This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

CycleGANAS: Differentiable Neural Architecture Search for CycleGAN

Taegun An, Changhee Joo*
Korea University
Department of Computer Science and Engineering

{antaeqgun20, changhee}@korea.ac.kr

Abstract

We develop a Neural Architecture Search (NAS) frame-
work for CycleGAN that carries out unpaired image-to-
image translation task. Extending previous NAS techniques
for Generative Adversarial Networks (GANs) to CycleGAN
is not straightforward due to the task difference and greater
search space. We design architectures that consist of a stack
of simple ResNet-based cells and develop a search method
that effectively explore the large search space. We show that
our framework, called CycleGANAS, not only effectively
discovers high-performance architectures that either match
or surpass the performance of the original CycleGAN, but
also successfully addresses the data imbalance by individ-
ual architecture search for each translation direction. To
our best knowledge, it is the first NAS result for CycleGAN
and shed light on NAS for more complex structures. Our
code is at https.//github.com/antaegun20/CycleGANAS."

1. Introduction

Generative Adversarial Networks [7] (GANS) is a unsuper-
vised generative modeling for diverse and realistic data gen-
eration with a generator and discriminator trained in an ad-
versarial manner. It can deal with the domain with insuf-
ficient amounts of data or high labeling costs and also has
a great advantage over the domain where the generation of
diverse and high-quality data is critical. In consequence,
many variants and extensions of GANs have been proposed
for a variety of tasks such as conditional generation, style
transfer, machine translation, and anomaly detection.
CycleGAN is one of the powerful extensions of GANs
and was developed for the image-to-image translation with-
out image pairing [44]. Successfully removing the expen-
sive laboring cost of building paired datasets, CycleGAN
has been intensively applied to many translation applica-
tions, e.g., style transfer, medical diagnosis, voice conver-

"This work was supported by the ICT Creative Consilience program
through IITP grant funded by the Korea government (MSIT) (IITP-2024-
2020-0-01819, 100%).

sion, etc. However, CycleGAN requires thorough fine-
tuning of multiple neural networks, which has to consider
the task objectives and possible imbalances in the dataset.
Without the fine-tuning, it is likely to suffer from instability
as GANSs [21, 22]. This often becomes an obstacle when ap-
plying CycleGAN to new translation tasks [37] or designing
a versatile architecture suitable for multiple tasks.

As a result, for CycleGAN, it is common to have a man-
ual optimization process to tailor its architecture to specific
applications [8, 13, 18]. Such manual optimization is not
only very costly but also arbitrarily restricts the scope of
the architecture search.

To our best knowledge, there is no priori NAS work for
CycleGAN. However, there have been several interesting
NAS works for unconditional GANs including AGAN [33],
AutoGAN [6], and AdversarialNAS [4]. AGAN and Au-
toGAN adopted Reinforcement Learning (RL) to explore
architectures through trial-and-error. AdversarialNAS has
a more complex cell structure than the others, which mo-
tivates it to exploit the gradient-based approach introduced
in DARTS [20] to effectively search on a large search space
(103%). Although they are an effective NAS method for
GAN:S, their extension to CycleGAN is neither straightfor-
ward nor fruitful due to essential differences in the task and
structure. In general, an image-to-image translation task
is more complex than an unconditional image generation
task, and CycleGAN has twice as many neural networks
as GANSs. Further, unlike unconditional GANSs that can be
trained with any random inputs, CycleGAN work only with
inputs from finite unpaired datasets and thus should be more
sample efficient. The larger search space and the limited in-
puts are one of the key factors that differentiate the NAS
for CycleGAN and the NAS for GANs, and motivate us to
develop a novel NAS framework for CycleGAN.

In this paper, we propose CycleGANAS, a multi-
network architecture search framework for CycleGAN un-
der data imbalance. We design a simple cell inspired by the
design of residual cells and build the supernetworks of gen-
erators and discriminators of CycleGAN by stacking many
simple cells. Accounting for the task nature of CycleGAN

1655

https://github.com/antaegun20/CycleGANAS

and the required search efficiency, we optimized the archi-

tecture and neural network weights with CycleGAN objec-

tives simultaneously, which is different from the previous

NAS for GANs that takes an iterative bi-level optimization

method. Finally, during the search, we let the two genera-

tors have a different architecture, allowing them to be better
tailored to each subtask and dataset. Through the experi-
ments on various unpaired datasets, we show that Cycle-

GANAS searches for good architectures not only efficiently

but also in a stable manner, even under the data imbalance.

Our contributions can be summarized as follows.

* We develop CycleGANAS, a novel framework of multi-
network architecture search for CycleGAN under data
imbalance. We stack up many simple ResNet-based cells
and take the gradient-based approach along with single-
level joint optimization of neural network architecture
and weights. Our framework admits asymmetric archi-
tectures that take into account the data imbalance.

e We show the performance of CycleGANAS through
extensive experiments with various unpaired datasets.
We investigate the effect of CycleGAN architecture and
model size, demonstrating that manual balancing or naive
asymmetric models are not effective for data imbalance.
In contrast, we observe that CycleGANAS successfully
searches for good architectures in a stable manner and
achieve high performance under the data imbalance.

2. Related Works
2.1. Neural Architecture Search (NAS)

Neural architecture search (NAS) is a big branch of auto-
mated machine learning (Auto-ML) to search for the best
neural network design, taking into consideration the task
and dataset. NAS studies are commonly classified using
three criteria: the search space, search method, and eval-
uation method [3, 9]. Among these, the search method is
the key element for identifying various NAS algorithms. In
the following, we provide a concise overview of NAS al-
gorithms in the literature from the perspective of the search
method.

