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Abstract

Neural Architecture Search (NAS) methods have shown
to output networks that largely outperform human-designed
networks. However, conventional NAS methods have mostly
tackled the single dataset scenario, incuring in a large com-
putational cost as the procedure has to be run from scratch
for every new dataset. In this work, we focus on predictor-
based algorithms and propose a simple and efficient way of
improving their prediction performance when dealing with
data distribution shifts. We exploit the Kronecker-product
on the randomly wired search-space and create a small NAS
benchmark composed of networks trained over four differ-
ent datasets. To improve the generalization abilities, we
propose GRASP-GCN, a ranking Graph Convolutional Net-
work that takes as additional input the shape of the layers
of the neural networks. GRASP-GCN is trained with the
not-at-convergence accuracies, and improves the state-of-
the-art of 3.3 % for Cifar-10 and increasing moreover the
generalization abilities under data distribution shift.

1. Introduction

Neural Architecture Search (NAS) has drawn large research
attention due to its efficacy in automatically optimizing the
architecture of Deep Neural Networks (DNNs), replacing
the error-prone manual design which demands high exper-
tise. As the NAS process can be very expensive many
methods were proposed to save time or computation, fol-
lowing two main directions: i) reducing the time required
to evaluate each searched architecture proposing a weight
sharing mechanism ([2], [1], [14], [11], [19]), ii) using
sample efficient algorithms so that only few architectures
are evaluated ([22], [21], [9], [15]). Proxy task perfor-
mance and Predictor-based algorithms follow the second
approach. They estimate the performance of the DNN ei-
ther as an approximation or a prediction based on lower fi-
delities, such as i) shorter training ([22], [21]), ii) training

on a subset of the data ( [9]), iii) on lower-resolution im-
ages ( [3]), or iv) with less filters per layer and less cells
( [22], [15]).While these approximations reduce the com-
putational cost, they also introduce a bias in the estimate
as performance will typically be underestimated. Predictor-
based algorithms follow the second approach, and train a
proxy model that can infer the validation accuracy of DNNs
directly from their network structure. During optimization,
the proxy can be used to narrow down the number of ar-
chitectures for which the true validation accuracy must be
computed, which makes predictor-based algorithms sample
efficient. Predictor-based algorithms have been proposed
by [17]; [13] and [6]. Despite the success of these kinds of
approaches, only few methods ([10], [7]) tackle the prob-
lem of sharing or re-using the predictor knowledge on dif-
ferent datasets. Most conventional NAS methods are in-
deed task-specific, requiring repeatedly training the model
from scratch for each new dataset. Moreover, existing NAS
benchmarks either i) provide architectures trained on a sin-
gle dataset ([20]), ii) define a benchmark across different
tasks but not datasets ([5]), iii) or do not provide the full
training-log of architectures and define not-unique networks
in their search space ( [4]). This limit the possible studies
that can be done on the datasets to correctly interpret possi-
ble predictor results. In this paper, we restrict the problem
to predictor-based algorithms, which given a NAS bench-
marks are extremely fast to train (∼10 min on GeForce
GTX 1080). We aim at answering this question: can we re-
use knowledge that a predictor has learned on one dataset
and transfer it to get a more sample-efficient algorithm on
another dataset? We study the impact of distribution shifts
on the predictor performance, by analysing the ranking of
the architectures trained on commonly used datasets for the
task of image classification, and propose simple yet effec-
tive solutions to address the shift. Specifically, we design
a randomly wired search space, that quaintly exploits the
Kronecker product to impose a Resnet-like structure and
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create a dataset of 2000 architectures trained on Cifar-10,
Cifar-100, Tiny-ImageNet and Fashion-MNIST datasets.
We study the generalization abilities of the predictor when
directly used on a new dataset without fine-tuning and pro-
pose to integrate the so called vertex shapes - the shapes
each layer has given a different input size, and to adopt early
stopping - training the predictor with not-converged accura-
cies. Our study shows which are the limitations of predic-
tor based algorithms, and our simple approach improves of
3.7% and 9.5% (without and with distribution shift) with
respect to the naı̈ve approach . To summarize, our contribu-
tions are threefold:
• We propose a new way of defining search spaces, that ex-

ploit the generality of randomly wired spaces but samples
neural network efficiently through the Kronecker product
and a criterion based on a desired skeleton, to obtain spe-
cific categories of neural networks.

