
QuantNAS: Quantization-aware Neural Architecture Search For Efficient
Deployment On Mobile Device

Tianxiao Gao, Li Guo, Shanwei Zhao, Peihan Xu, Yukun Yang, Xionghao Liu,
Shihao Wang, Shiai Zhu, Dajiang Zhou

Ant Group
{juanji.gtx, li.gl, shanwei.zsw, yukun.yyk, peihan.xph, xionghao.lxh}@antgroup.com

{shihao.wsh, shiai.zsa, dajiang.dzj}@antgroup.com

Abstract

Deep convolutional networks are increasingly applied in
mobile AI scenarios. To achieve efficient deployment, re-
searchers combine neural architecture search (NAS) and
quantization to find the best quantized architecture. How-
ever, existing methods overlook the on-device implementa-
tion of quantization. The searching result is usually sub-
optimal or has limited latency reduction. To this end, we
propose QuantNAS, a novel quantization-aware NAS based
on a two-stage one-shot method. Different from the previ-
ous method, our method considers the on-device implemen-
tation of the quantized network and searches for the archi-
tecture from a fully quantized supernet. During training,
we propose a batch-statistics-based strategy to alleviate the
non-convergence problem. Besides, a scale predictor is
proposed and is jointly trained with the supernet. During
search, the scale predictor can provide optimal scale for dif-
ferent subnets without retraining. At different latency levels
on Kirin 9000 mobile CPU, the proposed method achieves
1.53%-1.68% Top-1 accuracy improvement on ImageNet
1K dataset and 1.7% mAP improvement.

1. Introduction

Convolutional neural networks (CNNs) are widely used in
mobile AI scenarios, serving thousands of users through ap-
plications. However, mobile devices usually have limited
resources. To achieve efficient deployment on mobile de-
vices, CNNs need to be carefully designed and then quan-
tized [3, 7, 13, 19, 21, 23, 24, 29–31]. Both processes rely
on experts’ experience and manual tuning, which need un-
acceptable development cost.

The combination of neural architecture search (NAS) [6,
9, 10, 32, 36, 37] and quantization is an efficient solu-
tion to reduce the cost. As shown in Figure 1, exist-
ing methods [1, 4, 8, 14, 35, 38–40] can be categorized

as NAS-then-quantize and Quantization-aware NAS. NAS-
then-quantize methods retrain the best searched floating-
point subnets into the quantized networks. However, the
accuracies of floating-point models and quantized models
are not always directly proportional. This not only brings
additional training cost, but also results in sub-optimal per-
formance. In contrast, Quantization-aware NAS directly
searches the best quantized subnet from a quantized super-
net and can obtain the optimal performance.

However, existing methods do not deliver expected la-
tency reduction on real devices. As can be seen in Fig-
ure 2, the searched subnet from existing methods is not fully
quantized during on-device deployment. When training the
quantized networks, FakeQuant operators are employed to
simulate the quantization. As illustrated in Figure 2, exist-
ing quantization-aware NAS methods only quantize opera-
tors with large FLOPs, such as convolutional (Conv) layers,
while ignoring other parts such as batch normalization (BN)
layers and pooling layers. This results in a non-fully quan-
tized model, leading to latency overhead in both floating-
point calculations and data conversion between floating-
point and fixed-point during practical deployment.

To this end, we propose QuantNAS, a quantization-
aware neural architecture search framework for efficient de-
ployment on mobile device. As shown in Figure 1, the pro-
posed method trains a fully quantized weight-sharing super-
net and searches the subnets for deployment directly from
the supernet without retraining. Searching on a quantized
supernet ensures that our method finds end-to-end optimal
structures. Besides, a fully quantized network offers 50.3%
latency reduction compared with a floating-point network,
which is much higher than the non-fully quantized network.

However, achieving fully quantization in NAS is chal-
lenging. As shown in Figure 2, in addition to quantizing all
operators, it is also necessary to consider the optimizations
during deployment, such as Conv-BN fusion. For efficient
deployment, Conv-BN fusion simplifies to a convolutional

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

1704

Floating-point
Supernet

Floating-point
Subnet

Fully Quantized
Subnet

Training
&

Search

Retraining

Non-fully Quantized
Supernet

Non-fully Quantized
Subnet

Fully Quantized
Supernet

Fully Quantized
Subnet

Training
&

Search

Training
&

Search

w/o
Retraining

w/o
Retraining

Latency
Reduction

Floating-Point
Non-fully
Quantized

Fully
QuantizedLegend

50.3% 3.4% 50.3%

NAS-then-quantize
Existing Quantization-

aware NAS
QuantNAS
(Proposed)

Limited Latency
Reduction

Sub-optimal
Result

Optimal Result &
High Latency Reduction

Figure 1. Overall framework of different combinations of
NAS and quantization. The latency reduction is evaluate with
Mobilenet-V2 [34] on Kirin 9000 mobile CPU.

