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Abstract

Padel is a rapidly growing racquet sport and has gained
popularity globally due to its accessibility and exciting
gameplay dynamics. Effective coordination between team-
mates hinges on maintaining an appropriate distance, al-
lowing for seamless transitions between offensive and de-
fensive maneuvers. A balanced inter-player distance and
distance to the net not only facilitates efficient communica-
tion but also enhances the team’s ability to exploit open-
ings in the opponent’s defense while minimizing vulnerabil-
ities. We introduce a new open dataset of padel rallies with
annotations for hits and player-ball interactions, a predic-
tive model for detecting hits based on audio signals, a re-
identification algorithm for pose tracking, and a framework
for calculating inter-player and player-net distances during
rallies. Our predictive model achieves an average F1-score
of 92% for hit detection, demonstrating robust performance
across different match conditions. Furthermore, we develop
a system for accurately assigning hits to individual players,
achieving an overall accuracy of 83.70% for player-specific
assignment and 86.83% for team-based assignment.

1. Introduction
Padel, a fast-growing racquet sport, has gained remark-
able popularity worldwide due to its accessibility, dynamic
gameplay, and social appeal. Combining elements of tennis
and squash, padel is played on an enclosed court with glass
walls and a perforated surface, allowing for exciting rallies
and strategic shot-making. The sport’s surge in popular-
ity has sparked interest among researchers and sports sci-
entists, leading to a growing body of literature focused on
understanding player dynamics, performance metrics, and
tactical strategies in padel.

A lot of insights can be obtained by measuring the in-
ter player distances between teams (in regards to defensive
field coverage) as well as the distance to the net. For exam-
ple, when defending players push their rivals to the back of
the court, they tend to get closer to the net in order to gain

a better attacking position and control over the court. But
how close should they get? The editors of padeltrainer.com
[4] suggest around 4 meters. The actual optimal value of
distance to the net and between players is not further in-
vestigated in this work, but we present a way to objectively
measure these distances at important timestamps in the rally
(when the ball is hit). These insights could help the coach-
ing staff with more in depth point-by-point analysis such as
traveled distance, player movement patterns and field cov-
erage (on top of the previously mentioned distance metrics).

This research paper aims to contribute to the field of
sports analytics by exploring player tracking and measur-
ing distances between players in padel. The core con-
tributions of this publication are as follows: a new open
dataset of padel rallies with annotations for hits (full) and
which player hits the ball (partial), a predictive model used
to detect hits based on the audio signal of a rally, a re-
identification algorithm based on the pose tracks appear and
disappear locations and finally, a framework based on all
previous to calculate inter-player and player-net distance at
relevant timestamps in the rally.

The remainder of this paper is organized as: Section 2
introduces relevant literature to this work. In Section 3 in-
troduces a new padel-specific, public and annotated dataset.
Our method regarding ball hit detection and player related
metrics are described in Section 4 and Section 5. In Section
6, the results and analysis of the implemented techniques
are presented. And finally, the core contributions and gen-
eral findings regarding the core contributions are summa-
rized in Section 7.

2. Related work

2.1. Position tracking of the ball and players

Analysis of player movements that includes the trajectory
data of the ball have become more prevalent to enhance
sports analytics systems [3, 12]. With the advent of ma-
chine learning, particularly deep learning, there has been a
paradigm shift towards convolutional-driven approaches for
player/ball detection in sports. Researchers have adapted
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convolutional neural network (CNN) architectures such as
Faster R-CNN [21] and YOLO [20] for real-time detection
in various sports scenarios. Additionally, TrackNet [8], a
specialized neural network architecture designed for object
tracking, has gained attention in sports-related applications.
TrackNet leverages temporal information to track objects
across consecutive video frames, offering improved robust-
ness and accuracy in ball tracking tasks. In tennis, Rocha
et al. [22] introduced a TrackNet-based approach for real-
time ball tracking, demonstrating improved performance in
challenging scenarios such as occlusions and rapid motion
compared to other state-of-the-art methods.

The counterpart of the ball position required for game
analysis is the tracking of the players’ movements on the
court. Compared to plain tracking, Human pose estimation
(HPE) offers several advantages due to its ability to pro-
vide more detailed insights into athletes’ movements and
biomechanics. With access to the player’s wrist and ankle
positions we are able to correct some false detections of our
system (see Section 5). The applicability of HPE models
in sports related contexts has already been shown by sev-
eral studies [9, 28], and specifically in padel by Javadiha et
al. [11]. In addition, large-scale datasets designed to train
a pose estimator that adequately captures the challenging
and dynamic nature of sports movements, have started to
emerge [10].

2.2. Sound Event Detection in Sports

Sound classification and sound event detection have
emerged as essential components in sports analytics, en-
abling comprehensive analysis and understanding of ath-
letic performances. Sound event detection (SED) in sports
involves the automatic detection and localization of spe-
cific sound events within sports audio recordings, facilitat-
ing tasks such as action recognition and play-by-play anal-
ysis. Since it predicts the onset and offset time as well as
the category of the sound, it can be seen as an extension
of sound classification. In many cases, sound event detec-
tion tasks require more fine-grained temporal analysis com-
pared to sound classification, as the goal is to precisely lo-
cate and identify individual sound events within a longer
audio recording [19].