• We analyse the generalization capabilities of naı̈ve pre-
dictor based algorithms on two different scenarios, in-
volving different latent data but the same observed data
and different latent data with different observed data.

• We propose GRASP-GCN, which integrates the shapes
of the layers of the neural networks as input to predictor,
and trains with the accuracies of non-specialized neural
networks.

2. Related Works
Different techniques were proposed to mitigate the large
computation burden of NAS. These approaches primarily
target the acceleration of either the evaluation or search
modules within the NAS framework. The former acceler-
ates the evaluation of each DNN, the latter increases the
sample efficiency so that fewer architectures need to be
evaluated for discovering a good network. Our work falls
under the second category, as the predictor can be utilized
to sample architectures that most likely perform well on a
given task.

2.1. Single dataset predictor-based algorithms

Many predictor-based methods, that set the baseline for fol-
lowing works, focus on a single dataset. [17] train a re-
gressor model on a small built dataset and select the top-
K predicted architectures to train them from scratch. The
proposed approach leads to a more than 20× sample ef-
ficient algorithm with respect to standard used Evolution
ones. [16] used graph neural network-based accuracy pre-
dictors and an iterative approach to estimate the accuracy
of models. [17] propose a Graph-based neural Architec-
ture Encoding Scheme, i.e. GATES, to improve the gen-
eralization abilities of performance predictors by modeling
the information flow of the actual data processing of the ar-
chitecture as the attributes of the input nodes. Neural Archi-
tecture Optimization, shortly NAO, [12]) reframes the NAS

problem as a continuous optimization problem. Through
the use of a predictor that takes as input the continuous en-
coded representation of a neural network, NAO performs
gradient based optimization in the continuous space to find
the embedding of a new architecture with potentially bet-
ter accuracy. [6] propose an efficient hardware-aware NAS
method enabled by an accurate performance predictor based
on Graph Convolutional Network (GCN). The authors show
that the sample efficiency of predictor based NAS can be
improved by considering binary relations of models and an
iterative data selection strategy. Similarly to BRP-NAS, we
employ a binary ranking GCN, but we extend the focus on
multiple datasets and employ as labels the validation accu-
racy of non-specialized networks to improve the generaliza-
tion abilities.

2.2. Transferable predictor-based algorithms

Among existing methods, relevant approaches to ours tack-
ling the generalization problem across multiple dataset are
MetaD2A by [10], and Arch-Graph by [7]. MetaD2A
stochastically generates graphs from a dataset via a cross-
modal latent space that is learned via amortized meta-
learning. From the encoding of the dataset, obtained
through a permutation invariant encoder set, a graph is de-
coded. A meta-predictor is then used to estimate and se-
lect the best architecture for a given dataset. Instead of us-
ing an encoder set, we propose a much simpler and more
general solution that does not limit the approach to image-
dataset due to the encoder-set, lacking the possibility to
adapt it to video. We provide as additional input to the
GCN the “vertex shapes”, which are strictly related to the
shapes of the data. In Arch-Graph the generalization prob-
lem is addressed from the point of view of task gener-
alization, rather than dataset generalization. The method
predicts task-specific optimal architectures with respect to
given task embeddings, by leveraging correlations across
multiple tasks through their embeddings as a part of the
predictor’s input for fast adaptation. Despite being sample
efficient across many tasks, the method requires predictor-
tuning on the new task/dataset. With respect to previous
approach, our work tackles the problem from the point of
view of the distribution shift in the dataset, proposing a sim-
pler yet more general method that takes into consideration
the specialization (or overfitting) of neural networks over
datasets, the shape characteristics of the data and their ef-
fect on networks, and that does not require fine-tuning the
predictor.