layer by folding the original weights of Conv and the mov-
ing statistics of BN. Therefore, to simulate this behavior, we
need to quantize the folded weights during supernet train-
ing. This will bring two challenges for quantization-aware
NAS: 1) Training a fully quantized supernet is difficult
to converge: The moving statistics of BN directly affect the
value of the folded weights. For different subnets, the mov-
ing statistics vary greatly. It is impossible to update mov-
ing statistics separately for billions of subnets. If we only
update one moving statistic of the supernet across all sub-
nets, it will mislead the direction of supernet optimization.
2) A shared scale is not optimal during search: Scale
value that maps the floating-point number into a fixed-point
number is significant to the accuracy of a quantized net-
work. Previous methods [1, 14, 35, 38, 39] usually learn a
shared scale for all subnets during supernet training. How-
ever, during search phase of NAS, BN layers of sampled
subnets need to be calibrated [6]. After calibration, the
folded weights are changed correspondingly, and the shared
scale is obviously not suitable. Therefore, searching a quan-
tized subnet based on a mismatched scale will lead to non-
optimal results.

In order to address the first challenge, we propose a
batch-statistics-based strategy for stabilizing supernet train-
ing. Experimentally, we find that the moving statistics of the
subnets are more similar to the batch statistics of the super-
net than the moving statistics of the supernet. To make the
fully quantized supernet convergent, the folded weights are
computed with the batch statistics of the supernet instead of
the moving statistics of the supernet during supernet train-
ing. In addition, to solve the non-optimal scale problem
brought by learning a shared quantization scale, we pro-
pose a scale predictor for each quantized Conv-BN layer.

Supernet
Training

Subnet
Deployment

Conv

FakeQuant

BatchNorm

Pooling

Pooling

FakeQuant

FakeQuant

Quantized Conv

BatchNorm

Pooling

int8

fp32

fp32

fp32

Quantized
Pooling

int8

int8

int8

Ensure
Fully

Quantized

FakeQuant

input weight

BatchNorm

Conv

FakeQuant FakeQuant

input

batch
statistics

weight

folded weight

Quantized Conv

Existing Quantization-aware NAS

QuantNAS (proposed)

Figure 2. Comparison of training and inference between the pre-
vious works and out method.

The scale predictor is jointly trained with the supernet to
obtain optimal scale for different subnets. During search,
the scale of each subnet is calibrated adaptively with the
scale predictor based on the calibrated data. Benefiting from
the scale predictor, the accuracy of the subnets sampled
from the supernet can be improved without retraining. With
the aforementioned optimizations, QuantNAS achieves bet-
ter performance compared with the existing quantization-
aware NAS methods.

Our contributions can be summarized as follows:

• To the best of our knowledge, we are the first to consider
on-device implementation in quantization-aware NAS.
By ensuring the fully quantized supernet and subnets,
the proposed QuantNAS achieves better latency-accuracy
trade-off.

• We propose a batch-statistics-based training strategy and
a scale predictor to achieve both stable training and opti-
mal searching results.

• We conduct plentiful experiments to prove the effective-
ness of our method. On Kirin 9000 mobile CPU, the
quantized networks searched from our method achieve
1.53%-1.68% Top-1 accuracy improvement on ImageNet
1K dataset and 1.7% mAP improvement on COCO
dataset, compared with the state-of-the-art methods.

1705

𝜇!" 𝜎!"𝛽 𝛾

𝑤𝛾
𝜎!"

𝛽 −
𝛾𝜇!"
𝜎!"

Conv

EMA

FakeQuant

FakeQuant

Conv

inputs weights

outputs

Moving average
across all batch

Figure 3. Quantization of Conv-BN layer in stand-alone net-
works [19]. Stand-alone strategy uses moving average statistics
to compute the folded weights.

Layer5 Layer48

Figure 4. Cos similarity of moving std from different subnets.
Moving statistics of different subnets are not similar, training the
supernet with moving statistics across all subnets will lead to non-
convergence.

2. Background and related work
2.1. Network quantization

Network quantization [3, 7, 13, 19, 21, 23, 24, 29–31]
is widely used to accelerate deep neural networks. For
a floating-point activation or weight r, its corresponding
fixed-point number q under k bits can be formulated as:

q = Q(r, s) = ⌊clip(r
s
,−2k−1, 2k−1 − 1)⌉, (1)

where ⌊∗⌉ denotes the rounding-to-nearest function and s is
the scale value that maps the floating-point number into a
fixed-point number.

The scale value plays an important role in improving the
accuracy of quantized model. Early works utilized expo-
nential moving average of data to update the scale for acti-
vation quantization and use a pre-computed fixed scale for
weight quantization. Esser et al. [13] proposed LSQ to im-
prove the accuracy by learning the scale value during train-

ing. LSQ is commonly used in the subsequent quantization
methods and quantization-aware NAS methods.

For a fully quantized model, the parameters and statistics
of BN layer are folded into the weights and bias of Conv
layer for efficiency. As an operator to accelerate the conver-
gence of neural network training, BN layer [18] is widely
used in numerous networks [15, 17, 34]. The calculation of
BN layer with parameters γ and β can be formulated as:

y = γ
(x− µ)

σ
+ β, (2)

where µ and σ are the mean and standard deviation (which
we call it std in the following) of the input activations. Thus,
the folded weights wfold and bias bfold can be formulated
as:

wfold =
wγ

σMA
, bfold = −γµMA

σMA
+ β, (3)

where σMA and µMA are the moving average of std and
mean. Hence, the actual weights that need to be quantized
are the folded weights.

