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Abstract

Recently, zero-cost proxies for neural architecture search
(NAS) have attracted increasing attention. They allow us
to discover top-performing neural networks through archi-
tecture scoring without requiring training a very large net-
work (i.e., supernet). Thus, it can save significant com-
putation resources to complete the search. However, to
our knowledge, no single proxy works best for different
tasks and scenarios. To consolidate the strength of differ-
ent proxies and to reduce search bias, we propose a uni-
fied proxy neural architecture search framework (UP-NAS)
which learns a multi-proxy estimator for predicting a uni-
fied score by combining multiple zero-cost proxies. The pre-
dicted score is then used for an efficient gradient-ascent ar-
chitecture search in the embedding space of the neural net-
work architectures. Our approach can not only save com-
putational time required for multiple proxies during archi-
tecture search but also gain the flexibility to consolidate
the existing proxies on different tasks. We conduct exper-
iments on the search spaces of NAS-Bench-201 and DARTS
in different datasets. The results demonstrate the effec-
tiveness of the proposed approach. Code is available at
https://github.com/AI-Application-and-
Integration-Lab/UP-NAS.

1. Introduction
Neural architecture search (NAS) is an automated machine
learning method that aims to find optimal model structures
by searching the neural network architecture space. Tradi-
tional deep learning models require experts to design the
model structure. NAS simplifies this process by automat-
ically exploring the search space to generate architectures
that are better than those designed manually.

Existing NAS approaches can generally be divided into
three categories: multi-shot NAS, one-shot NAS, and zero-
shot NAS. Multi-shot NAS involves training multiple can-
didate architectures, which is time-consuming. To allevi-
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Figure 1. The illustration of the architecture of the proposed
Multi-Proxy Estimator (MPE) and the Unified Proxy (UP). The
proposed MPE consists of a pretrained Architecture Encoder and
MLP. Moreover, the MPE and UP provide a novel and effective
way to consolidate the strengths of multiple zero-cost proxies for
improved neural architecture search.

ate this issue, one-shot NAS was proposed and has become
a more commonly adopted approach. It constructs a big
model called supernet which is the union of the architec-
ture search space. After training the supernet and leverag-
ing some search strategies, we can obtain the optimal ar-
chitecture. One-shot NAS can be roughly categorized into
two groups: Differentiable NAS and Single-path NAS. Dif-
ferentiable NAS, such as DARTS [18] and β-DARTS [41],
use gradient descent algorithms to train a supernet, obtain-
ing optimal architecture directly after training. Single-path
NAS, such as SPOS [9] and ENAS [25], randomly chooses
a path in the supernet and only updates the weights along
the path. By employing these NAS solutions, we can obtain
better-performed architectures after some searching mecha-
nisms like Random Search or Evolutionary Search.

However, these methods still require a large amount of
computational resources and longer training time. There-
fore, zero-cost proxy (or training-free NAS) has emerged as
a promising technique to improve the efficiency and scal-
ability of NAS. It has the potential to enable more com-
plex and comprehensive searches of the neural architecture
space. Previous works [1, 17, 20, 23] have demonstrated
the effectiveness of zero-cost proxy in enhancing the search
efficiency of various NAS methods. Although it lessens the
computational burden, a main issue of the current training-
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free NAS is that, despite various zero-cost proxies have
been proposed, each proxy performs well for only specific
cases [12]. A recent study in [2] learns to compose a set
of operations based on an existing NAS benchmark to form
the zero-cost proxy. Nevertheless, the method only provides
rank-correlation performance on the adopted NAS bench-
mark without providing evidence of its generalization abil-
ity to other search spaces or datasets.