Several search methods have been developed for NAS
including RL, evolutionary algorithms (EA), differentiable
methods, and other optimization techniques. Since RL was
successfully adopted for NAS in [46], it has been exploited
to optimize many architectures including CNNs [1, 2, 26].
Although they outperform the handcrafted neural networks
in performance, they demand a significant amount of com-
putation. Although recent NAS frameworks with Bayesian
optimization (BO) [12, 29, 30, 35, 43] or evolutionary al-
gorithms (EA) [19, 25, 27] substantially reduce the com-
putation cost, their applications are still limited to a prob-
lem with small search space. Gradient-based NAS method,
first appeared in DARTS [20], enables NAS with a large

search space through continuous relaxation of architectures.
It has been reported that in certain problems, the architec-
ture converges to the optimal one under the gradient-based
NAS [16].

2.2. Generative Adversarial Networks (GANS)

Since the GANs framework has been developed for the
unconditional image generation via adversarial training of
generator and discriminator, the framework has been ex-
tended to many computer vision tasks including super-
resolution [34, 41], image inpainting [38], natural language
processing (NLP) [5, 39], etc.

CycleGAN is also an extension of the GANs framework
to the multi-network system for image-to-image translation
task. Pix2pix [10] is the first work that performs the trans-
lation task with two pairs of GANs and paired data. Cy-
cleGAN [44] and DiscoGAN [14] remove the requirement
of the dataset pairing by introducing the cycle-consistency
objective, and enable the translation with unpaired data.
The technique has been now widely used for medical image
translation [42], frame prediction [15], inter-domain trans-
lation [28], and multi-modal learning [45].

2.3. NAS for GANs

Since the success of NAS for convolutional neural networks
(CNNs), NAS for GANs has attracted much attention. As
in CNNs, RL-based search methods were adopted in NAS
for GANs [6, 33, 40], in which the architecture of GANs
is divided into a predetermined number of cells and opti-
mized through an LSTM agent. A common challenge of
these RL-based approaches is the computational complexity
to obtain Inception Score (IS) or Frechet inception distance
(FID) score, which is used as the reward feedback. Some
works introduce score predictors to mitigate the computa-
tion burden [36].

The most relevant to our work among previous
NAS frameworks for GANs is AdversarialNAS [4] that
adopts the gradient-based, differentiable architecture search
method. Using the adversarial loss, AdversarialNAS could
achieve state-of-the-art performance on a large search space
at the cost of 1 GPU day. However, the extension of Adver-
sarialNAS to CycleGAN is not straightforward, since it has
a large and complicated cell structure, which makes it hard
to scale, and its bi-level optimization is not sufficiently ef-
ficient for the task with a small amount of data, i.e., the
image-to-image translation task of CycleGAN [31].

While not directly related to NAS, there are a few stud-
ies that focus on compressing the architecture of CycleGAN
via combinatorial optimization [17] or evolutionary algo-
rithm [32]. Given good reference architectures, they find
small-size architectures with comparable performance. Al-
though they are doing a sort of architecture search, their
approach is quite different from NAS since they have clear

1656

; Lid; = |b_GA(b)||1

b Ga \

== |
¢ o PRy b' Laav

—_—————— - ——

T = H
Lope=lla—a”l], ! -

‘Cadv a < : ,

Lige = |la = Gp(a)|,

Figure 1. Overall process of CycleGAN and its losses. CycleGAN
uses two generators G 4, G p to translate image a € A to image
b € B and image b € B to image a’ € A, and two discriminators
D 4, Dp to distinguish the generated images. It computes several
losses using the images from different sources.

reference models.

3. CycleGANAS - NAS for CycleGAN
3.1. Preliminaries

CycleGAN has two generators (G 4, G) and two discrim-

inators (D 4, Dp) as shown in Fig. 1, and translate images

in dataset, which consists of two subdatasets, each from a

different domain denoted by .A, B. We slightly abuse the no-

tation and also denote the subdataset of each domain by A

and B, respectively. CycleGAN aims to learn the mapping

of optimal generators G : A — B, G} : B — A, and op-

timal discriminators D% : Q — {0,1}, D5 : Q@ — {0,1}

that distinguish between translated samples and real sam-

ples, where) denotes the set of all possible image sam-
ples. For CycleGAN, we relax the output of discrimi-
nators to a real number in the range [0,1], and consider

Ga,Gp,D4,Dp as a function that takes an input image

and outputs an image or a number in [0, 1]. The objective

of CycleGAN consists of three loss functions, known as the

adversarial, cycle-consistency, and identity loss [44].

* The adversarial objective makes each pair of generator
and discriminator engage in a two-player mini-max game.
The adversarial loss Laq, (G a, Dg) for Ga, Dp can be
written as

Lagv(Ga, D) = Eypllog Dp(b)]

+ Eqallog(l - Dp(Ga(@)). "

The adversarial loss Ly, (Gp, D) for G and D 4 can
be defined similarly.

e It is claimed that CycleGAN should be cycle-consistent,
ie., Gp(Ga(a)) = afora € Aand G4(Gp(b)) ~ b for
b € B. The cycle consistency objective is imposed only
on the generators and couples them under the coopera-
tive framework to generate better output images for each
other. The cycle-consistency loss Ley.(Ga,Gp) can be
written as

Lcyc(GAa GB) = EaNAHGB(GA(a)) - a”

CEsl|Ca(@s)). P

* It has been shown that, if the input image does not be-
long to the target domain, the identity objective helps the
generator to preserve the identity of an input image, e.g.,
color composition. The identity loss L;q:(G) for G 4
can be written as

Liar(Ga) = Epun[|G a(b) — b]]. €)
The identity loss for G g can be written similarly.