To accurately simulate quantization effects, the fusion of
Conv-BN layer is necessary to be simulated during training.
A standard strategy is given in [19] and is followed by the
subsequent works. As shown in Figure 3, fake quantization
operator is used to train the quantized model. Fake quan-
tization transfers the fixed-point number q into float-point
number r̂ by multiplying the scale s and performs backprop-
agation through straight through estimator [2]. The simula-
tion of Conv-BN fusion is realized by quantizing the folded
weight that combines the BN parameters. The quantized
Conv-BN layer is reduced to a simple Conv layer by folding
the moving statistics into the weights. The fake quantization
operator directly quantizes the folded weights to simulate
the inference behavior. Moving statistics of BN are updated
with the output feature across all batch data.

2.2. NAS and Existing quantization-aware NAS

Neural Architecture Search (NAS) demonstrates effective-
ness on automatically designing optimal network structures.
Early works on NAS utilized reinforcement learning over
a discrete set of candidate architectures [27, 33], so there
are computationally demanding. DARTS [28] relaxed the
search space to be continuous to obtain the best model by
gradient descent. However, there is additional development
cost because the searched architecture from DARTS need to
be retrained. Recent studies [6, 9, 10, 32, 36, 37] on NAS
trained a weight-sharing supernet in one-shot to save the
training cost and decoupled NAS in two stages of training
and searching.

Benefiting from the improvement of NAS, many works
focus on combining quantization with NAS to automatically
find the optimal quantized architecture. BATs [4] searched
an optimal cell structure and stacked it to construct quan-
tized models. APQ [39] trained a predictor to estimate

1706

Layer5 Layer48

Supernet Moving std
(mechanism as in

stand-alone quantization)

Supernet Batch std
(mechanism used in the

proposed method)

Figure 5. Cos similarity of moving std in subnets and moving std/batch std in supernet. Batch std is more similar to subnets’ moving std.

quantized accuracy and used a look-up table to compute the
latency of the models during search. The above methods
cannot directly sample a quantized model, so the obtained
architecture needs to be retrained to recover accuracy. To
reduce the development cost, recent works tried to train a
weight-sharing quantized supernet. OQAT [35] trained the
supernet with shared scale and improved performance of
low bits models by bit inheritance strategy. Bai et al. [[1]]
proposed a quantizer for activation quantization to alleviate
the unstable training problem for mix-precision supernet.
However, the searched models from these methods are not
fully quantized, which results in limited latency reduction.

3. Challenging in quantization-aware NAS

The training strategy as mentioned in Sec. 2.1 has proved
to be effective in the stand-alone quantized model, but it is
not suitable for a weight-sharing supernet. During each it-
eration of supernet training, a subnet is sampled from the
supernet to perform forward and backward propagation for
updating the shared weights. However, the subnets of the
supernet are diverse in input resolution, channel numbers,
depth, and expand ratios, so the moving statistics for each
subnets are commonly different. Figure 4 depicts the cos
similarity of moving std from 100 random sampled subnets.
It can be clearly seen that the moving std is various across
different subnets. As the depth increases, the similarity de-
creases further. The difference between subnets’ moving std
will bring two challenges to the quantization-aware NAS.

3.1. Non-convergence during training

It is unable to stash different moving statistics for different
subnets during supernet training since the search space of
the supernet contains numerous subnets. Thus, the moving
statistics of the shared BN layer in the supernet are updated
across different subnets during training. Figure 5 shows the
cos similarity between the moving std of the supernet and
the corresponding moving std of 50 randomly selected sub-
nets at different epochs during training. The chosen BN

layer is the same as Figure 4. As can be seen, there is a
large difference between the moving std in the supernet and
the moving std in the subnets. The difference is intensify as
the training progresses. This difference makes the weights
folded with the supernet’s moving std different from the ac-
tual folded weight in each subnet. So this training strategy
will mislead the direction of supernet optimization, result in
non-convergence of the supernet.

3.2. Non-optimal searching results

As mentioned in Sec. 2.1, LSQ [13] demonstrates superi-
ority in different works. Previous quantization-aware NAS
methods commonly employed LSQ in supernet by learn-
ing a shared scale for each layer. However, the shared scale
value learned by the LSQ quantizer during supernet training
is not optimal for each subnet. Due to the difference in mov-
ing statistics between supernet and subnets, BN calibration
is required to recover the performance as mentioned in [6].
According to Eq. 3, the folded weights of each subnet are
different after BN calibration. Therefore, the shared scale
is not the best for each subnets. Experimentally, the differ-
ence in the optimal scale can be up to 3 times, which brings
almost 2-bit precision loss. Detailed experiment results can
be found in supplementary material. Therefore, searching a
quantized subnet based on a mismatched scale will lead to
non-optimal results.

