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Bertha Guijarro-Berdiñas2 Emilio J. Padrón2 Bernard Ghanem4 Marc Van Droogenbroeck3

1 Cinfo 2 CITIC Research Center, Universidade da Coruña 3 TELIM, University of Liège 4 IVUL, KAUST

Abstract

Football stands as one of the most successful sports
in history thanks to the plethora of professional leagues
broadcasted worldwide followed by avid fans, further fu-
eled by the abundance of amateur and grassroots leagues
across nearly every country, encompassing countless play-
ers who devote their time to the sport. Despite the tremen-
dous amount of visual data available worldwide for devel-
oping automatic systems to extract game events, most efforts
focus on the few professional league matches. However,
the recording quality and broadcasts editing vary consid-
erably across leagues, creating a disparity in the analyti-
cal capabilities of deep learning models. This paper delves
into an analysis of how action spotting models transfer to
diverse domains, analyzing the performance gap between
various types of broadcasts. In particular, we investigate the
transfer capability of state-of-the-art action spotting models
across leagues, from amateur to professional, and broad-
cast quality, from AI-piloted camera to professional broad-
cast editing. Our analysis shows that transferring across
leagues is challenging, with the most impactful feature be-
ing broadcasting editing quality. This analysis paper there-
fore seeks to spotlight this pressing issue and catalyze future
research endeavors in the field of domain adaptation for ac-
tion spotting methods.

1. Introduction
In recent years, the exponential growth in both the avail-

ability and accessibility of high-quality datasets has acted
as a catalyst for unprecedented advancements in artifi-
cial intelligence (AI) across various domains. This phe-
nomenon has been particularly pronounced within the realm
of sports, where datasets have emerged as foundational pil-
lars for AI-driven sports analytics. SoccerNet [25], among
its contemporaries, continues to undergo iterative refine-
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Figure 1. Domain gap between different leagues and broad-
cast quality. We showcase four domains: (1) professional league
broadcast from the SoccerNet dataset, (2) professional league
unedited main camera feeds from the Swiss Super League, (3)
semi-professional league AI-piloted camera from the BGL Lux-
embourg National Division, and (4) amateur league AI-piloted
camera from Sevilla. Our analysis shows that transferring ac-
tion spotting models from professional broadcasts to amateur AI-
piloted camera is challenging due to different recording and broad-
cast editing quality.

ment, perpetually expanding its breadth and depth by incor-
porating additional data subsets tailored to address specific
tasks or emerging analytical demands. This evolutionary
trajectory has been instrumental in propelling innovations
across a spectrum of areas within sports analytics, including
player performance analysis, tactical insights, and decision-
making processes within the sporting arena.

Despite the valuable contributions of datasets, a com-
mon characteristic is their pronounced bias towards elite
matches. These datasets predominantly draw from top-tier
professional leagues, thereby fostering a dataset landscape
characterized by an overrepresentation of elite competition.
While this emphasis on elite matches ensures unparalleled
data quality, it concurrently gives rise to a lack of diversity
in terms of both gameplay scenarios and broadcast quality.
This inherent limitation presents formidable challenges, as
techniques and models trained exclusively on such homog-
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enized data may exhibit limited generalization capabilities
when confronted with more diverse and heterogeneous do-
mains, including lower-tier leagues, amateur competitions,
or alternative broadcasts such as AI-piloted cameras.

Addressing this critical gap in the automatic detection of
events in sports broadcast, the primary objective of this pa-
per is to analyze the transfer capability of action spotting
models within different domains. To do so, we explore four
distinct domains to shed light on the challenge posed by do-
main gaps. These domains include: (1) professional league
with edited broadcasts, encompassing the professional six
leagues from the SoccerNet dataset, (2) unedited main cam-
era feeds from the Swiss Super League, (3) AI-piloted cam-
era feeds from the semi-professional BGL Luxembourg Na-
tional Division, and (4) AI-piloted camera feeds from an
amateur league in Sevilla. Our analysis reveals the perfor-
mance gap when transferring action spotting models from
professional broadcasts to amateur AI-piloted cameras, ow-
ing to disparities in recording and broadcast editing stan-
dards. By transcending the conventional dichotomy be-
tween elite and non-elite football, our research endeavors to
augment the robustness, applicability, and real-world effi-
cacy of AI-driven solutions in sports analytics and decision
support systems.