The full objective of CycleGAN is formed by linearly
combining the three loss functions as

L(Ga,Gp,D4,Dp)
= AlLadv(GAa DB) +)\2Ladv(GBv DA) (4)
+ A3Leye(Ga,GB) + MaLiat(Ga) + AsLiar(GR),

where Aq,..., A5 are a weight. Through this work, we set
A= (M,...,) = (1,1,10,5,5) unless otherwise stated.
Note that the discriminators are involved only in the adver-
sarial losses.

3.2. Search space

We develop CycleGANAS that simultaneously searches
neural network architectures for G4, Gp, D4, Dg. Con-
sidering the significant challenge in conducting architecture
search from scratch, many NAS approaches restrict their
search space to a combination of operations referred to as
a cell, and construct a neural network architecture by stack-
ing a few cells [4, 6]. We also follow the cell-based NAS
approach, but different from the previous works, we use a
much simpler cell structure and stack many of them to con-
struct an architecture.
Motivated by the neural network architectures of Cycle-
GAN, we design a ResNet-based cell for CycleGANAS.
Our cell has only two operations, each of which followed
by a normalization layer and an activation layer. We restrict
the cell’s operations by cell type, which can be either en-
coding e, residual 7, or decoding d. Letting ST be the set
of possible operations for the cell type T € {e,r,d}, we
define the operation sets as
* §¢ = {max pooling, avg pooling, Conv3x3, Conv4x4,
Conv5x35, Conv7x7, DilConv3x3, DilConv5x5},

*+ 8" = {Conv3x3, Conv5x5, Conv7x7, DilConv3x3,
DilConv5x5},

+ 8% = {Nearest neighbor interpolation, Bi-linear interpo-
lation, Transposed Conv3x3}.

A cell C7 of type T has two operations from S7'.

We build a generator G of N cells; starting from one
encoding cell, followed by N — 2 residual cells, and ending

1657

x ST at

[0 @& o 8w]\
X [92 a%z > B3, - 02(x) P@_‘

1
a 1.
0|sT| °lsT| o Bo‘sr‘ 0js7)(x)

CT(0)

Figure 2. A super-network cell with two mixed operations 6°, 5°.
The weights « of the mixed operations are trained by the gradient
descent. After the architecture search, each cell is converted to an
ordinary cell with two discrete operations.

with one decoding cell. Thus, we can represent a generator
as a sequence of cells: G = (C§,C%, ..., C%_,,C%). For
a decoder D, we have it with a much simpler structure of 2
encoding cells: D = (Cf,CS). Note that a generator has
the search space of size |S¢|? - |S”|2(N=2) . |S?|2, where | - |
denotes the cardinality. We will use N = 11 as a default
setting for each generator, resulting in 82 x 5% x 32 ~
2.2 x 10'%. Similarly, each discriminator has the search
space of size 8*. Since there are two generators and two
discriminators, the total search space size of CycleGANAS
is 8.1 x 1037, which is comparably large considering those
of AutoGAN (10°) and AdversarialNAS (1038).
Element-wise searching in the huge space will demand
prohibitively large computational cost. To avoid excessive
computation, we adopt the idea of mixed operation from
DARTS [20] and take the approach of differentiable neu-
ral architecture search. Basically, we convert the discrete
search space into a continuous one by replacing an oper-
ation with a mixed one of multiple operations that admits
the gradient-based search. To elaborate, consider a cell cT
that has two mixed operations o', % in order, where each
o' with i € 1,2 is a combination of all possible operations,

i.e.,
5i = Z 6; "0,
oeST
where 3. = (o) and o is the weight of op-

T Tiest exp(a)
eration o € ST, as shown in Fig. 2. Also, suppose that we
build a super-network by stacking the cells with mixed oper-
ations. Then we can optimize all o*’s of the super-network’s
cells through gradient descent. When the search finishes,
we construct a discrete architecture by selecting the highest-
weight operations in the super-network, i.e., each cell CcT =
{0%, 0%} of the super-network is converted to an ordinary
cell CT = {0, 0%}, where o' = arg max,cgr a’.
Architecture search with the super-network demands a
substantial amount of memory and time to take into ac-
count all the possible operations, which can be burden-
some in practice. To this end, it is common that, for the

Algorithm 1 One-step CycleGANAS.
Initialize weights: 0 ,,0¢,,0p,,0D,
Initialize differentiable architecture: G, G, D, D
Input: Unpaired dataset A, B
Output: architecture of G4,Gp, D4, Dp

1: for each search epoch do

for each iteration do
samplea € Aand b € B

2
3
4: /* Forward path */

5: Compute Lad’U(GAyDB)yLad’U(GByDA)
6.