Since no single proxy is useful for all benchmark data,
we propose to ensemble them to form the Unified Proxy
(UP). To enlarge the resolution of the architecture search
space and make the architectures compactly accessible, we
propose a framework to explore the use of multiple prox-
ies to further improve the accuracy and rank correlation of
NAS. The main idea is to predict the representative proxy
score of a given network architecture. To achieve this goal,
we leverage the multiway learning paradigm to simultane-
ously predict the scores of multiple proxies and to consol-
idate them. For the shared architecture representation, we
first train an autoencoder that can effectively represent an
architecture as an embedding using its encoder, and then re-
construct the original architecture from the embedding us-
ing its decoder similar to arch2vec [40]. Then, the learned
autoencoder allows us to express an architecture as a com-
pact and differentiable embedding representation which can
be concatenated with other network models for NAS. In our
method, we concat architecture encoder with another multi-
layer perceptron (MLP) network as a surrogate model to
form a Multi-Proxy Estimator (MPE) and predict the UP
score, which is a composite of multiple proxy scores. At
last, we employ the gradient ascent technique to find out
the high-UP-score architecture. Through experiments us-
ing the search space of NAS-Bench-201 [8] (on CIFAR-10,
CIFAR-100, and ImageNet-16-120) and DARTS [18] (on
ImageNet), the results show that UP-NAS is able to search
comparable architecture to other state-of-the-art NAS meth-
ods while having faster search speed than the evolutionary
and random search algorithms. Specifically, when apply-
ing our framework to the searched architecture on DARTS-
CIFAR-10 with the proposed weighted proxies and selected
proxies, we can achieve SOTA error rates of 23.5% on the
DARTS search space for ImageNet.

Main contributions of the proposed method are two-fold.
First, the proposed Multi-Proxy Estimator (MPE) can faith-
fully predict the scores of each zero-cost proxy and combine
the each proxy into an enhanced score. Next, MPE allows a
more effective and faster search of the optimal architecture
through gradient ascent operations than traditional random-
based and evolutionary-based search methods.

2. Related Work
Due to a large number of related works in the literature, we
briefly introduce the recent relevant approaches below.

2.1. Predictor-based NAS

There are several existing NAS methods that utilize an ex-
ternal predictor to predict the performance of a neural archi-
tecture before training. NAO [21] converts discrete archi-
tecture encoding space into a continuous embedding space
using a pair of architecture encoder and decoder, and con-
ducts architecture search on the embedding space with the
guidance of a performance predictor. To be specific, they
utilize the performance predictor reversely such that archi-
tecture embedding is modified according to its gradient.
BRP-NAS [5] uses Graph Convolution Network (GCN) to
extract features from an architecture encoding with a bi-
nary relation aware training approach. NPENAS [35] en-
hances the exploration ability of conventional evolutionary
approach by incorporating a neural predictor to guide the
architecture search. SemiAccessor [31] and SemiNAS [22]
are methods that use semi-supervised learning to train the
predictor. GMAE [10] proposes a self-supervised method to
pretrain the predictor with untrained architectures for reduc-
ing the dependence on supervision data and performance
enhancement. FBNetV3 [7] utilizes a surrogate model to
estimate the performance of an architecture with the consid-
eration of the training hyperparameters, allowing a simulta-
neous search of optimal architecture and its training hyper-
parameters. NAR-Former [42] applies a tokenizer to encode
operation and topology information of the neural network
into sequence and adapts a multi-stage fusion transformer
to learn the vector representation from the sequence.

As compared to NAO which heavily relies on the
ground-truth validation accuracies for training, our ap-
proach leverages arch2vec [40], learning an architecture au-
toencoder to extract an architecture embedding in an unsu-
pervised manner. In addition, we propose a novel multi-
proxy estimator to consolidate multiple zero-cost proxy
scores. This allows the proposed approach to conduct a
more unbiased architecture performance estimation and to
enable a precise and compact architecture search through
the gradient ascent strategy.

2.2. Zero-Cost Proxies

Zero-Cost Proxies aim to accurately calculate the quality of
an architecture without the need for training. The existing
proxies can be divided into two classes: gradient-based and
gradient-free based [15].
Gradient-based Proxy. This type of proxies attempts to
measure the parameter importance through gradients. Grad-
norm [1] calculates the sum for each layer’s gradient, de-
fined as Grad(θ) = |∂L∂θ |, where L is the loss function
of a network with parameters θ. Snip [14] multiplies the
value of the parameter and the corresponding gradient to
measure importance both in forward and backward prop-
agation, which is defined as Snip(θ) = |∂L∂θ ⊙ θ|. Syn-
flow [30] computes a loss simply to be the product of all
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Figure 2. The proposed Unified-Proxy Neural Architecture Search (UP-NAS) where we introduce a Multi-Proxy Estimator (MPE) and
Unified Proxy (UP) score. The details can be found in the Section 3.

parameters in the network. Similar to SNIP, it is defined
as Synflow(θ) = ∂L

∂θ ⊙ θ. Grasp [33] approximates the
change in gradient norm. It calculates the product of the
Hessian matrix and the gradients, defined as Grasp(θ) =
−(H ∂L