Contributions. (i) We introduce a novel benchmark de-
signed explicitly to evaluate domain transfer capabilities
of action spotting models, encompassing four distinct do-
mains spanning different leagues and broadcast formats. (ii)
We provide a thorough analysis and insights into the inher-
ent variations among the different leagues of the SoccerNet
dataset providing insights on the opportunities for future re-
search on domain adaptation of action spotting models. (iii)
Leveraging state-of-the-art models trained on SoccerNet,
we conduct a comprehensive evaluation of their adaptability
to new domains, including amateur leagues and AI-piloted
cameras

2. Related Work
2.1. Video understanding

Historically, video understanding has lagged behind im-
age understanding due to the absence of expansive video
datasets like ImageNet or CIFAR-100 [19, 39] in the video
domain. The advent of significant video comprehension
datasets, such as UCF101 [63], ActivityNet [6], YouTube-
8M [1], and Kinetics [36]], has sparked increased inter-
est in the field. Popular video understanding tasks include
video classification [22, 35, 53], action recognition [58, 75],
video captioning [24, 38, 78], and video generation [41].
The interest in crafting video models capable of capturing
spatio-temporal features has grown notably. The Tempo-
ral Segment Network (TSN) [76] aggregates features across

multiple temporal video segments to enhance recognition
performance. In a parallel development, Tran et al. [68]
introduced a novel spatio-temporal convolutional block,
R(2+1)D, assessing its impact on action recognition mod-
els. A more recent innovation, the Multiscale Vision Trans-
former (MViT) [21, 42], synergizes convolutional neural
networks (CNNs) and transformers in video classification
to capture spatial and temporal nuances.

Recent challenges in the video domain [6] involve ac-
tivity localization, i.e., identifying temporal boundaries of
activities in long untrimmed videos. Two-stage method-
ologies, including proposal generation [5] and subsequent
classification [4], have proliferated after object localiza-
tion. SSN [81] models each action instance with a struc-
tured temporal pyramid, while TURN TAP [23] predicts
action proposals and regresses their temporal boundaries.
In a dynamic optimization approach, GTAN [46] fine-tunes
the temporal scale of each action proposal using Gaussian
kernels. Other methodologies like BSN [77], MGG [45],
and BMN [43] use regression techniques to estimate activ-
ity boundaries, showcasing state-of-the-art performances on
benchmark datasets such as ActivityNet 1.3 [6] and Thu-
mos’14 [31]. On a different front, ActionSearch [2] ad-
dresses the spotting task iteratively, learning to predict the
subsequent frame for spotting a given activity. In this paper,
we study the transferability of video understanding mod-
els, particularly action spotting models accross different do-
mains.

2.2. Sports understanding

The complexity of understanding sports videos has pro-
pelled the field into a prominent research area [51, 52, 66].
Initially, methodologies were centered on video classifica-
tion [79], involving the identification of specific actions [37,
56] and the segmentation of diverse game phases [7, 14].
Other avenues of research delved into varied aspects of
sports understanding, encompassing player detection [71],
tracking [48], segmentation [13], and identification [61,74],
as well as tactics analysis in sports like football and fenc-
ing [65, 83]. Additional focal points included pass feasi-
bility [3], 3D ball localization in basketball [69], and 3D
shuttle trajectory reconstruction for badminton videos [44].

To support research in the field, several research groups
released extensive datasets, such as the one of Pappalardo et
al. [54], Yu et al. [80], SoccerTrack [57], SoccerDB [34],
and DeepSportRadar [33, 70]. Recently, the SoccerNet
dataset, introduced by Giancola et al. [25], offers bench-
marks for more than 12 distinct tasks related to soccer
video understanding. These tasks span action spotting [18],
camera calibration [10, 47], player tracking [15] and re-
identification [10, 49], multi-view foul recognition [28],
dense video captioning [50], explainability [29], depth es-
timation [40], and game state reconstruction [62]. The
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datasets serve as a platform for yearly competitions [16,26],
fostering collaborative research in sports video understand-
ing. In this paper, we leverage the SoccerNet action spotting
dataset as it comprises 6 professional leagues edited broad-
casts, as well as the videos from the SoccerNet-Tracking
dataset comprising 9 available main camera feeds from the
Swiss Super League. Furthermore, we explore two novel
video datasets of AI-piloted camera in semi-professional
and amateur leagues.

2.3. Action spotting

Detecting specific actions, known as action spotting, is
a crucial aspect of understanding football videos, involving
the precise localization of events like penalties, goals, or
corners within untrimmed football broadcast videos. Unlike
temporal activity localization [6], action spotting assigns a
single timestamp to describe events, aligning with football
rule definitions [32]. Notably, large-scale datasets like Soc-
cerNet [25] have expanded to 17 classes to encompass all
possible game actions [18].Giancola et al. [25] initially in-
troduced the action spotting task and developed a first base-
line, utilizing temporal pooling, later refining their approach
by incorporating temporal context [27]. Rongved et al. [55]
proposed a 3D ResNet applied directly to video frames in a
5-second sliding window fashion. Multimodal approaches
by Vanderplaetse et al. [72] and Xarles et al. [26] combined
visual and audio features. Cioppa et al. [11, 12] introduced
a context-aware loss function to capture temporal context,
while Vats et al. [73] employed a multi-tower CNN account-
ing for action location uncertainty, and Tomei et al. [67]
fine-tuned feature extractors with a masking strategy for
post-action frames.