7

8

9

Compute Leyc(Ga,GR), Leye(Gp,Ga)
Compute L;q:(Ga), Lia:(GB)
Compute L(Ga,Gp,Da, Dp)
: /* Backward path */
10: Update 0¢ ,, 0¢,, from L(+)

11: Update 0p , , 0p, from corresponding L, ()
12: end for
13: end for

14: return architecture of G4, G, D4, Dp

search, one uses the super-network with reduced hidden
dimension, and after the search, builds the discrete archi-
tecture with restored hidden dimension [4]. We also ap-
ply the technique of the hidden dimension reduction to Cy-
cleGANAS for the architecture search. For example, dur-
ing the search, a (super-network) generator of our Cycle-
GANAS takes an image input of 256 x 256 x 3, and encodes
it to a tensor of 64 x 64 x 64, whose hidden dimension size is
smaller than that of the original CycleGAN’s encoder out-
put (64 x 64 x 256). Passing through the residual blocks,
the generator decodes it back to the shape of 256 x 256 x 3.
Once the search completes, from the trained super-network,
we construct a discrete architecture, whose encoder output
has the shape of 64 x 64 x H, where the hidden dimension
H is a hyperparameter.

3.3. Optimization process

Let v denote the vector of all architecture weights, and
let w denote the vector of neural network weights. Note that
if v changes, the optimal w also changes, and vice versa.
Typically, a NAS for GANs takes a bi-level optimization
process to optimize o and w, which is equivalent to itera-
tively apply the following two equations in sequence,

o = argming Ly (o, w*),

. &)

w* = argming, Liqqin (o™, w),

where L, is a loss with the validation dataset and L4, 1S
a loss with the training dataset. For example, AutoGAN has
the FID score for L,,; and the adversarial loss for L;,qin,
and AdversarialNAS has the adversarial loss for both L, ;
and Ltrain~

1658

We highlight that the bi-level optimization (5) requires
the computation of Lyyqin and L,q from two exclusive
datasets for stability. AutoGAN and AdversarialNAS can
easily accomplish this since the input to the GANs gener-
ator is a random sample from Gaussian noise. For Cycle-
GAN, however, the input to a generator is not a random
sample but an image from a subdataset, and thus each input
subdataset has to be divided into two for the bi-level opti-
mization. Further, rotating the role of divided subdatasets
will be necessary; otherwise, the architecture optimizer and
weight optimizer will only observe a portion of the entire
subdataset, leading to a performance degradation. As a re-
sult, the bi-level optimization process of CycleGANAS re-
quires a more intricate approach to dividing the dataset and
rotating their roles.

We simplify the optimization process by developing a
single-level optimization process of o and w. We use the
entire input subdataset for the joint optimization of

(05*7 w*) = arg mina,w Ltrain(aa ’LU), (6)

where Lirqin, = L(Ga,Gp,Da,Dg) is the CycleGAN
loss (4). Note that the single-level optimization not only
eliminates the need for dividing the input subdataset but
also reduces the number of optimization steps by half,
in comparison to the bi-level optimization. This results
in an accelerated learning process. We denote Cycle-
GANAS with the single-level optimization by one-step
CycleGANAS, whose detailed process is shown in Algo-
rithm 1, where 6 = (o, w).

4. Experiments

We evaluate CycleGANAS with several unpaired datasets,
e.g. maps, facades, apple2orange, horse2zebra, sum-
mer2winter, and iphone2dslr-flower.Each dataset has two
subdatasets, each of which may have a different num-
ber of images, and all the images are of the same shape
3 x 256 x 256. For certain datasets, there exists an imbal-
ance in the data, and the image translations between the two
subdatasets have different levels of difficulty. For exam-
ple, in the horse2zebra dataset, the number of pixels taken
by zebra is more than twice as many as those taken by
horse [23]. This data imbalance demands asymmetric ca-
pability of neural networks, in particular, of the two genera-
tors. In general, a more challenging translation task, e.g.,
zebra-to-horse, is likely to necessitate a larger generator
model’>. We demonstrate that CycleGANAS not only suc-
cessfully search high-performance architectures, but also, in
the presence of dataset imbalance, naturally adopts asym-
metric architectures, effectively mitigating the issue.
Throughout our experiments, we mostly use the config-
uration of CycleGAN [44], e.g., batch size 1 and instance

2We remark that the original CycleGAN is symmetric — its two gener-
ators have the same architecture, and the same for the two discriminators.

facades horse2zebra iphone2dsir_flower
Generator A Generator B

" X
a)
s <
gL X~ 11 11
290 X X -— ¥zZ N
gt X%_*-* 1.0 TRLX| Lo} FF Kol %5
£ X
5 0.9 0.9 % X 0.9

0.8 0.8 0.8
0
o
=
el
[
N
©
E
o
P4

0 TF THTHSOF TF THTHS OF

0 TF THTHS OF TF THTHS OF

" TF THTHSOF TF THTHS OF

Figure 3. Performance of the four variants of CycleGANAS with
three datasets, in terms of the generator model size and FID scores.
The model sizes are normalized w.r.t. that of the original Cycle-
GAN’s generator, and the FIDs w.r.t. the average FIDs of one-step
CycleGANAS (OF). For each architecture outcome, we repeat the
weight training 3 times, and mark the FIDs by cross and the aver-
age by blue dash.

normalization. For one-step CycleGANAS of Algorithm 1,
we use Adam optimizer with learning rate of o = 0.0002,
B1 = 0.5, B2 = 0.999, and set the maximum search epoch
to 400. All our experiments are based on Python 3.8, CUDA
11.3, CuDNN 8.2.0, and the learning frameworks are imple-
mented with PyTorch. To evaluate architectures, we use the
FID score estimation provided by the clean-fid project [24].
Since the FID score is stochastic for an architecture [11],
we repeat the weight training several times and select the
one with the best (lowest) FID score.

We present the impact of the optimization method
on performance, and evaluate the performance of Cycle-
GANAS using diverse datasets and illustrate its response
to data imbalance.