∂θ )⊙θ, where H is the hessian matrix of the network.
Fisher information [19, 32] can measure the importance of
the parameters in a network. Jacobian Covariant [23] is
another proxy that reflects the expressiveness of deep net-
works. Zen-Score [17] is a metric that quantifies the expres-
sivity of a deep neural network by averaging the Gaussian
complexity of linear function in each linear region.
Gradient-free Proxy. In NASWOT [23], a simple algo-
rithm is proposed for searching powerful neural networks
without training by incorporating a measure of activation
overlaps between datapoints in untrained networks. In EPE-
NAS [20], the authors introduce an efficient performance
estimation strategy that scores untrained networks by ana-
lyzing intra and inter-class correlations.

In our work, we adopt the implementation of zero cost
proxies by NASLib [12, 26], including grad-norm [1],
snip [14], synflow [30], grasp [33], fisher [32], jacov [23],
zen-score [17], nwot [23], epe-nas [20], flops [24], l2-
norm [1], params [24] and plain [1].

Currently, several NAS methods have already utilized
zero-cost proxies to assist their search process. TE-NAS [6]
is a training-free NAS that iteratively prunes paths from

a supernet, according to their ranking relationship of two
zero-cost metrics. ProxyBO [28] develop a sophisticated
approach to combine and dynamically adjust the weight
of existing zero-cost proxies, and use Bayesian Optimiza-
tion for search. ZeroCost-PT [36] improves DARTS-
PT [34] by substituting zero-cost proxy for validation ac-
curacy. Recently, Sun et al. [29] propose ξ-based gradi-
ent signal-to-noise ratio (ξ-GSNR), combining with prun-
ing/evolutionary algorithm to search better architectures.
DELE [43] is a predictor-based method that “warms up”
the predictor before training it with the actual performance
to circumvent the need for a large amount of expensive label
data.

Our method simply combines different zero-cost proxies
by adding them with a set of fixed combination weights,
which is easily scalable and effective.

3. Method
In this section, we introduce UP-NAS, a novel gradient-
ascent learning framework that utilizes a unified zero-cost
proxy score to search for an architecture. Our unified proxy
is a combination of M zero-cost proxies. The combina-
tion coefficients Λ = [λ1, λ2...λM ] are learned based on
a small existing NAS-benchmark (eg., NAS-Bench-201-
CIFAR-10) with an order-preserving loss, and then applied
to all other unseen architecture spaces. To avoid exhausted
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evaluations for the M zero-cost proxies of the architectures
encountered in the search process every time, we propose
MPE, an estimator for the multiway zero-cost proxies. It
consists of an architecture-to-vector (arc2vec) encoder net-
work and a multi-layer perceptron (MLP), which estimates
the scores obtained by the M proxies, respectively, of the
input architecture. More details of the MPE module are il-
lustrated in Figure 2.

3.1. Problem Formulation

A proxy is defined as a function that maps an architecture to
a real number: fzc : A → R. Studies have found a signifi-
cant relationship between several zero cost proxies and the
actual performance of an architecture, i.e., the proxy score
of a set of architecture and the actual performance of them
are highly rank correlated [1, 2, 12, 17, 20, 23]. On the other
hand, the study in [12] indicates that there is a certain de-
gree of complementarity among several existing zero cost
proxies; we therefore combine them through our method.
Assuming that we have M different proxies, the objective is
to find the architecture with the highest unified proxy which
is weighted sum of the existing proxies,

max
A

UP(A) = max
A

M∑
i=1

λi · f i
zc(A). (1)

3.2. Preliminary

We adopt the implementation of Variational Graph Iso-
morphism Autoencoder (VGAE) [11] by [40] to transform
the architecture search space into a continuous embedding
space. Our search space is cell-based with each cell ex-
pressed by a labeled Directed Acyclic Graph (DAG) de-
noted as G = (V, E), where V represents a set of N vertices,
and E represents a set of labeled edges. Each edge is linked
to a label selected from a set of K predefined operations.
We use an upper triangular adjacency matrix A ∈ RN×N

and an one-hot operation matrix X ∈ RN×K to encode
cell-based neural architectures.