3. Methods
Our goal is to obtain a predictor that generalizes well across
different datasets without need to re-train or finetune. To
this end, we sample architectures from our search-space and
train them over 4 image classification datasets (3.1) and pro-

1696



Figure 1. Architectures are sampled from the search space and trained over 4 datasets. The structure of DNNs is given as input with the
shapes of the layers to a ranking GCN, which given the accuracy learns to rank DNNs so that the search space is narrowed down.

pose GRASP-GCN (3.2), which trains a ranking predictor
with an additional input consisting in the vertex shapes.

3.1. Search-space definition

NAS is formalized as a bi-level optimization problem:

A∗ = argminAJv(A,w∗)

s.t. w∗ = argmin wJt(A,w),
(1)

where A describes the architecture, w are the trainable
weights of the considered DNN, and Jv and Jt are the val-
idation and training loss, respectively. In our work we de-
fine A = (A,X), with AN×N and XN×D encoding the
connections in the graph and the types of layers, respec-
tively. The dimensions of the matrices are related to the N
number of nodes (layers) and the D number of input fea-
tures, i.e. the number of layer types allowed. We sam-
ple A from our search space composed of all feed-forward
convolutional networks, belonging to the randomly-wired
search space [18] and exploit the Kronecker product, a trick
that allows us balancing flexibility and efficiency, avoiding
the sampling of big random matrices. We generate resnet-
like architectures miming evolutionary sampling. Two ran-
dom matrices R4×4

1 and R4×4
2 are indeed sampled from the

search space and multiplied with two so-called skeleton ma-
trices K4×4

1 and K4×4
2 :

A =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

K1

⊗

 R1



+


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


︸ ︷︷ ︸

K2

⊗

 R2



=


R1 R2

R1 R2

R1 R2

R1



(2)

In Eq. 2, K1 which is multiplied by R1 defines the feed-
forward structure, while K2, with the off-diagonal values,

defines the shortcuts. The input and the output layers are
finally added to the generated matrix A16×16, leading to a
maximum dimension of 18×18. As shown, the Kronecker
product ⊗ allows repeating R1 and R2 structures, limit-
ing the randomly wired search space in a meaningful way.
Moreover, it generates easily scalable networks, a key ad-
vantage as proven by [22], by stacking multiple blocks. This
design choice was intentional to focus on analyzing the true
impact of the dataset itself. Moreover, it does not repre-
sent a limitation as the only requirement to properly train
a GCN predictor is to have both very-well and very badly-
performing DNNs. Table 1 summarized our candidate lay-
ers which constitute our X18×9.

3.2. Ranking GCN

Graph Convolutional Networks are DNN architectures that
extract multi-scaled localized spatial features to extract
highly expressive representations of graphs, dealing with
the difficulty of “localized convolution” filters in non-
Euclidean domains. GCNs performs a convolution looking
for essential vertices and edges with the goal of learning
the features of the graph. It takes as input: (i) a feature de-
scription Xi for every node i summarized in a feature matrix
XN×D where N is the number of nodes, D the number of
input features; (ii) a representative description of the graph
structure summarized in the adjacency matrix AN×N . For
the classification task, the GCN produces a node-level out-
put HN×F , where F is the number of output features per
node. The GCN outputs h(A,X) which is the concatena-
tion of each Hl layer mapping done, as described in Eq. 3:

h(A,X) = (HL ◦HL−1 ◦ · · · ◦H l · · · ◦H1)(A,X) (3)

where l = 1, 2, .. L, is the number of layers in the GCN,
and Hl is given by the propagation rule (eq. 4) defined by
in [8]:

H(l+1) = σ(D̃− 1
2 ÃD̃− 1

2H(l)W (l)) (4)

with Ã = A + I , (I identity matrix), D̃ii =
∑

j Ãij is the
degree matrix, W (l) is the layer-specific trainable weight
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Layer stem conv3×3 conv3×3 conv3×3×d conv3×3×h conv3×3s2 conv3×3s2×d conv3×3s2×h
Channels 64 Same Doubles Halves Same Doubles Halves

Stride - - - - 2 2 2

Table 1. Layers in the search space. Same / Double / Halves refer to the channels of the parent nodes.