4. Framework

In this section, we present QuantNAS, a quantization-aware
NAS framework for efficient deployment on mobile de-
vice. As shown in Figure 6, to tackle the problems of non-
convergence during training and non-optimal searching re-
sults, the proposed framework jointly trains a scale predic-
tor with the supernet under a batch-statistics-based training
strategy. The batch-statistics-based training strategy and the
mechanism of the scale predictor will be described in detail
in Sec. 4.1 and 4.2. During search, the scale of each subnet
is calibrated with the scale predictor after BN calibration

1707

Contribution 1: batch-statistic for stably training

Quantized
Conv-BN
Quantized
Conv-BN

Stage 2

Quantized
Conv-BN

Block 2

Block m

Stage n

For training

Fold

Batch Statistics
(w/o moving average)

Linear Projection

folded
weights

calibrated scale

output

Contribution2:
Scale

Predictor

super-net
architecture

parameters
sampled from

super-net

𝛽
𝛾

𝑤𝑒𝑖𝑔ℎ𝑡
𝝈

Quantized Conv-BN Layer

FakeQ

Conv

FakeQ

Conv

Reduce Average

Reciprocal

𝛽, 𝛾, 𝜎 : parameters from BN
𝑀𝐴 : moving average

𝐹𝑎𝑘𝑒𝑄 : fake quantization operator

𝜇Folded

For search
BN Statistics

(w/ moving average)

𝜎!"𝜇!"
Folded

input
FakeQ

Figure 6. Framework of the proposed QuantNAS method. We train and search on a fully quantized supernet. We propose a batch-statistics-
based strategy for stably training. A scale predictor is jointly trained with the supernet and is used to calibrate the scale during search.

to improve the performance. In this manner, the proposed
framework is capable to find the optimal quantized archi-
tectures which can be directly deployed under different re-
source constraints without retraining.

4.1. Stable training with batch statistics

To tackle the problem of non-convergence during supernet
training, we investigate the similarity between the batch std
of the supernet and the corresponding moving std of the
subnets. To be specific, in each iteration, batch std is com-
puted with the input activations of the shared BN layer, and
moving std is calibrated with a set of data on the sampled
subnet. In Figure 5, we randomly select 50 iterations during
supernet training and depicts the similarity between batch
std of supernet and the moving std of the sampled subnets
in these iterations. It can be seen that the moving std of
different subnets is much more similar to the batch std of
supernet than the moving std of the supernet. The similarity
of batch std is over 0.999 on each epoch. Since the folded
weights of each subnets is computed with the moving std of
the subnets, using batch std of the supernet during training
can improve the accuracy of each subnet.

Based on this investigation, we propose a stable batch-
statistics-based training strategy for quantized supernet. As
shown in Figure 6, at each iteration in training, the weights
of the shared Conv layer and the parameters of the shared
BN layer are sampled based on the activated subnet. In-
stead of folding the moving std of the supernet, we fold
the std of the current batch into the sampled weights. The
fake quantization takes the folded weights as input and the
shared Conv-BN layer is reduced to a simple Conv layer to

simulate the inference behavior.

4.2. Adaptive scale with a robust predictor

We propose a scale predictor to tackle the non-optimal
searching results problem brought by BN calibration of sub-
nets. The proposed scale predictor adaptively calibrates the
optimal scale value for different subnets after BN calibra-
tion. To describe the cogitation in designing scale predic-
tor, we analyze the process of Conv-BN fusion. For the
Conv-Bn layer with input activation x, the output activation
y before fusion can be formulated as:

y = γ∗ ŵx̂− µ

σ
+β =

γŵ

σ
x̂−γµ

σ
+β =

γŵ

σ
x̂+bfold, (4)

where ŵ, x̂ are the quantized weight and input of the Conv
layer. During deployment, the folded bias b̂fold in Eq. 4
is commonly quantized into 16 or 32 bits and has limited
influence on accuracy. Therefore, we focus on the part of
γŵx̂/σ. For a well-trained quantized model, the expansion
form of Eq. 4 with scale s is:

y =
sγ

σ
⌊w
s
⌉x̂ (5)

Here, we omit the folded bias and the clipping value for
simplifying notification.

Now we consider the situation of quantizing the fused
Conv-BN layer. The folded weights which should be quan-
tized is wγ/σ. Supposing the channel number of the BN
layer is m, which means σ = [σ1, σ2, ..., σm] and γ =
[γ1, γ2, ..., γm]. If each element of σ is σ0 and each element
of γ is γ0, then the optimal scale sfold for the folded weights

1708

1
𝜎

𝛾

Mul

Mul

Reduce
Average

𝑓𝑎𝑐𝑡𝑜𝑟

Mul

𝑠

𝑠!"#$

1
𝜎

Mul

Reduce
Average

𝑠!"#$

merged𝜃

𝜃

Figure 7. Illustration of the proposed scale predictor. The scale is
predict with std σ and a trainable parameter θ.

can be simply reached by multiplying s with a transforma-
tion factor γ0/σ0. As formulated in Eq. 6, with optimal
scale sfold, the output activation of Conv-BN layer y is the
same as the one in Eq. 4.

y′ = sfold⌊
γw

σsfold
⌉x̂ =

γs

σ
⌊γw
σ

σ

γs
⌉x̂ =

sγ

σ
⌊w
s
⌉x̂ (6)

Unfortunately, the value of each element in σ or γ is typ-
ically different in the network. Hence, the role of the scale
predictor is to extract a transformation factor from the vec-
tor [γ1/σ1, γ2/σ2, ..., γm/σm] to minimize the loss of the
quantized network.