The adjacency matrix is augmented by adding its trans-
pose, denoted as Ã = A + AT . The architecture encoder
and decoder used in our approach are depicted below, where
the former converts an input architecture to a feature em-
bedding Z ∈ R(N×F )×1, F is the dimension of each node
embedding, and the latter maps the embedding back to an
architecture.
Architecture Encoder. Given the adjacency matrix Ã
and the one-hot encoded operation matrix X, the en-
coder model is defined as: Enc(Ã,X) = N (Z|µ, σ2) =∏N

i=1 N (zi|µi, diag(σ
2
i )), where we realize the Enc(·, ·)

using the same setting as Yan et al. [40] to exploit an L-
layer Graph Isomorphism Networks (GINs) [38]. The mean
and the standard deviation of the encoder are computed as
µ = GINµ(Ã,X), σ = GINσ(Ã,X). zi is a stochastic

Figure 3. Architecture Autoencoder. We adopt a pretrained ar-
chitecture autoencoder from VGAE [11] to transform architecture
into a continuous space.

latent vector with a dimension of F , and Z is an N ×F ma-
trix summarizing zi. In the inference stage, we flatten µ to
obtain the vector Z as the training data of our Multi-Proxy
Estimator.
Architecture Decoder. Given the latent matrix Z, the
decoder aims to reconstruct Â and X̂, and the decoder
model is defined as follows: Dec(Z) = p(Â, X̂|Z) =

p(Â|Z)p(X̂|Z), where p(·) denotes a probability den-
sity function, and the reconstructed Â can be sampled
from: p(Â|Z) =

∏N
i=1

∏N
j=1 p(Ãij |zi, zj),with p(Âij =

1|zi, zj) = ω(zTi zj), where ω(·) is the sigmoid activa-
tion. Similarly, the reconstructed X̂ can be sampled from
p(X̂ = [k1, ..., kN ]T |Z) =

∏N
i=1 softmax(WoZ+ bo)i,ki

,
where softmax(·) is the softmax activation applied row-
wise, kn ∈ {1, 2, ...,K} indicates the operation selected
from the predefined set of K operations at the nth node,
Wo and bo are learnable weights and biases of the decoder,
respectively.
Training Objective of Autoencoder. In pretraining stage
as shown in Figure 3, the Autoencoder are optimized by
maximizing the variational lower bound L:

L = EN (Z|µ,σ2)[log p(X̂, Â|Z)]−
DKL(N (Z|µ, σ2)||p(Z)],

(2)

where p(X̂, Â|Z) = p(Â|Z)p(X̂|Z), DKL is the Kullback-
Leibler divergence.

3.3. Multi-Proxy Estimator (MPE)

The architecture embedding has the advantage of providing
a continuous representation of the architecture space. It fa-
cilitates dense and continuous architecture search, and the
embedding can be converted back to the corresponding ar-
chitecture easily through the decoder.

In our training phase (as depicted in Figure 2), we train
Multi-Proxy Estimator that maps an architecture to the
proxy score(s), defined as fMPE(A;W) ∈ RM, where
A represents an architecture, W denotes the MLP weights
to learn, and M stands for the number of proxies. Our
MPE comprises a pretrained architecture encoder and a
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two-hidden-layer perceptron module, each layer equipped
with a linear-batchnorm-ReLU triplet. The MLP is em-
ployed to simultaneously predict the M proxy scores from
the architecture embedding. The training objective of MPE
is to minimize the mean squared error loss as follows:

LMPE(W) = s⊤s, (3)

where s ∈ RM is the difference vector between the pre-
dicted and proxy scores,

s = (fMPE(A;W)− [f1
zc(A), f2

zc(A), ...fM
zc (A)]), (4)

where f i
zc(·) is the i-th zero-cost proxy for i = 1, ...,M.

3.4. Gradient Ascent

Recall that our goal is to search for an architecture that
maximizes the objective function

∑M
i=1 λ

if i
zc(A). We ap-

ply Tree-structured Parzen Estimator Approach (TPE) [4]
to search for optimal proxy weights λi,∀i that maximize an
order-preserving loss (the rank correlation Kendall’s τ ) only
on a small subset of benchmark data. The optimized proxy
weights are then fixed and used to perform the gradient as-
cent search on other spaces/datasets. In other words, we
utilize the proxy weights in a space- and dataset-agnostic
manner. See the paragraph of proxy weights in Section 3.5
for more details.

In our searching stage (as illustrated in Figure 2), we
iteratively optimize the architecture embedding vector via
the frozen MPE (including the architecture encoder, MLP
weights W , and combination weights Λ = [λ1, λ2...λM ])
and apply gradient ascent to maximize the objective below.