The current state-of-the-art on SoccerNet-v2 is estab-
lished by Denize et al. [20], winners of the 2023 SoccerNet
challenge, using an end-to-end approach. This approach
significantly surpasses Soares et al. [59, 60], an anchor-
based approach, and Hong et al. [30], the first precise tem-
poral spotting (PTS) method with an end-to-end trained fea-
ture extractor and spotting head works, the 2022 challenge
winner and runner-ups respectively. The latter approach re-
lies on a light-weight RegNet architecture with GSM [64]
and GRU [9] modules. Other methods explored spatio-
temporal encoders [17], graph-based layers [8], and trans-
former architectures [82].

3. Assessing Domain Transfer
In this section, we delve into the transfer capability of

action spotting models across diverse domains, a critical
aspect for extending their applicability beyond their initial
training environments. This concept referes to generaliza-
tion, i.e., the ability of a model to perform accurately across
diverse, unseen domains, which is critical for robust action
spotting systems. In this work, we explore how well state-

of-the-art action spotting techniques maintain their perfor-
mance when tested in new domains with specific domain
shifts. This section is segmented several parts, including the
formal definition of the problem, the description of the dif-
ferent domains in the SoccerNet action spotting dataset, and
the novel datasets derived from broadcasts of Swiss league
matches, Luxembourg league matches, and broadcasts from
Cinfo, a company specialized in automated sports event
production.

3.1. Problem definition

The transfer capability across diverse domain, or gen-
eralization, problem in action spotting can be formalized
as follows: Let Dtrain and Dtest represent the training
and testing datasets, respectively representing different do-
mains, where each dataset consists of a set of video se-
quences V and corresponding action labels A. The objec-
tive of an action spotting model f is to learn a mapping from
video frames to action labels:

f : V → A

The model f is trained on Dtrain with the goal of min-
imizing a loss function L, which measures the discrepancy
between the predicted actions f(V) and the true actions A:

min
f

L(f(Vtrain),Atrain)

where Vtrain and Atrain are the video sequences and ac-
tion labels in Dtrain, respectively.

The challenge in generalization arises when the model
f is evaluated on Dtest, whose domain may differ signifi-
cantly from Dtrain in terms of distribution, quality, or con-
text. The generalization capability of f is then assessed
based on its performance on Dtest:

P(f) = L(f(Vtest),Atest)

where Vtest and Atest are the video sequences and action
labels in Dtest, and P(f) represents the performance of the
model.

The primary goal of this research is to assess the trans-
fer capabilities of existing action spotting methods across
different leagues and broadcast quality levels within Dtest,
highlighting the impact on model performance.

3.2. The SoccerNet professional league domain

For this research, we leverage the SoccerNet dataset,
which is composed of edited broadcasts from six profes-
sional European leagues.The breakdown of video quan-
tities for each league is provided in Table 1 and fur-
ther detailed in this section. Regarding annotations, Soc-
cerNet encompasses 17 distinct classes, namely: “Ball
out of play”, “Clearance”, “Corner”, “Direct free-kick”,
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Partition Games Camera Train Games Validation Games Test Games

Type Num 2014 2015 2016 > 2019 Total 2014 2015 2016 > 2019 Total 2014 2015 2016 > 2019 Total

EPL 95 Human > 1 4 25 29 0 58 1 12 6 0 19 1 12 5 0 18
UEFA 101 Human > 1 22 29 11 0 62 8 10 2 0 20 7 6 6 0 19
Ligue 1 38 Human > 1 1 2 24 0 27 0 1 8 0 9 0 0 2 0 2
Bundesliga 53 Human > 1 5 10 16 0 31 2 4 2 0 8 1 4 9 0 14
Serie A 96 Human > 1 7 5 44 0 56 3 1 14 0 18 1 3 18 0 22
La Liga 117 Human > 1 6 18 42 0 66 6 9 11 0 26 6 9 10 0 25

Super League (SWL) 9 Human 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9 9
BGL League 1 AI 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
CINFO 1 AI 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Table 1. Datasets and domain statistics. We detail the number of games per dataset, splitting them per league and per year. The first six
leagues come from the SoccerNet dataset and are professional European leagues broadcasts. The three bottom leagues are captured by a
single camera, with the BGL and CINFO datasets being from semi-professional and amateur leagues respectively and AI-piloted cameras.

“Foul”, “Goal”, “Indirect free-kick”, “Kick-off”, “Offside”,
“Penalty”, “Red card”, “Shots off target”, “Shots on target”,
“Substitution”, “Throw-in”, “Yellow card”, and “Yellow-
>red card’.
England - EPL. This subset contains 116 videos with
12,617 annotated events for training, 38 videos with 3,808
events for validation, and 36 videos with 4,016 events for
testing. It is noteworthy that the validation set for this sub-
set lacks examples of the class “Yellow->red card”.
Europe - Champions League. This subset contains 124
videos with 13,549 annotated events for training, 40 videos
with 4,357 events for validation, and 38 videos with 4,222
events for testing. Notably, the test set for this subset does
not include examples of the class “Red card”.
France - Ligue 1. This subset includes 54 videos with
5,465 annotated events for training, 18 videos with 1,827
events for validation, and 4 videos with 384 events for test-
ing. The validation and testing sets for this subset lack ex-
amples of the classes “Red card’ and “Yellow->red card”.
Germany - BundesLiga. This subset comprises 62 videos
with 7,258 annotated events for training, 16 videos with
1,786 events for validation, and 28 videos with 3,270 events
for testing. The validation set for this subset does not con-
tain examples of the classes “Red card’ and “Yellow->red
card”.
Italy - Serie A. This subset encompasses 112 videos with
13,176 annotated events for training, 36 videos with 3,986
events for validation, and 44 videos with 5,147 events for
testing. All subsets include examples of all classes.
Spain - LaLiga. This subset encompasses 132 videos with
14,395 annotated events for training, 52 videos with 5,683
events for validation, and 50 videos with 5,512 events for
testing. All subsets include examples of all classes.