As shown in Figure 6, scale predictor employs
a trainable parameter θ to map the input vector
[γ1/σ1, γ2/σ2, ..., γm/σm] into output coefficients f =
[f1, f2, ..., fm]. The optimal scale for folded weights is ob-
tained by multiplying the scale s and the reduce average
of the coefficients f . For a well-trained quantized network
fixed to be deployed, s and γ are fixed values. So we con-
vert the scale predictor by merging γ and s into the param-
eter θ. The converted scale predictor can directly map the
std statistics into the optimal scale. In this manner, the pro-
posed scale predictor can learn a more flexible transforma-
tion. The formulation of the scale predictor is:

spred =

m∑
i

θi
σi

. (7)

The trainable parameter θ is shared across different subnets,
which is consistent with the weight-sharing scheme of the
supernet.

The mechanism of scale predictor can perfectly cooper-
ate with weight-sharing supernet. According to Eq. 6 and 7,
scale predictor has generalization when the value of each σi

is linearly enlarged. As described in Sec. 4.1, the batch std
of supernet is consistent with the moving std of subnets af-
ter normalization, since they have a high cosine similarity.

Methods Kendall Tau (τ)

FQ SP Cifar10 Cifar100 ImageNet sub-100

× × 0.78 0.69 0.72
✓ × 0.75 0.73 0.69
✓ ✓ 0.91 0.84 0.87

Table 1. Comparison of model ranking with different methods.
‘FQ’ represents fully-quantized, ‘SP’ represents scale predic-
tor.

Method GPU hours

APQ 2400
OQAT 2400

BatchQuant 1805

Ours 1728

Table 2. Training cost comparison with the state-of-the-
art quantization-aware NAS.

To this end, taking batch std as input during training will
lead to stable convergence of scale predictor. Moreover, the
calibrated scale is the mean value of the output vector. Thus
the scale is not corresponding to the number of channels
that are different in each subnets.

For the initialization of the scale predictor, we compute
an init scale value by minimizing the mean square error of
the fixed-point and floating-point fold weights. The param-
eter θi is initialized with the following formula:

θi = sinit
σi

γi
, (8)

where σi is computed with few calibration data and γi is
reloaded from the floating-point supernet. This initializa-
tion manner ensures that each element of the output vector
f has the same contribution to the calibrated scale at the
beginning of the training process.

5. Experiment
5.1. Experiment settings

Search space: The same with [1] and [35], we build our
search space based on the Mobilenet-V3 [16] structure. Our
search space contains multiple stages, each stage stacks
different numbers of inverted blocks which have alterna-
tive input resolution, number of channels, kernel size, and
expand ratios. We remove the Squeeze-Extraction (SE)
block and replace the Hard-swish activation function with
quantization-friendly ReLU function in our search space.

Dataset: We demonstrate the effectiveness of the pro-
posed method on image classification and object detection
tasks. We choose ImageNet 1K [12] dataset for classifica-
tion and COCO [25] dataset for object detection. For the

1709

0 20 40 60 80 100 120 140 160
Epoch

0

1

2

3

4

5
Lo
ss

loss @ moving std
loss @ batch std

Figure 8. Comparison of training loss between folding moving
std and batch std. The proposed batch-statistics-based strategy can
lead to convergence.

10 15 20 25 30 35 40
Latency (ms)

55

60

65

70

75

80

To
p-
1
Ac
c
ra
cy
 (%

)

training with shared scale
training with scale predictor

Figure 9. Pareto frontier of training with shared scale and the pro-
posed scale predictor. The performance of training with scale pre-
dictor is superior.

ablation study in Sec. 5.2 and 5.3, we perform plentiful ex-
periments on ImageNet sub-100, Cifar10 and Cifar100 [22]
datasets. As in [32], the ImageNet sub-100 dataset is sam-
pled from ImageNet 1K containing 100 categories, each cat-
egory includes 250 training images and 50 validation im-
ages.

Quantization policy: During our experiment, we use
a uniform symmetric quantization policy with a per-tensor
scale. All the layers are quantized into 8-bit, since most
hardware only supports 8-bit integer arithmetic. Previous
works typically perform low-bit (e.g. 2, 3 or 4-bit) quan-
tization, which this not only fails to reduce the on-device
latency but also negatively impacts accuracy.

Training setting: The weight-sharing supernet is trained
on 8 A100 GPUs for 180 epochs and the mini-batch size
is 128 on each GPU. We use the SGD optimizer with the
learning rate starting from 0.04. The learning rate is updated
with the cosine decay. The momentum is set to 0.9 with
10−5 weight decay. The sandwich rule [41] is employed
during training for fast convergence.