matrix, σ is the ReLU activation function, H(l) ∈ RN×D

is the matrix of activations in the l(th) layer, and H(l+1) is
the output to the next layer. Graph-level outputs can then
be modeled by introducing some form of pooling opera-
tion. In our work we exploit a GCN with 3 layers and a
classification head, and following BRP-NAS we exploit a
Ranking GCN, which learns a binary relation that focuses
on the prediction of ranking. Indeed, as previously observed
by [6] i) accuracy prediction is not necessarily required to
produce faithful estimates (in the absolute sense) as long as
the predicted accuracy preserves the ranking of the models;
ii) any antisymmetric, transitive and convex binary relation
produces a linear ordering of its domain, implying that NAS
could be solved by learning binary relations, where O(n2)
training samples can be used from n measurements. Given
the architecture’s search space, a ranking network predicts
how likely any network in the search space reaches a higher
accuracy than the current best. Fig. 2 shows how a GCN can
be used as a ranking network: two architectures A1 and A2

are fed to the GCN. The GCN outputs two graph encodings
h1 and h2, which are then concatenated into the vector h. A
softmax function σ() is applied, obtaining the ranking prob-
abilities which are then compared with the target t. Given
for example the tuple (acci,Aj , acci,Ak

) where acci,Aj is
the accuracy of architecture Aj and acci,Ak

is the accuracy
of Ak, both over dataseti, if acci,Aj

> acci,Ak
, then the

target vector takes as values t = [1 0]. Our goal is to
maximize the log probability that Aj is better than Ak, and
therefore the predictor is trained with the loss in Eq. 5:

J = −t⊺ · ln(σ(y)). (5)

As shown in Fig. 2, Aj,k, which gives the information
about the structure of the graphs, and the feature vector X ,
which defines the layers in the DNN architecture. There-
fore, given a DNN architecture that is characterized by a
bottleneck, the predictor won’t capture the implications of
a severe reduction of the feature maps. Clearly, the same
DNN architecture would have very different performance
depending on the input shape and the predictor could not
see the difference if given with A and X only. We there-
fore add the dimensions characterizing each DNN layer.
This info shortly called “vertex shapes” and is concatenated
to X that has now dimensions 18×12. We normalize the
vertex shapes with respect to the maximum dimensions in
our dataset and encode them as float numbers. We did not
choose one hot encoding as it implicitly looses any order-
ing and distance knowledge, i.e. we don’t know if shape
(3,32,32) is closer to (3,64,64) or to (4096,3,3).

4. Implementation details

Our hyper-parameters are summarized in Tab. 2 which dis-
plays those used for training the architectures sampled from
our search-space and in Tab 3 for training our GRASP-
GCN. All hyper-parameters were optimized using Optuna
framework1. We moreover provide the pseudo-code for
the creation of our NAS dataset (Algorithm 1), and for the
functioning of predictor-based algorithms within the NAS
framework (Algorithm 2).

Algorithm 1 Dataset creation

1: if Cifar10 then
2: for iteration = 1, . . . , 2000 do
3: sample A = A,X
4: train A
5: save values in hash(A)
6: end for
7: end if
8: if FashionMNIST or Cifar100 or TinyImageNET then
9: for iteration = 1, . . . , 2000 do

10: random sample A from Cifar10 dataframe
11: new directory = hash(A)
12: while new directory exist do
13: random sample A from Cifar10 dataframe
14: new directory = hash(A)
15: end while
16: train A
17: save values in new directory
18: end for
19: end if

5. Experiments

In this section, we introduce the used ranking measures
(Sec. 6), we investigate the statistics of our NAS dataset
composed of (architectures, accuracy) pairs to provide
ground-truth values for the predictor (Sec. 6.1). We show
the performance of our predictor under distribution shift
(Sec. 6.2) and further validate the usage of the vertex shapes
as additional input and of not converged accuracies through
ablations (Sec. 6.3).

6. Ranking measures

Several measures are commonly used to assess the quality
of a ranking. We focus on: 1) NDCG@k, 2) Precision@k
and 3) Kendall’s τ .

