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Abstract

Recognizing interactions in multi-person videos, known
as Video Interaction Recognition (VIR), is crucial for un-
derstanding video content. Often the human skeleton pose
(skeleton, for short) is a popular feature for VIR as the main
feature, given its success for the task in hand. While many
studies have made progress using complex architectures like
Graph Neural Networks (GNN) and Transformers to cap-
ture interactions in videos, studies such as [33] that apply
simple, easy to train, and adaptive architectures such as Re-
lation reasoning Network (RN) [37], yield competitive re-
sults. Inspired by this trend, we propose the Attention Aug-
mented Relational Network (AARN), a straightforward yet
effective model that uses skeleton data to recognize interac-
tions in videos. AARN outperforms other RN-based models
and remains competitive against larger, more intricate mod-
els. We evaluate our approach on a challenging real-world
Hockey Penalty Dataset (HPD), where the videos depict
complex interactions between players in a non-laboratory
recording setup, in addition to popular benchmark datasets
demonstrating strong performance. Lastly, we show the im-
pact of skeleton quality on the classification accuracy and
the struggle of off-the-shelf pose estimators to extract pre-
cise skeleton from the challenging HPD dataset.

1. Introduction

Recognizing human activity, and their interactions with
each other and their environment, is a crucial component
of video understanding. Utilizing the skeleton as the main
feature (versus combining it with appearance features) has

been popularized in recent years. It is due to the fact that
skeleton is a compact, concise, effective feature, while alle-
viating scene and objects biases and reducing privacy con-
cerns owing to its anonymity [13, 15, 19, 22, 50]. The
advancement of human pose estimation methods as well
as large scale interaction recognition skeleton-annotated
datasets marked a new era for using skeleton data. In our
study we use skeleton as the input to our VIR model.

Some studies [12, 33] model the coarse interaction be-
tween the individuals in terms of finding fine discriminative
relations between individuals’ body joints. From this point
of view, VIR is a relational reasoning problem. Santoro
et al. [37] introduced RN, which explicitly solve relational
reasoning problems in neural networks. Similar to CNNs
that capture spatial, translation invariant features from grid
like inputs; RNs are simple, extendable, and powerful ar-
chitectures capable of reasoning about relations [37]. We
will briefly review the RN architecture in Sec. 3. In this
study, we propose to equip the RN model with a Self Atten-
tion (SA) mechanism that allows for better integration of
relational representations.

Graph Convolutional Networks (GCNs) are popular for
VIR on account of their success [6, 21, 24, 25, 52]. How-
ever, as discussed by [8], GCNs come with drawbacks.
First, they are not easily extendable, meaning that it is diffi-
cult to fuse the skeleton graph with other structured modal-
ities, such as RGB and optical flow, especially during early
fusion. Second, they lack scalablility; meaning adding
new individual or joint linearly increases model complex-
ity, which is undesirable for multi-person videos [8]. In
contrast, AARN is easily extendable to integrate different
modalities and scalable to multiple person without signifi-
cant cost. More specifically, any modality can be presented
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Figure 1. AARN architecture. The skeleton is extracted for every person in each frame. In HPD when there are multiple players, only
the two main players are selected (using available annotations). Objects are generated from the skeletons of both actors within individual
frames and then concatenated (in a unidirectional manner) to form object pairs. The object pairs serve as input to a relational module, which
is then followed by a self attention module responsible for aggregating the relationships. The final relational representation is subsequently
fed to a classifier to output class membership. See Sec. 3 for more details. HPD frames reprinted with permission [1].

.

as a form of object and concatenated along with other ob-
jects in RN framework.

Another recent trend for VIR is combining GCNs with
Transformers [31]. Although, they mark the state-of-the-
art, they suffer from the GCN shortcomings in addition to
large number of parameters, heavy computational cost, and
difficult training of Transformers. For example, IGFormer
[31] uses three Transformer layers (∼ 20M parameters) and
requires pre-training on pseudo images of the skeleton. In
contrast, AARN achieves competitive results by only us-
ing MLPs while training from scratch. Therefore, our pro-
posed model offers a good balance between the computa-
tional cost, simplicity, and performance.

