details of related equations are as follows.
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2. Ablation study
2.1. HRV and RF evaluation

The face is a complex structure that contains numerous
blood vessels, which play a crucial role in maintaining
the health and function of the skin and underlying tissues.
Fig. 1 is an overview of the distribution of blood vessels
in the face. The facial veins are located just beneath the
skin and drain blood from the surface of the face, running
throughout forehead, cheek, chin, eyebrow, and nose. The
alteration in light absorption resulting from blood flow is
crucially significant for rPPG measurements. Our novel ap-
proach, MAR-rPPG, is designed to capture these variations
and provide precise heart rate assessments.

Following the method [11], we evaluate the heart rate
variability (HRV) and respiratory frequency (RF) perfor-
mance of our proposed MAR-rPPG on the UBFC-rPPG
dataset. For HRV, we assess three attributes: the low fre-
quency (LF), high frequency (HF), and LF/HF ratio, and LF
and HF are determined using the interbeat intervals in the
low-frequency (0.04 to 0.15 Hz) and high-frequency (0.15
to 0.4 Hz) ranges of rPPG signals. To comprehensively re-
port the performance, we utilize three metrics: standard de-
viation (Std), RMSE, and Pearson’s correlation coefficient
r. We conduct a five-fold cross-validation experiment and
compare our approach with some famous methods, such as

Figure 1. The overview of superficial facial veins.

POS [8], CHROM [1], GREEN [7], CVD [5], rPPGNet [9],
Dual-Gan [4], Physformer [10], Gideon et al. [2], REA-
LFA [11]. We utilize the toolkit HeartPy [6] to calculate
HRV and RF.

As shown in Tab. 1, we can see that MAR-rPPG sur-
passes all traditional ones and many deep learning ones.
Besides, our approach offers improved accuracy in estimat-
ing RF and LF/HF ratio when compared to other advanced
methods. For LF and HF, PhysFormer and Dual-GAN show
better performance. This suggests that the proposed tech-
nique has the potential to excel not only in heart rate es-
timation tasks but also in predicting rPPG signals for RF
measurements and heart rate variability analysis.

2.2. Loss hyperparameter selection

As illustrated in Tab. 2, we can find that the hyperparameter
α and β are retain consistant and accurate rPPG estimation
on the PURE dataset, while only one parameter setting with
α = 0.1 and β = 0.9 cannot converge and no metric out-
puts. We select α = 0.3 and β = 0.5 for all experiments in
this paper.



Method RF HRV: LF HRV: HF HRV: LF/HF
Std↓ RMSE↓ r ↑ Std↓ RMSE↓ r ↑ Std↓ RMSE↓ r ↑ Std↓ RMSE↓ r ↑

POS [8] 0.109 0.107 0.087 0.171 0.169 0.479 0.171 0.169 0.479 0.405 0.399 0.518
CHROM [1] 0.086 0.089 0.102 0.243 0.240 0.159 0.243 0.240 0.159 0.655 0.645 0.266
GREEN [7] 0.087 0.086 0.111 0.186 0.186 0.280 0.186 0.186 0.280 0.361 0.365 0.492

CVD [5] 0.017 0.018 0.252 0.053 0.065 0.740 0.053 0.065 0.740 0.169 0.168 0.812
rPPGNet [9] 0.030 0.034 0.233 0.071 0.070 0.686 0.071 0.070 0.686 0.212 0.208 0.744
Dual-Gan [4] 0.010 0.010 0.395 0.034 0.035 0.891 0.034 0.035 0.891 0.131 0.136 0.881

Physformer [10] 0.009 0.009 0.413 0.030 0.032 0.895 0.030 0.032 0.895 0.126 0.130 0.893
Gideon et al. [2] 0.061 0.098 0.103 0.091 0.139 0.694 0.091 0.139 0.694 0.525 0.691 0.684
REA-LFA [11] 0.023 0.028 0.351 0.047 0.062 0.769 0.047 0.062 0.769 0.160 0.164 0.831

MAR-rPPG(Ours) 0.008 0.031 0.838 0.065 0.283 0.856 0.065 0.283 0.856 0.029 0.126 0.925

Table 1. Comparison of RF and HRV estimations on the UBFC-rPPG dataset. The best results are in bold. Std: standard deviation, RMSE:
Root Mean Square Error, r: Pearson correlation coefficient.

α β MAE ↓ RMSE↓ MAPE↓ r ↑
0.1 0.1 0.250 0.645 0.273 1.000
0.1 0.3 0.083 0.288 0.106 1.000
0.1 0.5 0.083 0.288 0.106 1.000
0.1 0.7 0.083 0.288 0.106 1.000
0.1 0.9 - - - -
0.3 0.1 0.166 0.408 0.267 1.000
0.3 0.3 0.250 0.865 0.324 0.999
0.3 0.5 0.083 0.288 0.106 1.00
0.3 0.7 0.333 0.706 0.440 0.999
0.3 0.9 0.083 0.288 0.106 1.000
0.5 0.1 0.083 0.288 0.106 1.000
0.5 0.3 0.083 0.288 0.106 1.000
0.5 0.5 0.083 0.288 0.106 1.000
0.5 0.7 0.083 0.288 0.106 1.000
0.5 0.9 0.083 0.288 0.106 1.000
0.7 0.1 0.166 0.577 0.166 1.000
0.7 0.3 0.083 0.288 0.106 1.000
0.7 0.5 0.083 0.288 0.159 1.000
0.7 0.7 0.083 0.288 0.106 1.000
0.7 0.9 0.083 0.288 0.106 1.000
0.9 0.1 0.166 0.577 0.166 1.000
0.9 0.3 0.083 0.288 0.106 1.000
0.9 0.5 0.166 0.577 0.166 1.000
0.9 0.7 0.083 0.288 0.106 1.000
0.9 0.9 0.083 0.288 0.106 1.000

Table 2. Ablation study for loss hyperparameter α and β. Our implementation is marked in shadow , ‘-’ indicates that the relavant
parameters cannot converge.
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