3.3. Novel datasets and domains

Alongside the SoccerNet action spotting dataset, we
provide three extra domains, corresponding to unedited
main camera and AI-piloted camera broadcasts from pro-
fessional, semi-professional, and amateur leagues.
Switzerland - Super League. This dataset leverages the

SoccerNet-Tracking data on which action spotting labels
were annotated. It comprises 9 matches from the Swiss Su-
per league, all of which are used as test set. These matches
differ primarily from those in SoccerNet in that they feature
only a single camera tracking the game. Notably, this track-
ing is performed by a human agent using a professional-
grade camera. The dataset consists of 18 videos with 2,387
events. It is important to note that this dataset does not in-
clude examples of the classes “Red card’ and “Yellow->red
card”.
Luxembourg - BGL. Similar to the Swiss League dataset,
this subset consists of a single match used as test set. This
match features a single camera tracking a BGL game. How-
ever, the tracking in this league is executed by an artificial
agent moving the camera in real-time, and it employs a non-
professional camera for broadcasts. The dataset comprises
2 videos with 165 events. Notably, this dataset lacks ex-
amples of the classes “Offside”, “Penalty”, “Red card”, and
“Yellow->red card”.
Spain - Cinfo. Similarly, as in the previous section, this
dataset consists of a single match used as test set. The is
produced by the company Cinfo and, like the Swiss and
Luxembourg BGL leagues, feature only a single camera
tracking the game. However, similarly to the Luxembourg
BGL league, the tracking in this dataset is performed by an
artificial agent moving the camera in real-time, and it em-
ploys a non-professional camera for broadcasts. The dataset
comprises 2 videos with 164 events. Notably, this dataset
lacks examples of the classes “Direct free-kick”, “Penalty”,
“Red card”, “Yellow card”, and “Yellow->red card”.

4. Benchmark and Results

In this section, we first provide the implementation de-
tails of the evaluated methods. Then, we delve into an eval-
uation and analysis of the capacity of each state-of-the-art
model to transfer knowledge from the data of each league
within the SoccerNet dataset to all leagues therein (Cross-
league transfer within SoccerNet), as well as to novel and
challenging domains such as the Swiss Super League, the
Luxembourg BLG, and Cinfo (transfer between leagues
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outside of SoccerNet).
Metrics. This study employs the metrics established
by [25], namely tight average-mAP and loose average-mAP.
These metrics utilize the same average-mAP measure but
with different temporal tolerances: 1-5 seconds and 5-60
seconds, respectively. It is important to highlight that tight
average-mAP, being a stricter metric, prioritizes precise
temporal localization. This precision is particularly valu-
able for tasks requiring accurate action spotting.

4.1. Implementation details

Pooling. Pooling is the first method in our analysis, draw-
ing from the seminal work of Giancola et al. [25]. From
their groundwork, we adopt two feature-based pooling
methods, namely MaxPooling and NetVLAD, for action
spotting tasks. Both during training and testing phases, we
utilize the ResNET TF2 PCA512 features. To ensure con-
sistency and reproducibility, we adhere to a standardized
set of hyperparameters across all models. These include a
batch size of 256, a chunk size of 20 seconds, an evalua-
tion frequency of 10 epochs, a number of input features of
512, the framerate of input features as 2 frames per sec-
ond, the chunk size as 60 seconds, the learning rate (LR)
set to 1e-03, and a patience of 10 epochs before reducing
LR using the ReduceLROnPlateau strategy. Finally, for the
NetVLAD method, we employ a Non-Maximum Suppres-
sion (NMS) mechanism with a window size of 20 seconds
and a threshold of 0.5 to filter positive results effectively.
Conversely, for MaxPooling, a threshold of 0.0 is utilized.
CALF. The second method is the one of Cioppa et
al. [11], known as CALF. In both the training and test-
ing phases of this model, we have also employed the
ResNET TF2 PCA512 features. To ensure reproducibil-
ity, we have adhered to specific hyperparameters: a batch
size of 32, an evaluation frequency of 20, and chunks per
epoch set to 18000, the number of input features set to
512, the dimension of the capsule network set to 16, a
framerate of 2 for the input features, a chunk size set to
120 seconds, and a temporal receptive field of the net-
work set to 40 seconds. Additionally, we have specified the
weights for various components in the detection loss func-
tion: lambda coord (weight of the coordinates of the event)
set to 5.0, lambda noobj (weight of the no object detection)
set to 0.5, loss weight segmentation (weight of the segmen-
tation loss compared to the detection loss) set to 0.000367,
and loss weight detection (weight of the detection loss) set
to 1.0. The learning rate (LR) is set to 1e-03 with a patience
of 25 epochs before reducing LR using the ReduceLROn-
Plateau strategy.
NetVLAD++. The third method is NetVLAD++, pro-
posed by Giancola et al. [27]. This advanced technique has
played a pivotal role in refining action spotting methodolo-
gies, showcasing promising outcomes, particularly in tem-