Skeleton data is effective for VIR; however, it poses
some challenges. Similar actions may not yield similar nu-
merical values in skeleton data due to varying angles and
scales in each scene [51]. Normalization is a logical solu-
tion, but obtaining depth coordinates and camera features in
real-world scenarios can be impractical or costly. Although
different skeleton values for identical interactions is a prob-
lem, relationships between joints and poses formed by them
can help the task [20, 28, 33]. Therefore, we expand our in-
put with relative features (i.e., distance and inter/intra mo-
tion) from the objects using non-parametric h function. For
more details see Sec. 3 and Fig. 2.

Although the RN architecture is known for its simplicity
and adaptability, our research demonstrates how the perfor-
mance of this architecture can be influenced by the structure
of the input data. Consequently, in this study we propose
to design our input data with two main purposes in mind:
firstly, maintaining the inherent simplicity of the input, and
secondly, enabling the RN to effectively reason about the
spatio-temporal dynamics in a video.

Despite the great advancement in the field of VIR, many
of the current datasets focus on simple interactions (e.g.,
hand shaking, etc) recorded in simplified recording se-
tups. However, in many real world applications, the scene
includes complex interactions, varied camera viewpoints
(e.g., scale and angle), (self) occlusions, and blurry frames
due to camera motions. These factors affect and challenge
both the pose estimator and VIR models. Therefore, in our
study, aside from the well-established skeleton-based VIR
datasets, we evaluate AARN on the challenging HPD intro-
duced by Askari et al. [1]. Additionally, we quantitatively
and qualitatively analyze the performance of the state-of-
the-art pose estimators on this dataset. The summary of our
contributions in this work is:
• Our approach: We present an effective, easy to train and

expand skeleton-based approach for VIR tasks. By inte-
grating an SA module into the established RN architec-
ture, we improve relational representation aggregation.

• Input structure’s impact: We show the effect of the in-
put structure on the performance and propose suitable in-
puts to maximize AARN potential. We enrich the inputs
with static and dynamic features in line with our structure.

• Ablation studies: We show the effectiveness of our pro-
posed modules through comprehensive ablation studies,
showcasing their positive impact on performance.

• Pose estimation study: We evaluate the ability of current
off-the-shelf pose estimators to extract precise skeletons
from the challenging HPD and study the effect of skeleton
quality on the performance of the VIR task.

The remaining of our paper is structured as follows. Sec. 2
reviews the related works, Sec. 3 elaborates on our meth-
ods in details and presents our pipeline for pose estimation
study, Sec. 4 presents our experimental setup, and discuss
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the results, ablation studies, and findings. Lastly, Sec. 5
concludes the paper.

2. Related Work
A group of studies use skeleton as the main feature [14,
36, 42]; often considering human skeleton structure while
another group of studies, [1, 7], consider pose as a com-
plementary and/or guiding feature for RGB appearance and
motion features. Many studies on VIR leverage GNNs in
combination with CNNs and LSTMs [6, 21, 24, 25, 52].
In [21] the actional and structural links are combined into
generalized skeleton graph and fed to a GCN; resulting in
enhanced representations and performance.

Several studies [33, 49, 54] incorporate the human skele-
ton data with relational networks (RNs) for the task of ac-
tion classification. Although, all the studies above bene-
fit from the idea of RNs, none of them explicitly focus on
VIR. To the best of our knowledge, the study by Perez et
al. [33] is the only study that employs RNs and skeleton for
the task of interaction recognition. Perez et al. [33] pro-
pose ”joint objects” defined as the coordinates of each joint
through time. These objects are paired up together in a fash-
ion representing a potential relation between the joints of
each person throughout the interaction. They propose intra
and inter person pairing, representing the relations between
the body joints from the same person and different persons,
respectively. They use RN [37] to model the relation be-
tween these objects and output VIR classification result.

While the innovative model of Perez et al. [33] presents
interesting concepts, it struggles to effectively grasp the
temporal dynamics of videos without resorting to the use
of an LSTM. We theorize that this arises from their re-
liance on joint-centric (versus person-centric) object defini-
tion, which is local and only implicitly models the temporal
aspect. Therefore, in our method, we take a more global
person-centric approach to object definition with an empha-
sise on the temporal dimension.