1https://optuna.readthedocs.io/en/stable/
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Figure 2. Working principles of a GCN used as a ranking network

Dataset Learning rate Weight decay Drop lr Optimizer Batch-size
F-MNIST 0.100 0.0002 of 10 at epoch 40, 80 SGD 128

C10 0.097 0.0006 of 10 at epoch 40, 80 SGD 128
C100 0.065 0.0015 of 5 at epoch 40, 80, 100 SGD 128
Tiny 0.012 0.0011 of 10 at epoch 30, 60, 90 SGD 64

Table 2. List of hyper-parameters derived from Optuna optimization for ResNet-18. The columns show the learning rate (lr), the weight
decay (wd), the drop of the learning rate (drop lr), the optimizer, and the size of the batches.

Units per layer Lr Weight decay Optimizer
265 0.019041 0.001126 Adagrad

Table 3. List of hyper-parameters derived from Optuna optimiza-
tion for GRASP GCN.

Algorithm 2 Predictor-based neural architecture search

1: S = Architecture search space
2: f(A, θ) : A → R: Predictor that outputs the predicted

performance given the architecture
3: N (k): Number of architectures to sample in the k-th

iteration
4: k = 1
5: S̃ = ∅
6: while k ≤ MAX ITER do
7: Sample a subset of architectures C(k) =

{A(k)
j }j=1,...,N(k) from S utilizing f(A, θ)

8: Evaluate architectures in S(k) , get C̃(k) =
{A(k)

j , y
(k)
j }j=1,...,N(k) (y is the performance)

9: S = S − C
10: S̃ = S̃ ∪ C̃
11: Optimizing f(A, θ) using the ground-truth archi-

tecture evaluation data S̃
12: end while
13: Output Aj∗ ∈ S̃ with best corresponding y∗; Or, A∗ =

argmaxS̃f(A, θ)

NDCG DCG (Discounted Cumulative Gain) is founded
on the idea that when assessing search results, highly
relevant documents ranked lower should receive a larger
penalty than less relevant documents wrongly ranked. This
is because the graded relevance value decreases logarithmi-
cally as the position of the result worsens. This measure
applies very well to predictor-based algorithms since our
focus is on allowing the predictor to find the best-forming

architectures in such a way that they are placed on the top
of the list, while we don’t care about how bad networks are
ranked. Eq. 6 exactly shows how highly relevant objects
that appear lower in the ranked list are penalized by reduc-
ing the graded relevance value logarithmically proportional
to the position of the result:

DCGk =

k∑
i=1

2reli − 1

log2(i+ 1)
. (6)

Starting from 6, the NDCG can be easily obtained
normalizing w.r.t the Ideal Discounted Cumulative Gain
(IDCG), as shown in Eq. 7:

NDCGk =
DCGk

IDCGk
∈ [0, 1],

IDCGk =

|RELk|∑
i=1

2reli − 1

log2(i+ 1)

(7)

where reli is the relevance value assigned to each object
and RELk is the list of relevant objects ordered by their
relevance up to position k. In a perfect ranking algorithm,
the DCGp will be the same as the IDCGp producing an
NDCG of 1. We used the NDCG in two different variants:
the NDCG@2092 was used to get a big picture of the gen-
eral behavior all architectures have, while the NDCG@10
was used to focus on the ranking quality of the top-10 per-
forming architectures, which are those we are interested in.

Precision@k It is defined as the proportion of recom-
mended items in the top-k set that are relevant. It is mathe-
matically defined as:

Precision@k =
#of items @k that are relevant

k
∈ [0, 1],

(8)
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where again, as it can be observed, the concept of relevance
is involved.

F-mnist C10 C100 Tiny

F-mnist 0 0.0273 0.0461 0.0516

C10 0.1781 0 0.1032 0.1293

C100 0.4559 0.2653 0 0.1743

Tiny 0.5157 0.3456 0.1817 0

Table 4. 1-NDCG@2092. The columns display the training
dataset, rows the validation dataset. Color bar: (low-
est to highest).