poral modeling. Throughout our experimentation, we uti-
lize the ResNET TF2 features for both training and testing
phases. To ensure reproducibility, we utilized the following
hyperparameters: an evaluation frequency set to 10, a fram-
erate of 2 frames per second, a window size parameter of
15 seconds, a vocabulary size of 64, a Non-Maximum Sup-
pression (NMS) window size of 30 seconds, and a threshold
of 0.0 for NMS. Additionally, we employ a batch size of
256 and set the learning rate (LR) to 1e-03. We incorporate
a patience of 10 epochs before LR reduction using the Re-
duceLROnPlateau strategy. Furthermore, setting the seed to
0 ensures reproducibility across experiments.
E2E-Spot. The fourth method under consideration is
an end-to-end approach proposed by Hong et al. [30]. In
our evaluation, we utilized the architectures that yielded
the best results in the original work. Specifically, we em-
ployed the “rgb” modality alongside the CNN architectures
“rny002 gsm” and “rny008 gsm”. For temporal modeling
in spotting, we employed the “gru” architecture in both
cases. The hyperparameters used for both training and test-
ing are as follows: a clip length of 100, a crop dimension of
224, a batch size of 8, gradient accumulation of 1, 3 epochs
for warm-up, a maximum number of epochs set to 50, a
learning rate of 0.001, validation criterion based on Mean
Average Precision (mAP), a dilation distance of 0 during
training, and the mixup augmentation technique enabled.
COMEDIAN. The fifth and final method, COMEDIAN,
proposed by Denize et al. [20], serves as our benchmark
in this study. This methodology stands out as the top-
performing approach on SoccerNet, with its code pub-
licly available, facilitating thorough evaluation. Notably,
COMEDIAN represents another end-to-end method in our
analysis. Although we have not trained models from
scratch, we conduct an in-depth analysis of the capabilities
of the models proposed in the original work: COMEDIAN
Vivit, COMEDIAN Viswin, and ensembles thereof, on the
new domains introduced in this study. This comprehensive
examination allows us to assess the adaptability and effec-
tiveness of COMEDIAN in action spotting tasks, leverag-
ing its state-of-the-art performance as a reference point for
comparison.

4.2. Cross leagues transfer within SoccerNet

In this set of experiments, we delve into an extensive
analysis of cross-league transfer capability within the Soc-
cerNet Action Spotting dataset. Our investigation aims to
uncover the adaptability of various algorithms trained on
specific leagues within SoccerNet when applied to different
leagues. The comprehensive results presented in the Ta-
ble 2 encapsulate the performance metrics, namely Tight-
Average-mAP and Loose-Average-mAP, which offer in-
sights into the transfer capability of cross-leagues. Upon an-
alyzing the results, several noteworthy observations emerge,
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Test EPL UEFA Ligue1 Bundesliga SerieA LaLiga
Average-mAP Average-mAP Average-mAP Average-mAP Average-mAP Average-mAP

Train tight loose tight loose tight loose tight loose tight loose tight loose

E
PL

MaxPool 2.56 15.87 1.74 12.77 2.79 18.10 1.86 10.55 1.2 11.45 2.21 9.3
NetVLAD 3.82 24.02 2.38 19.37 3.63 18.32 3.00 12.83 1.76 9.65 2.29 12.65
NetVLAD++ 13.27 42.41 12.14 39.12 13.68 44.62 11.28 36.26 7.37 32.69 9.2 32.4
CALF 7.12 31.33 6.59 25.02 9.48 28.15 4.64 23.71 5.61 19.52 5.24 19.49
E2E-Spot rny002 gsm 53.09 62.77 51.66 60.65 55.23 63.95 46.33 54.7 33.52 50.9 40.14 48.86
E2E-Spot rny008 gsm 53.53 63.22 52.37 61.07 57.03 65.95 45.56 54.01 35.4 54.68 41.12 49.29

U
E

FA

MaxPool 1.71 11.20 3.33 18.00 3.77 20.24 1.86 13.28 1.9 12.36 2.85 10.66
NetVLAD 3.09 13.27 4.50 25.46 3.89 25.37 3.83 17.32 2.27 11.75 3.12 15.86
NetVLAD++ 9.55 36.00 14.49 46.74 19.57 56.85 11.68 39.78 9.61 37.43 9.29 37.81
CALF 4.77 22.66 9.18 32.93 7.52 28.21 5.85 24.77 5.5 23.6 5.78 20.52
E2E-Spot rny002 gsm 46.84 57.81 60.51 70.30 59.29 67.90 46.23 55.14 34.04 55.29 44.10 52.74
E2E-Spot rny008 gsm 50.00 60.55 61.72 71.69 61.31 69.62 50.36 58.15 34.05 54.06 44.65 54.78