The majority of sports analytics studies on ice hockey
are on player tracking and identification, player/puck local-
ization, and single person actions [4, 9, 10, 16, 30, 44–47].
There are some studies on multi-person action/interaction
recognition from videos; such as [41] that proposes a CNN-
RNN model to classify multi-person puck possession events
(e.g., shot, dump) from videos. Askari et al. propose two
studies on HPD; in one [1] they propose an RNN-CNN
model for multi-person interaction recognition and key ac-
tor detection using skeleton and video frames. In another
study [2], the authors propose a self supervised method
based on the RN architecture where they derive image-like
representations from skeleton sequence of unlabeled videos
of hockey penalty dataset. They evaluate their method
on the downstream task of two person interactions from
videos. Aside from these two studies, most of sports ac-

tivity recognition studies [27, 39] use datasets such as UCF
[18]. As discussed earlier, given the interesting challenges
ice hockey videos provide for VIR, there is a need for more
studies on ice hockey specific datasets such as HPD.

The most well known categorization of pose estimators
are top down and bottom up approaches. The top-down ap-
proaches involve a person detection as the first step, fol-
lowed by the pose estimator which localize the body joints
within the bounding box of the detected person. The bottom
up approaches, on the other hand, first detect the body parts
and then assemble them to form full body human poses. Re-
searchers believe top-down pose estimators performance is
bottle-necked by the person detector [5]. High-Resolution
Net (HRNET) [40] is a top down successful pose estima-
tor where they maintain high and low resolution representa-
tions in parallel through the whole process. The advantage
of bottom up pose estimators [5, 17, 32, 34] is making the
person detector dispensable, which in turns, makes the pose
estimator run-time independent from number of people in
the frame. Associative Embedding (AE) [29] is a success-
ful bottom up model, where every detected human joint has
an embedding vector. The distances between joints embed-
ding are used to group the joints.

3. Method
In this section we elaborate on the architecture of our
method as well as the pose evaluation study pipeline. Fig. 1
demonstrates our overall architecture. Some of the nota-
tions in this section are partially used as [33, 37].

3.1. Relational network architecture

Relational network definition: Our method is based on the
RN architecture, which was first proposed by Santoro et al.
[37]. Eq. (1) describes the underlying idea of the relational
reasoning method.

RN(O) = fϕ

(
T∑

t,s=1

gθ (ot, os)

)
(1)

with O describing a set of T objects, where each object
(e.g., ot) is represented as a vector belonging to Rm con-
taining the properties of an object. The definition of an ob-
ject is flexible depending on the application; for example,
an object can contain CNN features from an image, last hid-
den state of an LSTM describing a sentence, or restructured
pose information from video frames. The relational model
gθ, is a function with learnable parameters that models the
relationship between each pair of objects. The parameters
are shared for all the object pairs.

∑
describes an aggrega-

tion function that is often non-parametric such as average.
Finally, fϕ is a function with trainable weights that takes
in the aggregated relational representations and output the
reasoning , such as predicted class in a classification task.
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In our work, we define a novel set of objects that are
simple, elegant, yet effective to solve the task of interac-
tion recognition in hand. Additionally, we propose to use a
parametric aggregation function based on the transformer
attention mechanism instead of the non-parametric ones.
We demonstrate by applying the aforementioned changes
we can increase the performance of RN models on interac-
tion recognition from videos and reason about the temporal
dynamics without requiring LSTMs as the studies such as
[33]. We elaborate on the details of our approach below.

Objects definition: The underlying idea of employing
RN in our application is to tackle the problem of video in-
teraction classification through reasoning about the exist-
ing relations between the actors’ body joints and how their
development over time distinguishes the actions from each
other. For instance, pushing and punching interactions share
similarities in the beginning and we only can distinguish
them by observing the action over time. Therefore we cre-
ate our objects and relations with considering to capture the
most spatio-temporal information from the skeleton data.