F (Z) =

M∑
i=1

λifMLP (Z;W)i, (5)

which is trained by the ascent learning rule,

Zt+1 = Zt + η
∂

∂Z
F (Z), for t = 1 to T, (6)

with η the learning rate and T the number of iterations.
Finally, the obtained ZT is then decoded back to the ar-
chitecture space, using the pretrained Architecture Decoder
shown in Figure 3.

3.5. Implementations

In this section, we present several implementation details of
the proposed approach.
Zero-cost Proxies. To get the zero cost proxy scores, we
use the NASLib [26] implementation for NAS-Bench-201
[12]. Both Nas-Bench-201 and DARTS search spaces will
be detailed in Section 4. Since Krishnakumar et al. [12]
have provided proxy scores for about 11k architectures sam-
pled in DARTS space [18], we adopt them directly.

Table 1. The combined weights of each zero-cost proxies we used
when performing gradient ascent in different settings.

Proxy UPsum UPsum− UPweighted UPselected

Snip [14] 1 1 -0.164 0
Flops [24] 1 1 0.609 1
Params [24] 1 1 -0.587 0
l2 norm [1] 1 1 -0.100 0
Grasp [33] 1 0 0.441 0
grad norm [1] 1 1 0.089 0
Synflow [30] 1 1 0.840 1
jacov [23] 1 1 1.000 1
EPE NAS [20] 1 1 0.094 0
Zen [17] 1 1 0.416 0
fisher [32] 1 1 -0.342 0
plain [1] 1 1 0.275 0
Nwot [23] 1 1 0.138 1

The zero cost proxies we use contain snip, flops, params,
l2-norm, Grasp, grad-norm, synflow, jacov, epe-nas, zen
score, fisher, plain, Nwot. For a single architecture in
DARTS space, grasp takes about 10 seconds to compute,
whereas each of the other 12 proxies takes about 1 second.
Graph Embedding of Architecture. We adopt the imple-
mentation of Variational Graph Isomorphism Autoencoder
[40] and use the provided model weights to encode the cell
structure of both NAS-Bench-201 and DARTS spaces. The
embedding dimension is set to 128 and 352, respectively.
Proxy Weights. Finding a good way to combine exist-
ing proxies is an open problem. A naive approach is to
simply add proxy scores altogether with an equal weight
(called ‘Sum’ in our tables). We refer solving the weight
λi for each zero-cost proxy f i

zc as a hyperparameter search
problem, and we only use a small subset (the Cifar-10 sub-
set of NAS-Bench-201) for finding the weights to ensure
their generalibility. We apply Tree-structured Parzen Es-
timator Approach (TPE), implemented by [3], to search
for weights that maximize the rank correlation Kendall’s τ
between NAS-Bench-201-CIFAR-10’s validation accuracy.
We show 4 different proxy weights settings including sum,
sum-, weighted and selected. The sum and sum- assign
equal weights for all of their components. For selected, we
simply round the weights from searched weights other than
weighted, but use the same search procedure. Note that we
exclude grasp from sum- due to its excessively long com-
putation time. The searched weights are shown in Table 1.
Multi-Proxy Estimator. We only require zero-cost proxy
scores to train our MPE, not the precise accuracy of the
model architecture.

For the NAS-Bench-201 space, we take only 50% of the
architectures together with their proxy scores as the data for
training the MPE using Adam optimizer with a learning rate
1×10−3, batch size 16, without weight decay for 70 epochs.

For DARTS space, we generate 10,000 samples for train-
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Table 2. Rank Correlations Kendall’s τ of original proxies and
predicted proxies on NAS-Bench-201-CIFAR-10.

Proxy Original score’s τ value Predicted score’s τ value

Snip [14] 0.408 0.414
Flops [24] 0.500 0.491
Params [24] 0.538 0.516
l2 norm [1] 0.489 0.478
Grasp [33] 0.214 0.217
grad norm [1] 0.403 0.401
Synflow [30] 0.537 0.540
jacov [23] 0.520 0.461
EPE NAS [20] 0.507 0.539
Zen [17] 0.240 0.237
fisher [32] 0.371 0.374
plain [1] -0.182 -0.369
Nwot [23] 0.574 0.568

UPsum 0.58 0.50
UPweighted 0.71 0.66
UPselected 0.68 0.59

Table 3. Performance on the test sets of several benchmarks com-
pared to state-of-the-arts on NAS-Bench-201. The best results are
in bold, and the second best are underlined.