L
ig

ue
1

MaxPool 1.65 9.81 1.70 12.51 3.74 29.46 1.51 10.47 1.13 10.49 1.85 9.12
NetVLAD 1.75 5.51 2.93 10.24 5.68 26.86 1.69 6.64 0.68 3.67 2.66 6.58
NetVLAD++ 6.00 25.28 7.43 30.52 12.75 49.72 7.49 27.48 5.73 25.92 6.7 27.33
CALF 2.73 12.48 3.32 15.88 6.56 33.50 2.97 12.6 3.25 11.33 3.03 12.89
E2E-Spot rny002 gsm 26.28 36.05 32.83 42.36 56.91 67.33 28.65 36.22 21.19 34.28 26.77 35.12
E2E-Spot rny008 gsm 29.31 38.39 36.62 44.70 58.50 65.42 28.73 35.82 21.99 35.67 29.93 37.33

B
un

de
sl

ig
a MaxPool 1.26 9.04 1.57 11.99 1.76 15.73 2.47 16.86 0.97 10.84 1.46 7.98

NetVLAD 2.26 10.18 4.67 14.91 4.75 15.00 3.76 23.49 1.9 9.17 2.79 8.55
NetVLAD++ 7.99 27.92 10.06 32.68 10.40 40.12 11.55 37.65 6.64 27.86 7.18 27.85
CALF 3.72 14.30 5.34 18.14 4.12 17.98 9.06 31.77 3.69 16.99 3.84 14.62
E2E-Spot rny002 gsm 35.03 43.93 36.05 44.75 38.20 44.59 42.67 52.06 27.47 42.11 28.94 37.31
E2E-Spot rny008 gsm 37.19 46.53 42.30 50.52 41.01 49.33 44.65 53.63 26.96 43.55 32.98 41.18

Se
ri

eA

MaxPool 1.34 9.67 2.10 12.23 1.68 17.63 1.66 10.87 2.76 19.05 2.03 10.22
NetVLAD 2.4 10.85 3.47 18.87 4.37 16.90 2.54 13.37 4.39 26.1 2.5 11.26
NetVLAD++ 10.13 32.62 13.28 39.40 17.41 47.98 12.96 33.88 11.04 44.5 9.53 32.04
CALF 3.37 17.13 4.15 21.46 6.36 31.54 3.64 17.7 5.21 31.31 3.29 16.86
E2E-Spot rny002 gsm 37.70 49.00 43.46 53.11 46.82 56.53 44.77 54.01 39.31 61.56 36.89 46.51
E2E-Spot rny008 gsm 38.62 51.81 47.50 61.12 48.94 59.17 42.36 51.38 42.68 64.93 41.87 52.06

L
aL

ig
a

MaxPool 1.42 9.75 1.75 14.04 1.95 17.31 1.8 10.95 1.73 11.61 2.88 16.86
NetVLAD 1.65 9.76 2.75 15.37 4.68 15.69 2.74 11.54 2.66 12.15 4.37 23.47
NetVLAD++ 8.51 32.15 10.64 37.95 13.67 52.88 11.26 34.89 9.47 35.13 11.72 40.99
CALF 4.11 19.77 6.17 26.45 8.11 32.23 3.81 21.5 4.67 22.81 8.22 31.09
E2E-Spot rny002 gsm 43.12 53.38 53.85 63.95 55.23 64.00 42.80 50.53 35.3 55.7 50.95 60.09
E2E-Spot rny008 gsm 45.10 55.20 54.35 62.78 55.66 64.41 46.51 53.73 36.89 57.27 52.10 60.68

So
cc

er
N

et

MaxPool 2.71 17.70 2.93 22.60 4.19 30.15 2.66 21.31 2.54 20.17 2.98 19.1
NetVLAD 3.41 29.90 4.21 36.72 6.32 45.03 4.65 30.63 4.6 32.56 4.81 30.86
NetVLAD++ 17.54 56.87 14.54 60.79 18.38 66.00 15.42 55.27 9.39 54.14 11.43 50.95
CALF 13.71 41.53 16.82 46.23 17.74 50.02 15.49 43.22 13.19 43.03 15.44 41.54
E2E-Spot rny002 gsm 65.23 75.42 70.68 79.08 79.22 84.67 67.51 73.52 49.09 70.65 61.55 68.59
E2E-Spot rny008 gsm 60.85 74.83 71.06 79.56 79.66 84.31 69.44 75.15 51.88 73.41 62.92 70.38