We define each object as:

ot = (xp1

1 , yp1

1 , xp1

2 , yp1

2 , ..., xp1

N , yp1

N ,

xp2

1 , yp2

1 , xp2

2 , yp2

2 , ..., xp2

N , yp2

N , t)
(2)

where xn and yn are the 2D coordinates of the nth joints,
N indicates the total number of joints, p1 and p2 represent
each of the actors, and t is the time index. Therefore, for
each video frame we define an object that contains x, y co-
ordinates of all the joints for both actors. It is important
to note that for the datasets with 3D coordination we use
x, y, z coordinates.

Our objects carry spatial information and by pairing
them we form spatio-temporal inputs for the model. The
pairwise inputs are formed by concatenating each two ob-
jects together. In order to avoid redundancy, the concate-
nation of each two objects is only unidirectional (e.g., if
(o3, o4) exists (o4, o3) is not created).

Defining objects and object pairs as outlined earlier, of-
fers the advantage of capturing the full skeleton structure of
both actors per object, following a person-centric approach.
This grants the relational module a more global scope of in-
formation in contrast to the joint-centric objects as in [33].
Furthermore, forming the object pairs temporally (i.e., be-
tween frame as opposed to between joints) allows for more
holistic understanding of the dynamics present in the video.

Previous research utilizing skeleton data [33, 51, 53] has
demonstrated that enhancing the input with relative features
extracted from skeleton data significantly improves the per-
formance. These features may vary based on the domain-
specific knowledge. To this end, some studies leverage the
bone and motion between the joints [8, 28]. In our study,
we expand each object pair with relative features that are

not only compatible with our input structure but also effec-
tive for VIR. Consequently, we extend the RN formulation
to equation Eq. (3). We further analyze the impact of adding
these features through ablation studies.

RN(O) = fϕ

(
T∑

t,s=1

gθ (ot, os, h(ot, os))

)
(3)

The h function outputs the concatenation of outputs
from D(ot, os), M(ot, os), and L(ot, os) defined in Eq. (4),
Eq. (5), and Eq. (6) respectively which are demonstrated in
Fig. 2.

D(ot, os) = (∥ cp11t − cp21t ∥, ∥ cp1

2t − cp22t ∥, ..., ∥ cp1Nt − cp2Nt ∥
⌢∥ cp11s − cp21s ∥, ∥ cp12s − cp22s ∥, ..., ∥ cp1Ns − cp2Ns ∥)

(4)

M(ot, os) = (∥ cp11t − cp11s ∥, ∥ cp12t − cp12s ∥, ..., ∥ cp1Nt − cp1Ns ∥
⌢∥ cp21t − cp21s ∥, ∥ cp22t − cp22s ∥, ..., ∥ cp2Nt − cp2Ns ∥)

(5)

L(ot, os) = (∥ cp11t − cp21s ∥, ∥ cp12t − cp22s ∥, ..., ∥ cp1Nt − cp2Ns ∥
⌢∥ cp11s − cp21t ∥, ∥ cp12s − cp22t ∥, ..., ∥ cp1Ns − cp2Nt ∥),

(6)

where the variable c stands for the coordinates of a joint
(i.e., (x, y) (or (x, y, z) using 3D skeleton). Therefore cp1

Nt

is a vector of (x, y) locations of the N th joint of person
one (i.e., p1) in frame t. And cp2

Ns indicates the (x, y) lo-
cations of the N th joint of person one (i.e., p2) in frame s.
D(ot, os) represents the distance between two actors within
each timestep (or object); which adds extra spatial informa-
tion in addition to raw coordinates; M(ot, os) captures the
motion of each actor between t and s timesteps (a.k.a., intra-
motion); and L(ot, os) is the motion between two actors
in different timesteps (a.k.a., inter-motion). In other words
M and L indicate how an actor’s distance changes w.r.t.
him/herself and the other actor across the two timesteps.