Kendall’s τ The Kendall rank correlation coefficient is
used to measure the ordinal association between two mea-
sured quantities. It’s range is in [−1, 1], with Kendall’s τ =
0 that indicates absence of correlation. Let (x1, x2, . . . xn)
and (y1, y2, . . . yn) be a set of observations of the joint vari-
ables X and Y, such that all the values of (xi) and (yi) are
unique (ties are neglected for simplicity). Any pair of ob-
servations (xi, yi) and (xj , yj), where i < j are said to be
concordant if the sort of order (xi, xj) and (yi, yj) agrees:
that is, if either both xi > xj and yi > yj holds if both
xi < xj and yi < yj ; otherwise, they are said to be
discordant. Eq. 9 defines, based on this, the coefficient:

τ =
(#of concordant pairs)− (#of discordant pairs)(

n
2

) ,

(9)

6.1. Dataset

The four datasets were chosen based on the possibility to
exploit a variety of conditions to investigate the transfer-
ability of the predictor, and by the desire to extend and be
partially comparable with previous works that involve three
datasets, as in NATS-Bench [4]. Two different scenarios
were defined: i) transferability when different latent data
is involved but the observed data is the same, ii) transfer-
ability when different latent data is involved and the ob-
served data is not the same. Hence, we chose (a) Cifar-
10 as a baseline dataset, (b) Cifar-100 as it is composed
of Cifar-10 images, labeled differently, (c) Fashion-MIST
as it is composed of black and white images (different la-
tent data), belonging to completely different categories with
respect to Cifar-10, and (d) Tiny-ImageNET to consider a
more complex dataset with a larger number of classes. 2000
unique architectures were sampled from the search space
and trained over the aforementioned datasets.

Models trained over different input distributions are not
guaranteed to perform in the same way. Do they “overfit”
the dataset specializing during training? Can early stopping
be applied to reduce the training time it takes to get the true
validation accuracy of the architectures?

(a)

(b)

0 20 40 60 80 100 120
0.0

0.2

0.4

0.6

0.8

1.0

Epochs

A
cc
u
ra
cy

Validation accuracy of the GCN

Cifar-10 Cifar-100
Fashion-MNIST Tiny-ImageNET

(c)

Figure 3. Cifar-10 results. Ranking evolution during training with
a cumulative (a) and derivative (b) plot. The x-axis shows the ar-
chitectures in a descent order with respect to their accuracy. The y-
axis carries the training epochs. The heatmap displays large numbr
of rank changes (yellow) to no changes (blue). (c) Validation accu-
racy the GCN can obtain when trained with the previous rankings.

Distribution Shift Tab. 4, to be read column-wise, high-
lights that the order induced by compelx datasets general-
izes better for simpler datasets than vice-versa. This result
is complemented by Fig. 4, that displays the ranking stabil-
ity of each architecture on one of the four datasets. The plot
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F-mnist C10 C100 Tiny

F-mnist 85.1 ± 0.7 76.4 ± 0.5 68.2 ± 0.6 68.4 ± 0.8

C10 74.2 ± 0.6 87.9 ± 0.4 84.9 ± 0.4 83.4 ± 0.7

C100 70.8 ± 0.6 85.0 ± 0.1 87.0 ± 0.4 85.6 ± 0.3

Tiny 72.3 ± 0.3 83.6 ± 0.9 85.3 ± 0.2 87.9 ± 0.2

(a) Average validation accuracy (%) of the predictor.

F-mnist C10 C100 Tiny

F-mnist 100 ± 0 93 ± 2 94 ± 2 96 ± 1

C10 80 ± 4 99 ± 1 97 ± 2 95 ± 3

C100 36 ± 3 60 ± 2 65 ± 1 63 ± 1

Tiny 41 ± 2 61 ± 3 57 ± 3 69 ± 2

(b) Average Precision@10 (×100) of the predictor.

Table 5. Performance of our GRASP-GCN provided with input matrix A, features X, vertex shapes V and trained with the validation
accuracy at epoch 40. For each element of the table, the mean and the std of four runs are given. The columns are the training datasets, the
rows are the validation datasets.