Table 2. Intra league analyses within the SoccerNet action spotting dataset. We analyze how state-of-the-art action spotting models
trained on specific leagues of SoccerNet transfer on other leagues. We show the Tight-Average-mAP and Loose-Average-mAP metrics for
comparison. Best performing training of a given test domain is shown in bold. The gray backgrounds depicts the same train/test domains.
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Work Model SoccerNet Data Super League BGL League CINFO

tight-AmAP loose-AmAP tight-AmAP loose-AmAP tight-AmAP loose-AmAP tight-AmAP loose-AmAP

Pooling MaxPooling – 18.6 0.75 12.86 0.71 8.10 0.86 11.58
NetVLAD 4.20 31.37 0.68 11.01 1.68 7.31 0.38 2.20

CALF CALF 14.10 41.61 5.08 20.98 0.74 5.27 0.37 4.70

NetVLAD++ NetVLAD++ 11.51 53.40 4.36 33.25 2.21 12.36 1.10 13.79

E2E-Spot
rny002 gsm 61.19 73.25 63.10 67.31 21.89 30.99 18.81 28.84
rny008 gsm 61.82 74.05 70.02 73.92 24.09 32.66 19.56 30.32
rny008 gsm Challenge 61.82 74.05 69.97 73.25 34.23 43.05 21.40 32.98

Comedian

ViViT Tiny 70.70 76.10 69.58 73.32 28.12 41.27 23.93 40.13
ViSwin Tiny 71.60 76.60 72.39 75.90 41.31 49.64 25.93 36.14
ViViT-T Ensemble 72.00 77.10 69.57 65.67 25.09 37.32 18.89 30.86
ViSwin-T Ensemble 73.10 77.60 70.89 73.76 36.42 42.71 20.45 26.01

Table 3. Cross-domain Transfer analyses. We analyze how state-of-the-art action spotting models trained on SoccerNet transfer on the
original and other domains. We show the Tight-Average-mAP and Loose-Average-mAP metrics for comparison. Best performing model
of a given test domain is shown in bold.

shedding light on the efficacy of model transfer capability
across diverse soccer leagues.

EPL to other leagues: Algorithms trained on the
English Premier League (EPL) demonstrate competitive
performance when transferred to other leagues, with
NetVLAD++ and Spot rny008 gsm exhibiting notable per-
formance across multiple leagues. UEFA to other leagues:
Models trained on UEFA data also show promising trans-
fer capability, especially with Spot rny008 gsm achieving
impressive performance across different leagues. Ligue1
to other leagues: Transfer from Ligue1 to other leagues
yields mixed results, with Spot rny002 gsm and Spot
rny008 gsm showing relatively consistent performance.
Bundesliga to other leagues: Algorithms trained on Bun-
desliga data generally exhibit good transfer capability, with
Spot rny008 gsm consistently performing well across dif-
ferent leagues. SerieA to other leagues: Transfer from
SerieA to other leagues yields mixed results, with Spot
rny008 gsm demonstrating competitive performance across
various leagues. LaLiga to other leagues: LaLiga-
trained models demonstrate strong transfer capability, with
Spot rny008 gsm consistently achieving high performance
across different leagues.

Overall, the results highlight the potential of models
trained on one league to perform well when transferred to
other leagues within the SoccerNet dataset. Notably, end-
to-end methods like Spot rny008 gsm exhibit more robust-
ness and effectiveness in cross-league transfer scenarios.

4.3. Cross leagues transfer outside SoccerNet

In this set of experiments, we present the results of do-
main transfer conducted across different sports leagues, ex-
tending beyond the SoccerNet dataset. The evaluation en-
compasses two prominent soccer leagues, namely the Su-
per League and the BGL League, along with data from the
CINFO dataset. Table 3 showcases the performance metrics

of various models across these diverse datasets. Results re-
veal notable variations in model performance across differ-
ent leagues. For instance, in the Super League dataset, the
“Spot” models, particularly rny002 gsm and rny008 gsm,
exhibit high tight-AmAP scores of 63.10% and 70.02%
respectively, indicating their effectiveness in this domain.
Similarly, the “Comedian” models, such as ViSwin-T En-
semble, demonstrate competitive performance across all
leagues, with tight-AmAP scores ranging from 70.89% to
73.10%. Interestingly, the feature-based models demon-
strate strong performance on SoccerNet, while showing
relatively lower performance in the Super League, BGL
League, and CINFO datasets. Overall, these results under-
score the importance of evaluating models across diverse
datasets and sports leagues to assess their generalizability
and robustness beyond the training domain.

5. Discussion

In this section, we delve into the implications of the
results presented in Table 2 and Table 3, analyzing the
strengths and limitations of the examined models, identi-
fying factors influencing their performance, and proposing
avenues for future research and model refinement.