Attention based aggregation: Although most of the
studies using RN architecture utilize non-parametric aggre-
gation functions to aggregate the relational representations
(i.e., representation out of gθ), in this work we explore the
benefits of a parametric aggregation module. When using
average as the aggregation function, weighted sum of repre-
sentations are calculated with equal weights assigned to all
the representations. Our proposition is to use a SA mech-
anism and learn the assigned weights to relational repre-
sentations instead. Since the interaction between the rela-
tional representations are desirable, we employ the scaled
dot product SA from [43]. Additionally, as a baseline we
replace the dot product SA with the additive SA from [3].
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Figure 2. Relative features. Illustration of computation of D,M, and L (Eq. (4) to Eq. (6)) between two exemplar frames at time instances
t=1 and t=T. Left: D signifies the distance between the two actors within each frame (i.e., within each object). Middle: M represents the
movement of each actor between two time steps (A.K.A., intra-motion). Right: L represents the motion between the two actors across the
same time interval (A.K.A, inter-motion) . h is the concatenation of all of them. See Sec. 3 for more details.

3.2. Baseline models:

Alternative Object definition: We hypothesize that defin-
ing objects for the RN architecture is not a trivial task and
significantly affects the performance. In order to make the
distinction, we term our original objects “temporal objects”
(see Eq. (2)) and the alternative objects we define subse-
quently as “spatial objects”. Throughout this paper, when
referring to an object, we are referring to “temporal ob-
jects”, unless specified otherwise.

To evaluate our hypothesis, we adopt a dif-
ferent approach where we individually de-
fine an object for each joint over time si =
(xp1

1 , yp1

1 , xp1

2 , yp1

2 , ..., xp1

T , yp1

T , xp2

1 , yp2

1 , ..., xp2

T , yp2

T , i)
where xt and yt denote the 2D coordinates of the ith joints
at frame t. T represent the total number of frames, p1 and
p2 correspond to the two actors, and i is the joint index.
As a result, for each body joint we create an object that
contains x, y coordinates of that joint for both actors across
all the timesteps. It is important to note that when dealing
with datasets that provide 3D coordinates we use x, y, z
coordinates. This object definition bears resemblance
to the one presented in [33], with the distinction that it
includes the joints for both actors rather than just one. As
a result, when constructing object pairs, the interaction
among more joints are captured. Given the formulation of
spatial objects above, we define appropriate distance and
motion information. The details are available in Sec. 1 of
supplementary materials.

Transmotion attention: Building on promising initial
results with the addition of relative features (function h),
we investigated directly integrating these features into the
attention model. This new module, called ”Transmotion”
(short for Transformer + motion) attention, generates

two sets of attention coefficients, averages them for final
coefficients, and produces aggregated representations. The
first attention set is from scaled dot product attention.
The second set comes from summing values from Eq. (5)
(intra-motion) for object pairs. We theorize greater motion
between joints across timesteps increases attention coef-
ficients for those object pairs, as more motion frames are
assumed to carry more useful classification information.
For a detailed module architecture, refer to Sec. 3 in the
supplementary materials.

3.3. Pose evaluation study

Askari et al [1] mention in their study that the HPD imposes
challenges to state-of-the-art pose estimators due to com-
plex scenes, unusual players poses, and the generic large
scale datasets that current pose estimators are trained on.
As part of our experiment, we qualitatively analysis the
performance of two state-of-the-art pose estimators on this
dataset. The dataset uses a custom 14 body key-points an-
notations which a modification of COCO [23] annotation by
averaging the five head keypoints to one key-point. Given
that many pose estimators are pre-trained on COCO dataset
with 18 keypoints, we first extrapolate 4 extra keypoints for
eyes and ears. This is necessary in order to be able to infer-
ence poses using an available pre-trained model. We place
an axis along passing through the nose and perpendicular to
the nose-neck axis. The eyes are placed one quarter of the
nose-neck distance and the ears half of that distance on both
sides of the nose. Since the direction the player is facing
is unknown, the left/right annotation is assigned based on
the ear/eye keypoint distance from the left/right shoulder.
Following this procedure we convert from dataset custom
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keypoints to COCO format. Additionally, the evaluation of
any top-down pose estimation method requires ground-truth
bounding boxes. Since the HPD does not include bound-
ing box annotations, we automatically infer them using the
available keypoint annotations. We extract the boxes in a
way that each player is fully encapsulated in the box. We
add a margin, equal to twice of head-neck distance, to cor-
rect for estimation of bounding box and the approximate
location of keypoints.