0 500 1,000 1,500 2,000

0

500

1,000

1,500

2,000

Architecture ranking in CIFAR-10

A
rc
hi
te
ct
ur
e
ra
nk

in
g

Fashion-MNIST Cifar-100
Tiny-ImageNET Cifar-10

Figure 4. The ranking of each architecture on one of the four
datasets, sorted by the ranking in Cifar-10. Correlation measured
through Kendall’sτ .

was obtained by sorting the architectures trained on Cifar-
10 in descending order with respect to their accuracy on
the dataset, and inducing the same ID-order on the architec-
tures trained on different datasets. In this way, it is possible
to observe what rank has been assigned to the architectures
trained over different datasets, having as baseline Cifar-10
rank. We can observe that (i) Fashion-MNIST architectures
cause a higher variability in terms of architectures rank ii)
the plot start tighter, increase variance as we move towards
bigger ranks, and gets tighter as we approach the “worst”
architectures. We can deduce that, not only the worst ar-
chitectures are such since the very beginning of training,
(Fig. 3a, 3b), but as it could be naturally expected, some ar-
chitectures simply do not have enough capacity to solve any
classification task and perform badly independently on the
input distribution they are provided, further validating the
early stopping method we propose in Sec. 6.2.

Network Specialization We compared through NDCG
the ranking induced by the validation accuracy v acci with
i = 1, . . . , 120 with v acc120 at the end of training. Fig. 5
highlights a possible correlation between the change of rank
and the epoch where the learning rate is dropped (we refer
to Appendix 4 for details on hyper-parameters). Moreover,
focusing on the NDCG@10, that considers only the top-10,
the plot reaches zero way before the end of the training.
Therefore, we formulated the hypothesis that the difference
between NDCG2092 and the NDCG10 could be caused by
the average performing networks, which are more strongly
influenced by the hyper-parameters. We checked the evolu-
tion of ranking during training (3a, 3b) by counting how
many times the architectures change the relevance value
(Eq. 7). We observe that top-performing DNNs stop chang-
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(a) Cifar-10
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(b) Fashion-MNIST
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(c) Cifar-100

0 20 40 60 80 100 120

0.0

0.2

0.4

0.6

0.8

1.0

Epochs

1-
N
D
C
G

Tiny-ImageNET

NDCG@10 NDCG@2092
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Figure 5. 1-NDCG plot showing the ranking correlation among
the sorting the architectures have at epoch i w.r.t the sorting of the
architectures at epoch 120. The lower the better. Every figure dis-
plays the results for considering one dataset at a time. The dashed
lines over each plot highlight the epoch where the learning rate
is dropped. Every plot displays both the NDCG@10 (light color)
and the NDCG@2092 (dark color).

ing rank at earlier epochs, average performing ones have the
peak shifted towards the end of training, and DNNs not able
to solve the task are such since the early epochs.

6.2. GRASP-GCN

We use the validation accuracy, and the Precision@10 mea-
sures to evaluate the performance of GRASP-GCN. Tab 5a,
Tab. 5b show the results obtained for each training dataset
(columns) on each of the four validation datasets (rows),
while Fig. 3c gives a compact representation of the GCN
performance trained with the accuracy of every training
epoch. The values in the table are above 80 % when
Fashion-MNIST is not involved, which suggests that the
predictor trained over the datasets involved in the lower part
of the table, e.g. Cifar-10, Cifar-100, Tiny- ImageNET, can
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F-mnist C10 C100 Tiny
F-mnist 85.1 | 79.1 | 83.8 76.4 | 67.7 | 74.7 68.2 | 65.8 | 69.2 68.4 | 61.7 | 65.9

C10 74.2 | 71.9 | 73.4 87.9 | 84.2 | 86.6 84.9 | 82.3 | 84.0 83.4 | 80.1 | 83.4
C100 70.8 | 68.9 | 71.2 85.0 | 82.5 | 84.3 87.0 | 84.4 | 86.5 85.6 | 82.7 | 84.8
Tiny 72.3 | 62.5 | 70.9 83.6 | 81.1 | 83.6 85.3 | 83.0 | 85.0 87.9 | 84.0 | 87.3

(a) Accuracy (%).
F-mnist C10 C100 Tiny

F-mnist 1.00 | 1.00 | 1.00 0.93 | 0.90 | 0.93 0.94 | 0.88 | 0.95 0.96 | 0.90 | 0.95
C10 0.80 | 0.78 | 0.82 0.99 | 0.98 | 0.98 0.97 | 0.80 | 0.95 0.95 | 0.90 | 0.91
C100 0.36 | 0.35 | 0.41 0.60 | 0.45 | 0.41 0.65 | 0.45 | 0.50 0.63 | 0.40 | 0.60
Tiny 0.41 | 0.10 | 0.50 0.61 | 0.40 | 0.58 0.57 | 0.43 | 0.55 0.69 | 0.50 | 0.64

(b) Average Precision@10.