Searched Method Method CIFAR-10 CIFAR-100 ImageNet-16-120

Proxy-based

Snip [14] 83.82 49.81 0.83
Synflow [30] 93.76 71.11 41.44
Grasp [33] 83.82 49.81 0.83
EPE NAS [20] 89.08 62.60 32.30
Zen [17] 90.65 68.10 40.77
Nwot [23] 93.32 71.74 46.53

Training-Free
TE-NAS [6] 93.90 71.24 42.38
Zero-Cost-PT [36] 94.03 72.53 46.18
ξ-GSNR [29] 94.05 72.18 46.24

Ours

UPsum 94.18 71.59 47.16
UPsum− 94.18 71.59 47.16
UPweighted 94.18 71.59 47.16
UPselected 94.18 71.59 47.16

Upper Bound - 94.37 73.51 47.31

ing the MPE with Adam optimizer with a learning rate of
5×10−4, batch size 64, without weight decay for 50 epochs.

The training times of MPE on both NAS-Bench-201 and
DARTS space take less than 2 minutes.
Gradient Ascent. We randomly sample an architecture
from the search space, and then encode it to the embedding
space as the initial embedding. Via the frozen MPE trained
in the previous step, we optimize the embedding with Adam
optimizer with a learning rate of 1 × 10−3, without weight
decay, until the decoded architecture is invalid.

4. Experiments
In this section, we first present the search space. We then
show the performance of UP-NAS evaluated on several
benchmarks. Finally, we conduct ablation studies.
NAS-Bench-201 search space. NAS-Bench-201 is a well-
known search space for NAS, comprising 15,625 cell-
based architectures. Each architecture is represented as

Table 4. Performance on the test sets of several benchmarks com-
pared to state-of-the-arts on NAS-Bench-201. The best results are
in bold, and the second best are underlined.

Searched Method Method CIFAR-10 CIFAR-100 ImageNet-16-120

Gradient-based

DARTS [18] 54.30 38.97 18.41
PC-DARTS [39] 93.41 67.48 41.31
β-DARTS [41] 94.36 73.51 46.34
Shapley-NAS [37] 94.37 73.51 46.85

Multi-proxy-based
ProxyBO [28] 91.46 73.48 47.18
DELE [43] 94.37 73.50 46.39

Ours

UPsum 94.18 71.59 47.16
UPsum− 94.18 71.59 47.16
UPweighted 94.18 71.59 47.16
UPselected 94.18 71.59 47.16

Upper Bound - 94.37 73.51 47.31

a directed acyclic graph (DAG), consisting of four nodes
and five operations: zero, skip connection, 1×1 convo-
lution, 3×3 convolution, and 3×3 average pooling. To
facilitate the NAS research, performance for each archi-
tecture is provided for three datasets: NAS-Bench-201-
CIFAR-10, NAS-Bench-201-CIFAR-100, and NAS-Bench-
201-ImageNet-16-120 (a down-sampled ImageNet dataset
containing only 16× 16 images of 120 classes).

All architectures in ths benchmark have been provided
with the associated accuracy values for the three subsets,
enabling studing NAS algorithms without model evaluation.
DARTS search space. DARTS space is another widely
used search space. It is built by a cell-based representation
for neural networks, consisting of a normal cell and a reduc-
tion cell, each containing seven nodes. The first two nodes
are outputs from two previous cells and the last node depth-
wisely concatenates all of the four intermediate nodes. The
DAG is created by connecting the remaining four interme-
diate nodes where each of them is connected by two pre-
vious nodes, and the final network is obtained by stacking
the cells. The DARTS operation space comprises eight op-
tions: none (zero), skip connection, separable convolution
3×3 and 5×5, dilated separable convolution 3×3 and 5×5,
max pooling 3×3, and average pooling 3×3. For a fair com-
parison, we follow the training procedure of [37].

4.1. Rank Correlation on NAS-Bench-201

Since the ground-truth accuracy has been provided for
NAS-Bench-201, we can compute the rank correlation be-
tween the true accuracy and the proxy scores as an essen-
tial evaluation. In Table 2, we show the rank correlations
of the original zero-cost proxy scores (middle column) and
that of the predicted score obtained using our MPE (third
column). It reveals that the scores predicted by MPE can
provide roughly consistent rank correlations of the original
zero-cost proxies. In addition, the weighted aggregation set-
ting and the associated unified proxy predicted by our MPE
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Table 5. Performance on ImageNet dataset with comparisons to
state-of-the-arts on the DARTS search space.