Search: During search, we utilize the evolutionary
search strategy [6]. The evolutionary search is performed
with 512 initial populations for 20 generations. For each
generation, the mutate prob and the crossover prob are set
to 0.2 and 0.25 respectively. Instead of using BitOps or the
latency computed from a look-up table as a proxy as pre-
vious methods [1, 35, 39] did, we directly search the net-
works with the on-device latency. The latency is evaluated
on Kirin 9000 CPU mobile device with tensorflow lite [11].

0 2 4 6 8
Sub-network Inde

0.15

0.20

0.25

0.30

Sc
al
e
Va

lu
e

scale @ finetune
scale @ predictor

0 2 4 6 8
Sub-network Inde

0.15

0.20

0.25

0.30

Sc
al
e
Va

lu
e

scale @ finetune
scale @ predictor

Figure 10. Comparison of the scale value from scale predictor
and fintuned models.The calibrated scale is almost the same with
ground-truth.

5.2. Effectiveness of batch-statistics-based training
strategy

We compare the loss of training supernet with the moving
statistics and the proposed batch statistics. As depicted in
Figure 8, the loss trained with the moving statistics diverges
after a few epochs, since the moving statistics in the su-
pernet are not similar to the moving statistics in subnets.
In contrast, the proposed strategy benefits from the high
similarity between batch statistics in supernet and moving
statistics in subnets, results in good convergence to super-
net training.

5.3. Effectiveness of scale predictor

5.3.1 Model ranking

Model ranking refers to the ranking correlation between the
architecture accuracy predicted from the NAS method and
the ground truth accuracy by training from scratch. It is an
important indicator to evaluate the performance of the NAS
method as described in many articles [6, 9, 10, 32, 36, 37].
To demonstrate the effectiveness of the proposed scale pre-
dictor, we adopt Kendall coeffcient [20] to compare the
ranking on 20 randomly sampled architectures. As shown
in Table1, benefiting from the scale predictor, the pro-
posed methods achieve the best model ranking, which is
11%∼18% higher than training with a shared scale on dif-
ferent datasets. This proves that the proposed method can
find a more optimal structure by taking advantage of the
scale predictor. Another finding is that the non-fully quan-
tized method achieves lower ranking, which indicates that
the existing quantization-aware NAS will result in sub-
optimal performance.

5.3.2 Pareto frontier

In figure 9, we verify the Pareto frontier of training the su-
pernet with scale predictor and the one training with shared
scale on ImageNet sub-100 dataset. More experiment re-
sults on Cifar10 and Cifar100 can be found in supplemen-
tary material. It can be seen that the structures on Pareto
frontier of training with scale predictor have better perfor-
mance than that of training with the shared scale. Under

1710

5 10 15 20 25 30 35
Latency (m() @ Kirin 9000 CPU

64

66

68

70

72

74

76

To
p-
1
Ac

cu
ra
cy
 (%

)

Quan)NAS
APQ
OQAT
Ba)chQuan)
Pr%xylessNAS
Once-f%r-all

Figure 11. Comparison of the Pareto frontier on ImageNet-1K dataset. ‘•’ represents quantization-aware NAS methods, ‘×’ represents
NAS-then-quantize methods.

the 40 ms latency target, the accuracy of the best architec-
ture searched from the proposed method is 75.37%, which
is 4.4% higher than that of the shared scale. This result
shows the scale predictor can predict an optimal scale value
for each subnet, resulting in better searching performance.

5.3.3 Robustness of scale predictor

To prove the robustness of the scale predictor, we randomly
selected 10 subnets for only finetuning scale values. After
performing BN calibration, we fix the weights of Conv and
the BN statistics of each subnet, only updating the scale
value with the LSQ quantizer. In Figure 10, a comparison of
the finetuned scale and the calibrated scale in the 5th layer
and 48th layer is depicted. As can be seen, the calibrated
scale and the fine-tuned scale are nearly the same. In the
randomly sampled subnets, the average relative error across
all Conv-BN layers is 6.97%, which brings only 0.097 bits
precision loss. This result proves that the scale calibrated
by the proposed scale predictor is optimal and can recover
the performance of subnets.

5.4. Comparison with SOTA methods

To demonstrate the superiority of the proposed method, we
search for the quantized model under 25 ms latency target
and compare the results with the state-of-the-art methods.
On ImageNet-1K dataset, we compare our method with
the NAS-then-quantized [5, 6] and existing quantization-
aware NAS methods [1, 35, 39]. All the results are from
our re-implementations, which keep the same quantiza-
tion policy as our method. As shown in Figure 11, our
method demonstrates the best searching performance. Ex-
isting quantization-aware NAS methods suffer from not be-
ing fully quantized, resulting in a worse latency-accuracy
trade-off on real devices. Under 5ms, 15ms and 25ms la-
tency constraints, the best models from our method achieve
67.28%, 73.10% and 74.51% accuracy respectively, which
is 1.69%, 1.53% and 1.68% higher than the SOTA results.
The design costs comparison with the quantization-aware
NAS methods is shown in Table 2, our method can achieve
better performance with lower cost.

mAP mAP 0.5 mAP 0.75 latency (ms)

ResNet-18 0.247 0.411 0.254 26.05
BatchQuant 0.255 0.425 0.263 24.72

Ours 0.264 0.434 0.273 23.85

Table 3. Performance on object detection task.