4.1. Bi-level vs single-level optimization

Besides the single-level optimization, we can incorporate
our CycleGANAS framework with the previous bi-level op-
timization, which is denoted by two-step CycleGANAS.
Numerous variations of the two-step CycleGANAS can
emerge based on how the subdataset is divided and rotated.
We consider the following three variants of two-step Cycle-
GANAS.

* (TF) Two-step CycleGANAS with the full subdataset:
Without dividing the subdatasets, we use the bi-level op-
timization of w using A and « using 5.

* (TH) Two-step CycleGANAS with evenly halved sub-
datasets: For 4, we assign all its images to .4; or Aj
at random such that |A4;| = |Az|. Similarly, we have
B — By, B,. Then, we use the bi-level optimization of w

1659

maps facades apple2orange

horse2zebra summer2winter iphone2dsir

o o
00
%0 \\ %0
« s
B - \ 1\
Z o \ o B
@ \ 1490 o ° 815
T \ A \/ w w0
< 0 100 - 130 50 — ~ 825
0 S— 5 120 o N s < 800
10 15 20 25 32 64 96 128 10 15 20 25 32 64 96 128 10 15 20 25 32 64 96 128 10 15 20 25 32 64 96 128 10 15 20 25 32 64 96 128 10 15 20 25 32 64 96 128
o 135 180 10 o
120 10 s
3 s w0 10
i 0 o
= ’
\T us i 1 150 80 100
t w0 130 \77 . 1o ~ 2 b \ N
o N A = 10 \4 o
0 > _— 0 = = =
N— —— 110 100 0 N - =
10 15 20 25 32 64 96 128 10 15 20 25 32 64 96 128 10 15 20 25 32 64 96 128 10 15 20 25 32 64 96 128 10 15 20 25 32 64 96 128 10 15 20 25 32 64 96 128
Channels

Figure 4. Performance of CycleGAN (red) and the architecture outcomes of CycleGANAS (green) with different hidden dimension sizes.
We evaluate each architecture 3 times. The mean (thick line) and range (light shade) of FIDs are shown. The outcomes of CycleGANAS

achieve comparable performance or even outperforms CycleGAN.

maps facades apple2orange

horse2zebra summer2winter iphone2dslir

Generator A| Generator B

Normalized FIDs

Normalized MBs

32 C64 N32 N64 C32 C64 N32 N64. €32 C64 N32 N64 C32 C64 N32 N64.

32 C64 N32 N64 C32 C64 N32 N64.

€32 C64 N32 N64 C32 C64 N32 N64 €32 C64 N32 N64 C32 C64 N32 N64 €32 C64 N32 N64 C32 C64 N32 N64

Figure 5. Performance of CycleGAN (red) and the architecture outcomes of CycleGANAS (green). Two CycleGAN architectures with
H =32 (C32)and H = 64 (C'64) are used. We also use two versions of CycleGANAS architecture outcomes (/N32 and N64), such that
their total model sizes are roughly the same as C'32 and C'64, respectively. Comparing their performance over 6 datasets, we can observe
that the architectures searched by CycleGANAS outperform CycleGAN, in particular, for the larger model size.

using Ay, B; and « using As, By throughout the search.

* (THS) Two-step CycleGANAS with evenly halved sub-
datasets and swapping: It is similar to Two-half, except
that after certain epoch, we swap the role of the halved
subdatasets. Our intention is for the optimizers of w and
« to have visibility over all images within the entire sub-
datasets. In our experiments, we do the bi-level opti-
mization of w using Ay, B and « using Az, By for the
first 200 epochs, and then do the optimization of w using
As, By and « using A;, By afterward.

Unlike the two-step CycleGANAS, our one-step Cycle-
GANAS features a simpler optimization process and neces-
sitates only half the iterations.
* (OF) One-step CycleGANAS with the full subdatasets.
We jointly optimize w and « using A, B.
We search CycleGAN architectures using the above
four schemes with three different datasets of facades,
horse2zebra, and iphone2dslr. Fig. 3 shows the model size

of the generators and FIDs of their searched architectures,
which are normalized by the model size of the original Cy-
cleGAN’s generator, and by the minimum FIDs of one-step
OF CycleGANAS, respectively.

In the facades dataset, the model sizes are all similar
and the best (lowest) FID is achieved by two-step THS. On
the other hand, one-step OF achieves the least variation of
FIDs and the lowest average, which implies that one-step
OF performs well in a stable manner. In horse2zebra with
data imbalance, all schemes effectively discover asymmet-
ric architectures, with a focus on enhancing the generator
for zebra-to-horse translation, although the extent of asym-
metry varies among the schemes. Also we can observe that
two-step THS and one-step OF outperform two-step TH.
We conjecture that it is due to the limited visibility of two-
step TH’s optimizers to the subdatasets. In iphone2dslr, Cy-
cleGAN is asked to increase or decrease the image reso-
lution, and it is clear that the resolution-increasing task is

1660

more difficult than the other. Similar to the horse2bebra
case, most schemes except two-step TH provide asym-
metric architectures enhancing the generator for iphone-
to-dslr translation. Further, one-step OF achieves the best
FID scores. Another interesting observation is that the re-
versely asymmetric architectures searched by two-step TH
also achieve comparable performance.