Searched
Method

Method
Top-1

Error(%)
Params

(M)
Search Cost
(GPU days)

Search
dataset

Gradient-based

DARTS(2nd order) [18] 26.7 4.7 4.0 CIFAR-10
β-DARTS [41] 23.9 5.5 0.4 CIFAR-10
PC-DARTS [39] 25.1 5.3 0.1 CIFAR-10
PC-DARTS [39] 24.2 5.3 3.8 ImageNet
Shapley-NAS [37] 24.3 5.1 0.3 CIFAR-10
Shapley-NAS [37] 23.9 5.4 4.2 ImageNet

Predictor-based
NAONet [21] 25.7 11.4 200 ENAS
DELE [43] 24.4 4.1 300 queries CIFAR-10

Training-free
TE-NAS [6] 24.5 5.4 0.17 ImageNet
Zero-Cost-PT [36] 24.4 6.3 0.018 CIFAR-10
ξ-GSNR [29] 24.5 5.5 0.017 CIFAR-10

Extensible Proxy
Eproxy [16] 25.7 4.9 0.02 CIFAR-10
Eproxy+DPS [16] 24.4 5.3 0.06 CIFAR-10

Ours
UPweighted 24.5 5.7 5 sec CIFAR-10
UPselected 23.5 6.5 5 sec CIFAR-10

can achieve the highest rank correlations, showing their bet-
ter ordinal-fitting capabilities to the true accuracy than the
individual zero-cost proxies.

4.2. Evaluation Results on NAS-Bench-201 Space

In this session, we deomnstrate the performance of our ap-
proach on searching the architectures in the NAS-Bench-
201 search space. Since our UP-NAS requires no training
of the architecture weights, we compare it with the state-
of-the-art zero-cost-proxy and training-free approaches on
NAS-Bench-201 at first. The performance on the three
subsets in the benchmark is shown in Table 3. As can be
seen, all settings of our method find the same architecture
in this search space. Our method achieves the best test ac-
curacy on most subesets (CIFAR-10 and ImageNet-16-120)
among all approaches, while maintaining comparable per-
formance to the leading zero-cost proxy on the CIFAR-100
subset. The last row shows the upper bounds of this bench-
mark (w.r.t. the architecture of the highest accuracy in the
NAS-Bench-201 search space), and our approach can also
achieve very close accuracy to the bounds of the CIFAR-10
and ImageNet-16-120 subsets. The results reveal that our
UP-NAS can leverage existing zero-cost proxies and unify
them for a better score-based search. It can search smoothly
in a continuous architecture-embedding space for finding
more favorable solutions.

We also compare our UP-NAS with the methods achiev-
ing state-of-the-art performance on this benchmark while
requiring the model weights training, including gradient-
based methods [37, 39, 41], and the methods that utilize
multiple zero-cost proxies to improve (but not training-
free): ProxyBO [28] and DELE [43]. As shown in Table 4,
our UP-NAS still has very competitive performance com-
pared to the non-training-free approaches.
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Figure 4. The searched architecture on DARTS-CIFAR-10 using
UP-selected. (a) the normal cell (b) the reduction cell. This archi-
tecture achieves 23.5% error on ImageNet.
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Figure 5. The searched architecture on DARTS-CIFAR-10 using
UP-weighted. (a) the normal cell (b) the reduction cell. This ar-
chitecture achieves 24.5% error on ImageNet.

4.3. Evaluation on DARTS Space for ImageNet

The DARTS space is much larger, where the true accuracies
have not been provided for the architectures in the space. To
further verify the effectiveness of our approach, we search
the architectures in the DARTS space by using UP-NAS and
demonstrate the performance on the ImageNet dataset [27].
Consider that several zero-cost proxies we adopt depend not
only on the architecture but also on the dataset [17, 20]. To
simplify the search, we follow some of the previous studies
[16, 18, 39, 41] that search the architectures for a dataset
containing fewer and smaller-size images at first (where
CIFAR-10 [13] is adopted), and then we apply the searched
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Table 6. CIFAR-10 classification error comparison with baseline
methods (random search and evolutionary search), searched on the
DARTS CNN search space. Note that 1,500 queries for random
and evolutionary search methods take around 5 seconds.