To verify the generalizability of our method, we evalu-
ated the performance on object detection task with COCO
dataset. The backbone of detection network is pretrained
from ImageNet and BatchQuant [1] achieves the best re-
sult among the existing methods on ImageNet-1K. There-
fore, we choose ResNet-18 [15] and the best models un-
der 25ms latency from BatchQuant and our method to re-
place the backbone of RetinaNet [26]. All the networks are
trained for 20 epochs. As shown in Table 3, benefiting from
the fully quantization of the network, the mean average
precision of our method is 0.9% higher than BatchQuant
and 1.7% higher than ResNet-18. This experimental result
proves that our method can achieve better performance on
different tasks.

6. Conclusion

In this paper, we propose QuantNAS, a novel quantization-
aware neural architecture search framework for efficient de-
ployment on mobile device. The proposed framework can
find the optimal quantized model under different resource
constraints. By guaranteeing a fully quantized supernet, the
sampled subnets can be directly deployed on different de-
vices without retraining. To tackle the problems brought
by Conv-BN fusion, we proposed a batch-statistics-based
training strategy for stabilizing supernet training. A scale
predictor is proposed to calibrate the scale of each subnet.
With plentiful experiments, we prove the effectiveness of
the proposed batch-statistics-based training strategy and the
scale predictor. Our framework can improve the perfor-
mance of the quantized model on different tasks compared
with other methods.

1711

References
[1] Haoping Bai, Meng Cao, Ping Huang, and Jiulong Shan.

Batchquant: Quantized-for-all architecture search with ro-
bust quantizer. Advances in Neural Information Processing
Systems, 34:1074–1085, 2021. 1, 2, 4, 6, 7, 8

[2] Yoshua Bengio, Nicholas Léonard, and Aaron Courville.
Estimating or propagating gradients through stochastic
neurons for conditional computation. arXiv preprint
arXiv:1308.3432, 2013. 3

[3] Yash Bhalgat, Jinwon Lee, Markus Nagel, Tijmen
Blankevoort, and Nojun Kwak. Lsq+: Improving low-bit
quantization through learnable offsets and better initializa-
tion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition Workshops, pages 696–
697, 2020. 1, 3

[4] Adrian Bulat, Brais Martinez, and Georgios Tzimiropoulos.
Bats: Binary architecture search. In European Conference
on Computer Vision, pages 309–325. Springer, 2020. 1, 3

[5] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct
neural architecture search on target task and hardware. arXiv
preprint arXiv:1812.00332, 2018. 8

[6] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and
Song Han. Once-for-all: Train one network and specialize it
for efficient deployment. arXiv preprint arXiv:1908.09791,
2019. 1, 2, 3, 4, 7, 8

[7] Yaohui Cai, Zhewei Yao, Zhen Dong, Amir Gholami,
Michael W Mahoney, and Kurt Keutzer. Zeroq: A novel
zero shot quantization framework. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 13169–13178, 2020. 1, 3

[8] Hongjiang Chen, Yang Wang, Leibo Liu, Shaojun Wei, and
Shouyi Yin. Hqnas: Auto cnn deployment framework for
joint quantization and architecture search. arXiv preprint
arXiv:2210.08485, 2022. 1

[9] Xiangxiang Chu, Bo Zhang, Qingyuan Li, Ruijun Xu, and
Xudong Li. Scarlet-nas: bridging the gap between stability
and scalability in weight-sharing neural architecture search.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 317–325, 2021. 1, 3, 7

[10] Xiangxiang Chu, Bo Zhang, and Ruijun Xu. Fairnas: Re-
thinking evaluation fairness of weight sharing neural archi-
tecture search. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 12239–12248,
2021. 1, 3, 7

[11] Robert David, Jared Duke, Advait Jain, Vijay Janapa Reddi,
Nat Jeffries, Jian Li, Nick Kreeger, Ian Nappier, Meghna Na-
traj, Tiezhen Wang, et al. Tensorflow lite micro: Embedded
machine learning for tinyml systems. Proceedings of Ma-
chine Learning and Systems, 3:800–811, 2021. 7

[12] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 6

[13] Steven K Esser, Jeffrey L McKinstry, Deepika Bablani,
Rathinakumar Appuswamy, and Dharmendra S Modha.
Learned step size quantization. arXiv preprint
arXiv:1902.08153, 2019. 1, 3, 4

[14] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng,
Zechun Liu, Yichen Wei, and Jian Sun. Single path one-
shot neural architecture search with uniform sampling. In
European conference on computer vision, pages 544–560.
Springer, 2020. 1, 2

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 3, 8

[16] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh
Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,
Ruoming Pang, Vijay Vasudevan, et al. Searching for mo-
bilenetv3. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 1314–1324, 2019. 6

[17] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017. 3

[18] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In International conference on machine learn-
ing, pages 448–456. PMLR, 2015. 3

[19] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu,
Matthew Tang, Andrew Howard, Hartwig Adam, and Dmitry
Kalenichenko. Quantization and training of neural networks
for efficient integer-arithmetic-only inference. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 2704–2713, 2018. 1, 3