Transfer capability across same domain Our investiga-
tion into the transfer capabilities across different domains
within the SoccerNet dataset reveals compelling insights
into the generalization ability of deep learning models in
sports action analysis. Upon examining how models per-
form across various subsets of the dataset that we shown
at Table 2, it becomes evident that models trained on a
specific subset demonstrate notable generalization abilities
when applied to other subsets. Notably, all models exhibit
superior performance on their own subset’s test set com-
pared to others, indicating a degree of domain specificity.
However, it is worth noting that the test sets for UEFA and
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Ligue 1 subsets stand out due to their smaller number of
classes—16 and 15, respectively—compared to the origi-
nal 17. Despite this discrepancy, models trained on these
subsets still showcase admirable generalization capabilities.
Furthermore, our analysis underscores an interesting obser-
vation: none of the models trained on specific subsets sur-
pass the performance of the original models, which were
trained on the entire SoccerNet dataset, by a considerable
margin. This performance gap ranges from less than 0.5%
for older models like MaxPool and NetVLAD to over 10%
for newer models like Spot. This suggests that while mod-
els trained on specific subsets can generalize well within
their domain, they may struggle to match the overall per-
formance of models trained on the entire dataset. Finally,
we calculate the average discrepancy between the model re-
sults trained using data from all leagues and each individual
league. Our analysis revealed that models trained with data
from the UEFA league exhibited the smallest discrepancies,
indicating that these models produce results closest to those
derived from using the entire dataset. This observation may
be attributed to the diverse stadiums across Europe where
UEFA matches are held, each equipped with distinct broad-
casting technologies. Consequently, this diversity enriches
the dataset, enhancing the models’ ability to generalize ef-
fectively.

Transfer capability across different domains The anal-
ysis presented in Table 3 highlights the models’ ability to
transfer knowledge from the original SoccerNet dataset to
new domains. In the pooling-based methods, we observe
intriguing patterns: despite MaxPooling exhibiting compar-
atively lower performance with a Loose Average-mAP of
18.6% compared to NetVLAD’s 31.37%, it showcases su-
perior generalization capabilities. MaxPooling experiences
minimal performance degradation and even outperforms
NetVLAD in the Swiss Super League subset. In the case
of CALF and NetVLAD++, both models demonstrate simi-
lar performance, but CALF experiences a more pronounced
drop in Tight-Average-mAP. Notably, the end-to-end meth-
ods exhibit excellent generalization in the Swiss Super
League subset but experience substantial performance re-
ductions in datasets with broadcast videos generated by
cameras automatically piloted. This phenomenon suggests
that while these models excel in specific domains, they may
struggle to adapt to novel datasets, indicating potential chal-
lenges in generalization across diverse data distributions.

Feature-Based vs. End-to-End Methods Across all ana-
lyzed cases, as evidenced in both Table 2 and Table 3, a sub-
stantial gap exists between feature-based methods (Max-
Pooling, NetVLAD, NetVLAD++, and CALF) and end-
to-end approaches (Spot and COMEDIAN). Feature-based
methods exhibit a significant performance drop, particularly
in the Tight-Average-mAP metric, where they only achieve
a maximum of 5.08% in the Swiss Super League subset and

less than 1.10% for the CINFO dataset. In contrast, end-to-
end methods consistently maintain a Tight-Average-mAP
above 18.89% across all cases, with the CINFO dataset pos-
ing the greatest challenge for both feature-based and end-
to-end methods. This disparity underscores the inherent
advantages of end-to-end approaches in preserving perfor-
mance across diverse datasets, potentially attributed to their
ability to learn more complex representations directly from
raw data. However, it also highlights the need for further re-
search to bridge the performance gap between feature-based
and end-to-end methods, especially in challenging domains
like the CINFO dataset.

6. Conclusion

In this study, we conducted an extensive analysis of
state-of-the-art action spotting models applied to football
videos, focusing on their performance within the Soccer-
Net dataset and on different domains. Our investigation
revealed significant potential within SoccerNet for extract-
ing valuable insights applicable across diverse domains.
However, we also highlighted a notable performance gap
between SoccerNet and other league levels and broadcast
quality. To address this gap and achieve comparable re-
sults across domains, we suggest further exploration of
techniques such as domain adaptation, continual learning,
or transfer learning. These methodologies offer promis-
ing avenues for closing the performance disparity between
datasets and expanding the application of AI in sports anal-
ysis to a broader spectrum of domains. This analysis paper
therefore seeks to spotlight this pressing issue and catalyze
future research endeavor.
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Ghanem, and Marc Van Droogenbroeck. Scaling up Soccer-
Net with multi-view spatial localization and re-identification.
Sci. Data, 9(1):1–9, Jun. 2022. 2

[11] Anthony Cioppa, Adrien Deliège, Silvio Giancola, Bernard
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Jan Held, Carlos Hinojosa, Amir M. Mansourian, Pierre
Miralles, Olivier Barnich, Christophe De Vleeschouwer,
Alexandre Alahi, Bernard Ghanem, Marc Van Droogen-
broeck, Abdullah Kamal, Adrien Maglo, Albert Clapés,
Amr Abdelaziz, Artur Xarles, Astrid Orcesi, Atom Scott,
Bin Liu, Byoungkwon Lim, Chen Chen, Fabian Deuser,
Feng Yan, Fufu Yu, Gal Shitrit, Guanshuo Wang, Gyusik
Choi, Hankyul Kim, Hao Guo, Hasby Fahrudin, Hidenari
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