4. Experimental Evaluation
4.1. Datasets

HPD: [1] includes clips of penalties from National Hockey
League (NHL) ice hockey broadcast videos. There are three
classes of tripping, slashing, and no penalty with 80, 76,
and 98 clips per class respectively. The clips are two to six
second long, fully encapsulating the penalty event. Each
video includes annotation of main interacting players (i.e.,
P1 and P2), ground truth pose annotations of 14 body key-
points, and two additional keypoints for each end of the
hockey stick for every player in the frame. In our study, we
only consider the two main interacting players as the input
to our model. Additionally, we augment the dataset using
the horizontal flip and affine transformation (e.g., scale).
For evaluation on this dataset, we use 5-fold cross valida-
tion.

SBU [53] includes a total of 282 short videos of two per-
son interactions. There are eight classes and the videos are
2-3 seconds long, recorded in a laboratory setup with static
background. The dataset includes 3D skeleton data with 15
joints per person for each frame. The poses are noisy and
inaccurate in some frames. For evaluation on this dataset,
we use 5-fold cross validation (suggested by the authors).

NTU RGB+D [26, 38] is originally action recognition
datasets; but they include 11 of interaction. Following the
protocol in [33], we evaluate our method on the interaction
classes only. The NTU RGB+D contains 10347 videos re-
spectively. Despite using only the interaction classes, it sur-
pass the scale of SBU and UT-Interaction datasets. Com-
pared to SBU dataset, the scenes are more complex with
varied viewpoints. The NTU dataset includes 3D skeleton
of 25 joints for each person in all the frames. The dataset is
evaluated using Cross-Subject and Cross-View protocols.

4.2. Experimental details

Pose estimation: We use the frame-based Associative Em-
bedding (AE) [29] with the HRNet backbone [40] as the
bottom-up model. We use Contextual Instance Decoupling
(CID) [48] as the top-down model with the HRNet back-
bone [40]. In the pretrain-only evaluation model we use a
model pre-trained on the COCO dataset. For the fine-tune
evaluation phase, we initialize the network with pre-trained

Method AP AP50 AP75 AR

CID (COCO pretrain only) 0.57 0.88 0.61 0.39
CID (fine-tune) 0.68 0.92 0.75 0.71

AE (COCO pretrain only) 0.50 0.84 0.55 0.56
AE (fine-tune) 0.70 0.95 0.77 0.75

Table 1. The result of pose estimations (pretraining and fine-tuned
mode) on HPD.

Method HPD (%)
Ground truth pose:

LRCN (reported by [1]) 63.64
PoseC3D (reported by [1]) 81.63

KAD [1] 93.93
AARN-wo/RF 91.41 ± 0.62

AARN 94.54 ± 0.08 (94.6)
Estimated pose:

AARN 87.24 ± 0.45 (87.57)

Table 2. Penalty classification accuracy. Comparison of AARN
with previous works on HPD. Observing the effect of quality of
estimated pose data on the classification performance.

weights and fine-tune on the HPD with a learning rate of
0.0005 and 0.001 for the bottom-up and top-down models
respectively. It is important to note for the fair evaluation
of pose estimation methods we do not include the hockey
stick keypoints given that it is specific to this sport and not
the human body structure.

AARN: we use a four layer MLP with 1000 units per
layer for gθ. The linear layer in dot product self-attention
have 1000 units as well. We set the dropout rate to p = 0.1.
The classifier has three fully connected layers with 500 units
for the first layer and 250 for the last two layers followed
by a softmax to generate class membership. The additive
self-attention (for baseline) consists of three fully connected
layer with 500 units and tanh activation per unit, followed
by a softmax after the final layer. The layer weights are
initialized with truncated normal distribution (0, 0.045) for
SBU and (0, 0.09) for NTU RGB+D. We use the Adam op-
timizer with learning rate of 1e − 4 to minimize a binary
cross entropy loss with early stopping. During training we
randomly swap the order between the persons’ joints to im-
prove generalization.