Overall, two-step TF/TH/THS schemes exhibit a high
variation depending on the translation task, while one-step
OF achieves a competitive, close-to-best result in a stable
manner. Further it is worth highlighting that one-step OF
completes the optimization process in half the iterations of
two-step methods. Given its performance and simplicity, we
establish it as the default choice for CycleGANAS. Hence-
forth, when referring to CycleGANAS, we are referring to
one-step CycleGANAS.

4.2. Performance evaluation

We demonstrate the search capability of CycleGANAS.
Over 6 datasets, we evaluate the architectures searched
by CycleGANAS in comparison with the original Cycle-
GAN. We vary the hidden dimension size H for both Cy-
cleGAN and the search outcomes of CycleGANAS to see
their achievable performance. For each architecture, we re-
peat its evaluation 3 times.

Fig. 4 shows the mean (thick line) and range (light shade)

of the FID scores of CycleGAN (red) and the architecture
outcomes of CycleGANAS (green). Overall, in terms of
the lowest FIDs, the outcomes of CycleGANAS demon-
strate comparable performance (for maps and iphone2dslr)
or even outperform CycleGAN (for facades, apple2orange,
horse2zebra, and summer2winter). Another interesting ob-
servation is that a larger H does not imply a better perfor-
mance, and there is an optimal value, usually between 32
and 96, depending on the dataset and architecture.
Remark: the architecture of CycleGAN and the outcomes
of CycleGANAS have convolutions of different filter sizes,
leading to differences in their model size in bytes even when
they have the same hidden dimension size H.

Next we conduct a more direct performance comparison
between CycleGANAS outcomes and CycleGAN by ensur-
ing their model sizes are equal. From the previous exper-
iment results, we train two CycleGAN architectures with
H = 32 and 64, denoted by C32 and C64, respectively.
For the architectures searched by CycleGANAS, we adjust
the hidden dimension sizes accordingly such that the total
model size roughly equals that of C'32 or C'64. Note that
we configure the two generators searched by CycleGANAS
to have the same hidden dimension size H, and as a result,
depending on their chosen convolution operations, they will
have a different model size, leading to asymmetric architec-
tures.

Fig. 5 shows the experiment results over 6 datasets in

horse2zebra iphone2dsir_flower
Generator A | Generator B
51.1 « X 11
:1-0§§ §§§1.0x§ x§§
Soo X 0.9 %
© X X .
€08 X 08
2 *
X

[%)
o
=
©
(7]
N
©
£
o
P4

0 C64 C'64 N64 C64 C'64 N64

C64 C'64 N64 C64 C'64 N64

Figure 6. Performance of the original CycleGAN with H = 64
(C'64), its asymmetric variant by scaling the hidden dimension
(C'64), and the architecture outcome of CycleGANAS (N64).
Scaling the hidden dimension does not improve the performance,
while the architecture search does.

terms of generator model sizes and FIDs. All the model
sizes are normalized with respect to that of C'32 gener-
ator (11.378 MB), and the FIDs with respect to C'32’s
mean FIDs. N32 and N64 denote the architectures
searched by CycleGANAS with normalized H with respect
to C'32 and C'64, respectively. Overall, CycleGANAS suc-
cessfully finds good architectures for most datasets (ex-
cept maps). Its architectures have comparable (for sum-
mer2winter and iphone2dslr) or better performance (for
facades, apple2orange, horse2zebra) than the CycleGAN
counterpart. In particular, with the larger model size, the
outcomes of CycleGANAS outperform the original Cycle-
GAN, by up to 30% in A-to-B and 10% in B-to-A. Fur-
ther we can also observe that, for the datasets with im-
balance (horse2zebra and iphone2dslr), CycleGANAS pro-
vides asymmetric generator architectures accordingly, and
for the others, it yields the generators of similar model size.

4.3. Architecture search vs hidden dimension scal-
ing

The two generators of the original CycleGAN have the
same architecture. In contrast, the architectures searched
by CycleGANAS may have asymmetric structure that natu-
rally comes from the dataset when it selects appropriate op-
erations in S¢, 8", S? for each of the two generators. One
may argue that the crucial factor to the performance is the
asymmetric model size of the two generators, rather than
the selection of their operations. We show that this is not the
case, and the operation selection (i.e., architecture search) is
of great importance.

For the datasets of horse2zebra and iphone2dslr, we

1661

consider the symmetric architectures of C'64 (CycleGAN)
and the asymmetric architectures N64 searched by Cycle-
GANAS. Note that their total model sizes are the same.
Then we build another asymmetric architectures C’64 by
scaling the hidden dimension of C'64 generators. To elab-
orate, we scale the hidden dimensions of two generators of
C64 such that their model sizes equal to those of N64’s
two generators, respectively. As a result, each generator of
(C'64 has the same operations as the C'64 counterpart and
the same model size as the N64 counterpart.

Fig. 6 shows the model sizes and the FIDs of 5 eval-
uations, normalized w.r.t. the generator model size and
mean FIDs of C64. It is confirmed that the gener-
ators of C’64 have the same model sizes as those of
N64. We can observe that the mean FIDs (A-to-B, B-
to-A) of C'64 are (45.19,132.87) for horse2zebra and
(84.03,93.41) for iphone2dslr-flower, which are similar to
C64’s (45.78,133.42) and (84.12, 91.70), respectively. The
searched asymmetric architectures of N64 achieve the low-
est FIDs of (38.05, 131.44) and (80.07, 89.75), respectively.
This suggests that, when dealing with data imbalance, sim-
ply scaling the hidden dimension might not yield substantial
benefits; instead, identifying suitable operations becomes of
paramount importance.