Method Error(%) Params(M) Search Cost

Randomweighted 2.88 3.1 1500 queries ≈ 5 sec
Randomselected 3.22 3.8 1500 queries ≈ 5 sec

Evolutionaryweighted 2.75 4.1 1500 queries ≈ 5 sec
Evolutionaryselected 2.93 4.8 1500 queries ≈ 5 sec

Gradient Ascentweighted 2.44 3.6 5 sec
Gradient Ascentselected 2.97 4.7 5 sec

architecture to the large-scaled dataset, ImageNet.
We thus use our UP-NAS that unifies the zero-cost prox-

ies (listed in Table 1) to perform gradient-ascent search in
the DARTS space based on the CIFAR-10 dataset at first.
We employ the weighted and selection settings; the archi-
tectures found by the associated UPweighted and UPselected

are shown in Figure 4 and 5, respectively. The searched
architectures (based on CIFAR-10) are then applied to the
ImageNet dataset. The results are shown in Table 5.

We compare our UP-NAS with state-of-the-art NAS
methods on the ImageNet dataset, which include (1)
Gradient-based method DARTS [18] and its recent variants
[37, 39, 41], (2) predictor-based methods [21, 43] related
to ours, (3) training-free methods [6, 29, 36] and (4) ex-
tensible proxy [16]. As shown in Table 5, our method can
achieve the most favorable performance on ImageNet in the
DARTS search space, which outperforms not only training-
free methods but also recent non-training-free methods.
Figure 4 shows the best-performed architecture (23.5% er-
ror rate) found by our UP-NAS, which can achieve the
SOTA performance on ImageNet among the NAS meth-
ods in the DARTS search space. The results reveal again
that our UP-NAS can well unify the zero-cost proxies and
smoothly explore architectures through gradient ascent.

4.4. Ablation Studies

In this section, we show several ablation studies to validate
the efficacy of our method.

4.4.1 Search Methods

To verify the effectiveness of the “gradient ascent” method
adopted in the proposed approach, we also show the results
of two baseline search methods, random search and evo-
lutionary search. In random search, we randomly sample
the architectures in the search space and return the one with
the highest predicted weighted proxy sum. In evolutionary
search, we keep a population of 100 models, and mutate the
candidate models iteratively.

We ablate the experimental study on the CIFAR-10
dataset in the DARTS search space. As shown in Ta-

Table 7. Comparison between different MLP settings on NAS-
Bench-201.

Method
CIFAR-10

validation test

MPE1+ UPsum 91.18 93.83
MPE2+ UPsum 91.31 94.18
MPE3+ UPsum 91.17 94.22

ble 6, our approach that employs gradient-ascent-based
search achieves the best performance (of an error rate in
2.44%) given the same amount of search cost, where 1,500
queries for random and evolutionary search methods also
take around 5 seconds as the search cost. The results
demonstrate the effectiveness of gradient-based search.

4.4.2 Different MLPs in MPE

We also provide the ablations of determining the architec-
ture of the MLP used in our MPE. We set the number of neu-
rons of each hidden layer as 256, and evaluate the perfor-
mance of the MLP with the number of hidden layers from
1 to 3 of UPsum setting on NAS-Bench-201. As shown in
Table 7, the two-hidden-layer MLP achieves the best vali-
dation accuracy on CIFAR-10. Thus, we apply this to our
experiments.

5. Conclusions and Future Work
To our knowledge, no single proxy works the best for differ-
ent tasks and scenarios. We thus propose unified proxy for
NAS which is a generalized scoring function. It is realized
by an architecture encoder and MLPs learning to predict
multiple zero-cost proxies that are unified to consolidate the
strength while reducing search bias. We show how to find a
new architecture through gradient ascent using the proposed
search approach. With extensive experiments, the proposed
method achieves competitive performance and significantly
reduces the computational resources required for NAS. On
the search spaces of DARTS, our approaches achieves the
SOTA performance (76.5% top-1 accuracy) on ImageNet.
We thus provide a promising solution for training-free NAS.

In the future, we plan to search for vision transformers.
There are few proxies (such as [44]) designed specifically
for the Transformer. Our approach has the potential to con-
solidate existing transformer proxies to assist in the archi-
tecture search for the new category of architectures.
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