4.3. Results and discussion

Pose evaluation study: Table 1 demonstrates the results for
this study. In both the top-down and bottom-up pose esti-
mation cases we observe significant improvements across
all metrics after fine-tuning the pose estimator. This con-
firms the claim and qualitative analysis by Askari et al. [1]
that despite their abundant benefits, current pose estimators
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Method SBU (%)
2s-GCA [24] 94.9

IGFormer [31] 98.4
LSTM-IRN [33] 98.2
AARN-wo/RF 94.22 ± 1.23

AARN 97.97 ± 0.46 (98.30)

Table 3. Interaction classification accuracy. Comparison AARN
with previous works on SBU dataset.

Method NTU RGB+D
X-Sub (%) X-View (%)

GCA [25] 85.9 89.0
2s-GCA [24] 87.2 89.9
AS-GCN [21] 89.3 93.0

CTR-GCN [6, 31] 91.6 94.3
IGFormer [31] (∼ 20M) 93.6 96.5

LSTM-IRN [33] 90.5 93.5
AARN-wo/RF 87.69 ± 0.35 90.57 ± 0.61

AARN (∼ 3.5M)
90.79 ± 0.65

(91.26)
93.42 ± 0.65

(93.88)

Table 4. Interaction classification accuracy. Comparison AARN
with previous works on NTU RGB+D dataset (interaction classes
only). For fair comparison with Transformer-based model, IG-
Former, we note the approximate number of parameters in paren-
thesis.

struggle to estimate precise poses of complex scenes and in-
teractions. This is due to firstly, the large-scale pretraining
datasets mostly containing generic poses (versus complex
sports poses); secondly, the bulky hockey jersey affecting
the overall human skeleton shape; and lastly, the variety of
viewpoint scale and angle in sports dataset. Fig. 2 of sup-
plementary material demonstrates the qualitative results.

AARN: Tab. 2 to Tab. 4 show our results in compari-
son with other methods. We report average accuracy and
standard deviation of two/three runs and note the best run
in parentheses. On the HPD, our model outperforms the
KAD [1] that is an LSTMs based model equipped with ad-
ditive SA mechanism [3], only when we use the relative
features. This underlines the importance of including rela-
tive features (e.g., distance, motion, joints angle, etc) when
using skeleton; which is emphasized in other studies as well
[11, 33, 35, 53]. Another noteworthy observation is that our
model offers good performance on videos without requir-
ing RNNs; owning to our global temporal object definition
as observed in Tab. 6. Additionally, We compare the results
of using AARN with estimated vs ground-truth poses on
HPD. In this scenario we use the top-down pose estimator
to extract skeletons and pad the missing poses with zero. As
part of our observation, many videos contained some miss-
ing poses. We observe a performance drop using estimated

poses. Tab. 2 demonstrates our results.
On the public benchmark, our method outperforms

LSTM-IRN, which is the most successful RN-based net-
work for interaction recognition, without requiring the
LSTM and with fewer objects/relations. AARN also out-
performs several GNN-based architectures and offers com-
petitive results with others. CTR-GCN [6] is a channel-wise
topology refinement graph convolutional network that con-
sists of ten spatio-temporally modeling block with residual
connections. In their model they set the neighbourhood of
each joint as the entire human skeleton which leads to scal-
ability challenge. Unsurprisingly, the higher overall model
capacity and dense skeleton graph definition benefit the
performance. IGFormer [31] consists of three Transform-
ers blocks initialized by pre-trained weights of ViT-based
model. In comparison our method offers a light architec-
ture, consisting of two MLP blocks and one SA block, with
only a few percentage trade-off in performance. AARN is
easy to train, scalable, easily expandable to other modali-
ties, and has significantly less number of parameters.