5. Conclusion

We develop a NAS framework for CycleGAN that carries
out unpaired image-to-image translation task. Compared
to NAS for GANs, NAS for CycleGAN is more challeng-
ing due to the limited samples from dataset, multiple neural
networks and their involvement in learning, and data imbal-
ance.

We design a framework, called CycleGANAS, that can
search CycleGAN architectures of two generators and two
discriminators, simultaneously. For flexible and practi-
cal search, we build architectures by stacking many sim-
ple ResNet-based cells, take the approach of differentiable
search through super-networks, and apply the hidden di-
mension reduction. We further reduce the computational
complexity and stabilize the search with the single-level op-
timization, enabling CycleGANAS to effectively explore a
vast search space of size 8.1 x 107,

Our experiments demonstrate that CycleGANAS ef-
fectively discovers high-performance architectures that
either match or surpass the performance of the orig-
inal CycleGAN. Furthermore, CycleGANAS success-
fully addresses the data imbalance by individually
searching for distinct generator architectures for each
translation direction, thereby regulating the model ra-
t10.

References

[1] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh
Raskar. Designing neural network architectures using rein-
forcement learning. In International Conference on Learning
Representations, 2017. 2

[2] Han Cai, Tianyao Chen, Weinan Zhang, Yong Yu, and Jun
Wang. Efficient architecture search by network transforma-
tion. Proceedings of the AAAI Conference on Artificial Intel-
ligence, 32(1), 2018. 2

[3] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter.
Neural architecture search: A survey. Journal of Machine
Learning Research, 20(55):1-21, 2019. 2

[4] Chen Gao, Yunpeng Chen, Si Liu, Zhenxiong Tan, and
Shuicheng Yan. Adversarialnas: Adversarial neural archi-
tecture search for gans. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 2020. 1,2, 3,4

[5] Yang Gao, Rita Singh, and Bhiksha Raj. Voice imperson-
ation using generative adversarial networks. In 2018 IEEE
International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 2506-2510, 2018. 2

[6] Xinyu Gong, Shiyu Chang, Yifan Jiang, and Zhangyang
Wang. Autogan: Neural architecture search for generative
adversarial networks. In The IEEE International Conference
on Computer Vision (ICCV), 2019. 1,2, 3

[7] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In Advances in
Neural Information Processing Systems. Curran Associates,
Inc., 2014. 1

[8] David Haws and Xiaodong Cui. Cyclegan bandwidth ex-
tension acoustic modeling for automatic speech recognition.
In ICASSP 2019 - 2019 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages
6780-6784, 2019. 1

[9] Xin He, Kaiyong Zhao, and Xiaowen Chu. AutoML: A sur-
vey of the state-of-the-art. Knowledge-Based Systems, 212:
106622, 2021. 2

[10] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A.
Efros. Image-to-image translation with conditional adver-
sarial networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017. 2

[11] Haesung Jo and Changhee Joo. Autogan-dsp: Stabilizing
gan architecture search with deterministic score predictors.
Forthcoming, 2023. 5

[12] Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider,
Barnabas Poczos, and Eric P Xing. Neural architecture
search with bayesian optimisation and optimal transport. In
Advances in Neural Information Processing Systems. Curran
Associates, Inc., 2018. 2

[13] Takuhiro Kaneko, Hirokazu Kameoka, Kou Tanaka, and
Nobukatsu Hojo. Cyclegan-vc2: Improved cyclegan-based
non-parallel voice conversion. In Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal
Processing, 2019. 1

[14] Taeksoo Kim, Moonsu Cha, Hyunsoo Kim, Jung Kwon Lee,
and Jiwon. Kim. Learning to discover cross-domain rela-

1662

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]

(27]

(28]

[29]

tions with generative adversarial networks. In Proceedings
of the 34th International Conference on Machine Learning -
Volume 70, page 1857-1865. JMLR.org, 2017. 2
Yong-Hoon Kwon and Min-Gyu Park. Predicting future
frames using retrospective cycle gan. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2019. 2

Liam Li, Mikhail Khodak, Nina Balcan, and Ameet Tal-
walkar. Geometry-aware gradient algorithms for neural ar-
chitecture search. In International Conference on Learning
Representations, 2021. 2

Muyang Li, Ji Lin, Yaoyao Ding, Zhijian Liu, Jun-Yan Zhu,
and Song Han. Gan compression: Efficient architectures for
interactive conditional gans. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2020. 2
Yu Li, Sheng Tang, Rui Zhang, Yongdong Zhang, Jintao Li,
and Shuicheng Yan. Asymmetric gan for unpaired image-to-
image translation. IEEE Transactions on Image Processing,
28(12):5881-5896, 2019. 1

Tingting Liang, Yongtao Wang, Zhi Tang, Guosheng Hu, and
Haibin Ling. Opanas: One-shot path aggregation network
architecture search for object detection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 10195-10203, 2021. 2

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS:
Differentiable architecture search. In International Confer-
ence on Learning Representations, 2019. 1,2, 4

Lars Mescheder, Sebastian Nowozin, and Andreas Geiger.
The numerics of gans. In Advances in Neural Information
Processing Systems. Curran Associates, Inc., 2017. 1

Lars Mescheder, Andreas Geiger, and Sebastian Nowozin.
Which training methods for GANs do actually converge? In
Proceedings of the 35th International Conference on Ma-
chine Learning, pages 3481-3490. PMLR, 2018. 1

Taesung Park. Machine Learning for Deep Image Synthe-
sis. PhD thesis, EECS Department, University of California,
Berkeley, 2021. 5