Table 6. Performance measures of the predictor with vertex shapes and early stopping (black values), without vertex shapes (purple),
without early stopping (blue). The datasets used for training are displayed in the columns, while the rows show the validation ones. Best
results are obtained when both vertex shapes and early stopping techniques are employed.

transfer knowledge over one of these same datasets. On
the other hand, when Fashion-MNIST is involved, either
as the training or the validation dataset, the performance
drops drastically compared to the average performance the
predictor has with Cifar-10/Cifar-100/Tiny-ImageNet. It is
worth noting however, that despite the drop in performance,
when Fashion-MNIST is the validation dataset (first row)
the drop does not represent a problem. Indeed as the Pre-
cision@10 highlights, the top-performing architecture are
still correctly ranking. More precisely, as almost ll architec-
tures well-solve Fashion-mnist, a wrong ranking will prob-
ably affect architecture with a small difference in validation
accuracy, thus resulting in a good ranking order. Finally,
Tab. 7 shows that GRASP-GCN surpasses all other methods
when trained and evaluated over Cifar-10 and when directly
applied to new datasets.

F-mnist C10 C100 Tiny

F-mnist 84.1 | 82.2 | 79.8 74.4 | 71.1 | 68.2 68.2 | 64.8 | 68.2 68.4 | 63.5 | 65.5

C10 74.2 | 73.8 | 73.2 87.9 | 84.1 | 86.2 84.9 | 81.1 | 80.8 83.4 | 81.1 | 80.7

C100 70.8 | 68.5 | 70.7 85.0 | 80.1 | 79.1 87.0 | 82.1 | 84.3 85.6 | 82.4 | 85.0

Tiny 72.3 | 66.4 | 70.1 83.6 | 79.2 | 83.2 85.3 | 80.1 | 83.4 87.9 | 84.0 | 86.6

Table 7. Comparison between (black) ours, (blue) BRP-NAS,
(red), MetaD2A.

6.3. Ablation

Tab. 6a highlights how the predictor significantly improves
the performance when trained and validated over the same
dataset (diagonal values) improving the baseline of more
than 3 %. If we focus on transferability, looking out of the
diagonal, we have even larger improvements, with gaps ex-
ceeding 9%. Consistent results are obtained in 6b with Pre-
cision@10 measure. Finally, Fig. 3c ablates on the early-
stopping mechanism we propose to employ in the NAS pro-
cedure. We can observe that if we use as training set the
accuracies the architectures have after the first drop of the
learning rate (epoch 40) the performance of the predictor

is not affected. This is further validated by Tab. 6a, which
compares our best results with and without early stopping.

7. Conclusions

In our work, we face the problem of analyzing the trans-
ferability of a predictor under data distribution shift. For
this reason, we created our small dataset composed of ar-
chitectures trained on four datasets. Our ranking analysis
on the trained networks showed an association between the
drop of the learning rate and the epoch where architectures
stop changing their ranking during training, highlighting
that top-performing architectures keep their ranking since
early training epochs, while the worst ones are such since
the early epochs. We moreover spotted that the ranking in-
duced by complex datasets generalizes better than those in-
duced by simple datasets. Given this, we improve the naive
predictor training by including the vertex shapes as input,
and employing an early stopping procedure. Our method
surpasses state-of-the art performance on predictor-based
algorithms addressed by distribution shifts. We believe that
such a result can help during the search phase of NAS, as
to get the true validation accuracy of the top-k ranked archi-
tectures to pick the best-performing ones the training can be
stopped early reducing significantly the searching time.

Limitations and future works Possible future works
could include enlarging the datasets by considering new
tasks such as object detection and new modalities such as
videos. Another interesting direction could be studying how
the method improves with the inclusion of gradients infor-
mation as input to the predictor.
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