Aggregation: We perform ablation study on the effect
of aggregation function. The popular aggregation with RN-
based approaches is the average, however, this is a non-
parametric aggregation function that assigns equal weights
to all representation. We additionally experiment with pop-
ular additive self-attention [3]. Although additive self-
attention is a learnable function, the representation only in-
teracts through the layer weights (and not directly), which
makes it difficult to generate appropriate attention coeffi-
cients. We observe that the dot product attention is the
most effective aggregation. Given that the dot product atten-
tion models direct interactions between the representations
in order to assign appropriate weights, these results are ex-
pected. Furthermore, we evaluate the Transmotion attention
(see Sec. 3) both with (noted as w/RF) and without (noted as
wo/RF) expanding the input with the relative features. See
Tab. 5. Transmotion attention combines scaled dot-product
attention and motion data, it underperforms compared to us-
ing scaled dot-product attention alone. This could be due to
central frame focus, and short video lengths, resulting in
motion information being insufficient or excessively sparse
as an attention factor.

Objects and relative features: The influence of object
definition on the performance of the AARN model is de-
picted in Tab. 6. Despite retaining identical components ex-
cept for the objects, a noticeable decline in performance is
observed, particularly pronounced in larger-scale datasets.
As discussed before, this decline is attributed to the local-
ized and joint-centric input definition, which presents a dif-
ficulty for the model in adequately grasping comprehensive
temporal dynamics. Consequently, techniques such as [33]
resort to utilizing LSTMs to effectively capture temporal
dynamics. Furthermore, we note that leveraging the rela-
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Aggregation HPD (%) SBU (%) NTU RGB+D
X-Sub (%) X-View (%)

Average 90.61 ± 1.01 95.56 ± 0.069 89.98 ± 0.48 92.06 ± 0.388
Additive attention 90.29 ± 0.37 96.07 ± 0.07 90.31 ± 0.21 93.20 ± 0.3

Transmotion attention (wo/RF) 88.94 ± 0.32 95.04 ± 1.5 87.77 ± 0.21 89.98 ± 0.26
Transmotion attention (w/RF) 90.89 ± 0.46 96.8 ± 0.069 89.97 ± 0.20 92.35 ± 0.22

AARN 94.54 ± 0.08 (94.6) 97.97 ± 0.46 (98.30) 90.79 ± 0.65 (91.26) 93.42 ± 0.65 (93.88)

Table 5. The effect of different relational representation aggregation methods on the interaction classification accuracy.

Object type HPD (%) SBU (%) NTU RGB+D
X-Sub (%) X-View (%)

AARN (spatial objects) 90.41 ± 0.56 97.45 ± 0.08 87.12 ± 0.09 90.71 ± 0.12
AARN (default-temporal objects) 94.54 ± 0.08 (94.6) 97.97 ± 0.46 (98.30) 90.79 ± 0.65 (91.26) 93.42 ± 0.65 (93.88)

Table 6. The effect of object definition on the interaction classification accuracy.

tive features to expand inputs proves more effective than
directly using them as attention coefficients, as observed in
Tab. 5 (Transmotion w/RF and Wo/RF).

Lastly, the result of our ablation study is demonstrated
in 2 to 4. (wo/RF) represents the same architecture without
the enhancing the input with relative features. The result of
our experiment demonstrates that using the relative skele-
ton features consistently improves the performance across
all the datasets. It is important to note that the inclusion
of these features are among the key contributors to the su-
periority of our approach. This enables us to outperform
LSTM-IRN [33] and capture temporal dynamics without
requiring an LSTM. We further analyze the effect of each
component of relative features (e.g., Eq. (4) to Eq. (6)) and
their combinations through ablation studies. Due to space
limitation, these results are available in Sec. 2 in our sup-
plementary materials.

5. Conclusion

We summarize our contributions to VIR by showcasing the
potential of carefully designed inputs and models for the
task. To the best of our knowledge, we are the first RN-
based method to reach strong performance in VIR by solely
utilizing skeleton data without requiring multi-modality
(e.g., RGB) and CNN/RNN. We define skeleton objects
that match our task, expand them with robust relative
features and equip our RN-based model with a dot-product
SA mechanism. Our architecture is light and easy to train
(vs Transformers), extendable to multi-person, and easily
expandable to other modalities (vs GCN). Additionally,
we highlight the challenges posed by real-world datasets
for off-the-shelf pose estimators and explore the impact
of pose quality on downstream tasks relying on skeletons.
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