Gaurav Parmar, Richard Zhang, and Jun-Yan Zhu. On
aliased resizing and surprising subtleties in gan evaluation.
In CVPR, 2022. 5

Wei Peng, Xiaopeng Hong, Haoyu Chen, and Guoying Zhao.
Learning graph convolutional network for skeleton-based
human action recognition by neural searching. The Thirty-
Fourth AAAI Conference on Artificial Intelligence, AAAI
2020. 2

Hieu Pham, Melody Y. Guan, Barret Zoph, and Jeff Le, Quoc
V. andDean. Efficient neural architecture search via parame-
ter sharing. In ICML, 2018. 2

AlJ Piergiovanni, Anelia Angelova, Alexander Toshev, and
Michael S. Ryoo. Evolving space-time neural architectures
for videos. In ICCV, 2019. 2

Tingting Qiao, Jing Zhang, Duanqing Xu, and Dacheng Tao.
Mirrorgan: Learning text-to-image generation by redescrip-
tion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2019. 2
Binxin Ru, Xingchen Wan, Xiaowen Dong, and Michael Os-
borne. Interpretable neural architecture search via bayesian

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

(41]

1663

optimisation with weisfeiler-lehman kernels. In Interna-
tional Conference on Learning Representations, 2021. 2
Binxin Ru, Xingchen Wan, Xiaowen Dong, and Michael Os-
borne. Interpretable neural architecture search via bayesian
optimisation with weisfeiler-lehman kernels. In Interna-
tional Conference on Learning Representations, 2021. 2
Divya Saxena, Jiannong Cao, Jiahao Xu, and Tarun Kul-
shrestha. Re-gan: Data-efficient gans training via archi-
tectural reconfiguration. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 16230-16240, 2023. 2

Han Shu, Yunhe Wang, Xu Jia, Kai Han, Hanting Chen,
Chunjing Xu, Qi Tian, and Chang Xu. Co-evolutionary com-
pression for unpaired image translation. In Proceedings of
the IEEE/CVF International Conference on Computer Vision
(ICCV),2019. 2

Hanchao Wang and Jun Huan. Agan:
mated design of generative adversarial networks.
abs/1906.11080, 2019. 1, 2

Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu,
Chao Dong, Yu Qiao, and Chen Change Loy. Esrgan: En-
hanced super-resolution generative adversarial networks. In
Proceedings of the European Conference on Computer Vi-
sion (ECCV) Workshops, 2018. 2

Colin White, Willie Neiswanger, and Yash Savani. Bananas:
Bayesian optimization with neural architectures for neural
architecture search. Proceedings of the AAAI Conference on
Artificial Intelligence, 35(12):10293-10301, 2021. 2

Yun Yi, Haokui Zhang, Wenze Hu, Nannan Wang, and Xi-
aoyu Wang. Nar-former: Neural architecture representation
learning towards holistic attributes prediction. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 7715-7724, 2023. 2

H. You, Y. Cheng, T. Cheng, C. Li, and P. Zhou.
Bayesian cycle-consistent generative adversarial networks
via marginalizing latent sampling. [EEE Transactions on
Neural Networks and Learning Systems, pages 1-15, 2020.
1

Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and
Thomas S. Huang. Generative image inpainting with con-
textual attention. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2018. 2
Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Seq-
gan: Sequence generative adversarial nets with policy gradi-
ent. Proceedings of the AAAI Conference on Artificial Intel-
ligence, 31(1),2017. 2

Tian Yuan, Wang Qin, Huang Zhiwu, Li Wen, Dai Dengxin,
Yang Minghao, Wang Jun, and Fink Olga. Off-policy rein-
forcement learning for efficient and effective gan architecture
search. In The European Conference on Computer Vision
(ECCV), 2020. 2

Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiao-
gang Wang, Xiaolei Huang, and Dimitris N. Metaxas. Stack-
gan: Text to photo-realistic image synthesis with stacked
generative adversarial networks. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV),2017.
2

Towards auto-
ArXiv,

[42]

[43]

[44]

(45]

[46]

Zizhao Zhang, Lin Yang, and Yefeng Zheng. Translating
and segmenting multimodal medical volumes with cycle-
and shape-consistency generative adversarial network. In
2018 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 9242-9251, 2018. 2

Hongpeng Zhou, Minghao Yang, Jun Wang, and Wei Pan.
BayesNAS: A Bayesian approach for neural architecture
search. In Proceedings of the 36th International Conference
on Machine Learning, pages 7603-7613. PMLR, 2019. 2
Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A.
Efros. Unpaired image-to-image translation using cycle-
consistent adversarial networks. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV),2017.
1,2,3,5

Jun-Yan Zhu, Richard Zhang, Deepak Pathak, Trevor Dar-
rell, Alexei A Efros, Oliver Wang, and Eli Shechtman. To-
ward multimodal image-to-image translation. In Advances in
Neural Information Processing Systems 30, pages 465—476.
Curran Associates, Inc., 2017. 2

Barret Zoph and Quoc Le. Neural architecture search with
reinforcement learning. In International Conference on
Learning Representations, 2017. 2

1664

	. Introduction
	. Related Works
	. Neural Architecture Search (NAS)
	. Generative Adversarial Networks (GANs)
	. NAS for GANs

	. CycleGANAS – NAS for CycleGAN
	. Preliminaries
	. Search space
	. Optimization process

	. Experiments
	. Bi-level vs single-level optimization
	. Performance evaluation
	. Architecture search vs hidden dimension scaling

	. Conclusion