[20] Maurice G Kendall. A new measure of rank correlation.
Biometrika, 30(1/2):81–93, 1938. 7

[21] Raghuraman Krishnamoorthi. Quantizing deep convolu-
tional networks for efficient inference: A whitepaper. arXiv
preprint arXiv:1806.08342, 2018. 1, 3

[22] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 7

[23] Yuhang Li, Xin Dong, and Wei Wang. Additive powers-of-
two quantization: An efficient non-uniform discretization for
neural networks. arXiv preprint arXiv:1909.13144, 2019. 1,
3

[24] Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi
Zhang, Fengwei Yu, Wei Wang, and Shi Gu. Brecq: Pushing
the limit of post-training quantization by block reconstruc-
tion. arXiv preprint arXiv:2102.05426, 2021. 1, 3

[25] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
Computer Vision–ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part V 13, pages 740–755. Springer, 2014. 6

[26] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollár. Focal loss for dense object detection. In Pro-
ceedings of the IEEE international conference on computer
vision, pages 2980–2988, 2017. 8

[27] Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha
Fernando, and Koray Kavukcuoglu. Hierarchical repre-
sentations for efficient architecture search. arXiv preprint
arXiv:1711.00436, 2017. 3

1712

[28] Hanxiao Liu, Karen Simonyan, and Yiming Yang.
Darts: Differentiable architecture search. arXiv preprint
arXiv:1806.09055, 2018. 3

[29] Markus Nagel, Mart van Baalen, Tijmen Blankevoort, and
Max Welling. Data-free quantization through weight equal-
ization and bias correction. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 1325–
1334, 2019. 1, 3

[30] Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Chris-
tos Louizos, and Tijmen Blankevoort. Up or down? adap-
tive rounding for post-training quantization. In International
Conference on Machine Learning, pages 7197–7206. PMLR,
2020.

[31] Markus Nagel, Marios Fournarakis, Yelysei Bon-
darenko, and Tijmen Blankevoort. Overcoming oscil-
lations in quantization-aware training. arXiv preprint
arXiv:2203.11086, 2022. 1, 3

[32] Houwen Peng, Hao Du, Hongyuan Yu, Qi Li, Jing Liao, and
Jianlong Fu. Cream of the crop: Distilling prioritized paths
for one-shot neural architecture search. Advances in Neural
Information Processing Systems, 33:17955–17964, 2020. 1,
3, 7

[33] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V
Le. Regularized evolution for image classifier architecture
search. In Proceedings of the aaai conference on artificial
intelligence, pages 4780–4789, 2019. 3

[34] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 4510–4520, 2018. 2, 3

[35] Mingzhu Shen, Feng Liang, Ruihao Gong, Yuhang Li,
Chuming Li, Chen Lin, Fengwei Yu, Junjie Yan, and Wanli
Ouyang. Once quantization-aware training: High perfor-
mance extremely low-bit architecture search. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 5340–5349, 2021. 1, 2, 4, 6, 7, 8

[36] Xiu Su, Shan You, Mingkai Zheng, Fei Wang, Chen Qian,
Changshui Zhang, and Chang Xu. K-shot nas: Learnable
weight-sharing for nas with k-shot supernets. In Interna-
tional Conference on Machine Learning, pages 9880–9890.
PMLR, 2021. 1, 3, 7

[37] Dilin Wang, Meng Li, Chengyue Gong, and Vikas Chandra.
Attentivenas: Improving neural architecture search via atten-
tive sampling. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 6418–
6427, 2021. 1, 3, 7

[38] Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han.
Haq: Hardware-aware automated quantization with mixed
precision. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 8612–
8620, 2019. 1, 2

[39] Tianzhe Wang, Kuan Wang, Han Cai, Ji Lin, Zhijian Liu,
Hanrui Wang, Yujun Lin, and Song Han. Apq: Joint search
for network architecture, pruning and quantization policy. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 2078–2087, 2020. 2, 3,
7, 8

[40] Bichen Wu, Yanghan Wang, Peizhao Zhang, Yuandong Tian,
Peter Vajda, and Kurt Keutzer. Mixed precision quantiza-
tion of convnets via differentiable neural architecture search.
arXiv preprint arXiv:1812.00090, 2018. 1

[41] Jiahui Yu, Pengchong Jin, Hanxiao Liu, Gabriel Bender,
Pieter-Jan Kindermans, Mingxing Tan, Thomas Huang, Xi-
aodan Song, Ruoming Pang, and Quoc Le. Bignas: Scaling
up neural architecture search with big single-stage models.
In European Conference on Computer Vision, pages 702–
717. Springer, 2020. 7

1713

	. Introduction
	. Background and related work
	. Network quantization
	. NAS and Existing quantization-aware NAS

	. Challenging in quantization-aware NAS
	. Non-convergence during training
	. Non-optimal searching results

	. Framework
	. Stable training with batch statistics
	. Adaptive scale with a robust predictor

	. Experiment
	. Experiment settings
	. Effectiveness of batch-statistics-based training strategy
	. Effectiveness of scale predictor
	Model ranking
	Pareto frontier
	Robustness of scale predictor

	. Comparison with SOTA methods

	. Conclusion