Traditional approaches to SED often rely on hand-
crafted feature extraction followed by pattern recognition
techniques such as Mel-Frequency Cepstral Coefficients
(MFCC) or the spectral envelope. For example, Heittola
et al. [7] proposed a method based on a Hidden Markov
Model (HMMs) classifier that uses context-dependant rep-
resentations from MFCC. Part of their dataset originates
from basketball games but showed poor robustness due to
noise interference from the polyphonic nature of these en-
vironments.

In recent years, data-driven approaches leveraging deep

learning architectures have gained prominence in SED.
CNNs have been adapted for SED tasks by treating au-
dio spectrograms as images and applying 2D convolutions
to capture temporal and frequency features. For instance,
Baughman et al. [2] employed CNNs for detecting impor-
tant events in tennis matches, including hits, announcers,
and crowd reactions, achieving robust performance across
different match conditions. Furthermore, attention mech-
anisms and recurrent neural networks (RNNs) have been
integrated into deep learning models for SED to enhance
the model’s ability to capture temporal dependencies and
focus on relevant audio segments [6, 15, 26]. This means
that consecutive outputs are no longer independent of each-
other, which is the case for repeated windowed classifica-
tion. For example, Cakir et al. [29] have shown how the ca-
pabilities of a CNN to learn local translation invariant filters
can be combined with an RNN’s capability to model short
and long term temporal dependencies in a so called Con-
volutional Recurrent Neural Network (CRNN) classifier for
polyphonic SED tasks. The main limitation of such network
is the dependency on a large amount of annotated data. As
with other domains where CNNs are used, they suggest to
utilize transfer learning to overcome the limitation imposed
by small datasets by fine-tuning the final layers of a pre-
trained model on a smaller dataset [27].

3. Dataset

Thanks to the cooperation of Play Sports, we are able to
publicly release 5 hours and 28 minutes of padel matches.
The dataset consists of the video summaries of the high-
lights of padel matches as well as two full length matches
which are all recorded from a fixed camera view. For the
highlight video’s, we have annotated specific start and end
frames of each rally in the dataset to avoid analyzing re-
plays, rallies on switching camera views and moving cam-
eras. Although these non-fixed camera views are more ap-
pealing to the broadcast audience, they are much harder to
analyse as they usually zoom in on the action and therefore
fail to frame all 4 players in the video at any given time.
In order to determine the player positions, we need to ob-
serve all players on the field. In total, the video summaries
contain 99 rallies from 11 tournaments, which are further
explored in the design and performance analysis of the ex-
periments of this paper. For each rally it includes annota-
tions of the hit windows as well as, for a smaller subsection
(319/2377), which player hit the ball. The usage of these
annotations or validation purposes is further discussed in
Sections 4 and 6.

The dataset to reproduce the experiments and the unpro-
cessed commentary matches are made publicly available at
https://cloud.ilabt.imec.be/index.php/
s/TFimLDWno6W9ED3.
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4. Ball hit detection
Detecting and tracking the ball at relative low framerate (25
fps) is a hard problem, even for humans and since the ball
does not remain inside the field of view of the camera at all
times and might be occluded by the players’ bodies. Hence,
false positive ball positions are to be expected. Therefore,
we propose an alternative strategy by detecting ball hits us-
ing audio instead of video and perform ball detection only
on video frames close to the time intervals that the ball was
hit.

4.1. Audio analysis

Whenever a player hits the ball, it generally produces a dis-
tinct sound that is captured by the microphone of the broad-
casting setup. Analysing the audio signal of the video al-
lows the system to find the exact moments that hits occur
during the rally and propagate those timing windows to the
video pipeline for further analysis. Figure 1 (a) shows the
audio signal of such rally. Most peaks in this spectrogram
correspond to ball hits. Although most hits cause a similar
sound, this is not always the case. Slice movements or when
the ball is hit in the same direction it was traveling towards
(e.g., hitting the ball after it rebounds from the back wall)
may cause a different sound profile compared to a smash.
We must also consider the interference caused by shout-
ing as well as when the racket hits the ground or a player
who runs into the plexiglass. The influence of spectators
as they are expected to be quiet during the rally to not dis-
turb the players is limited, but it is not uncommon for loud
gasps/encouragements during exciting plays.

4.2. Sound classification

As preparation of the predictive model that indicates where
in an audio file hits occur, we have annotated the onset and
offset times of the hits for each rally in the dataset. All la-
bels were created using an audio specific labeling interface
through Label Studio [23]. In total, 2377 hits were anno-
tated with the labeling process taking 9 hours and 53 min-
utes. An overview of the distribution between tournaments,
rallies and hits, is shown in Table 1. The annotations will
be publicly available alongside the dataset.

As discussed in section 4.1, ball hits are not the only
events that can be observed in the audio track. To achieve
player-level statistics, we must only extract the hit times-
tamps. Other sound origins are currently irrelevant, reduc-
ing this to a binary problem.

4.2.1 Deep learning based hit detection

The base architecture of the hit detection model has been
adapted from SED-net [1]. Considering the scale and diffi-
culty of the problem/dataset it was originally created for, we
have modified its structure such that it better fits to the scope

Tournament Rallies Hits Setting
20230903 FINLAND 10 320 Indoor
20230528 VIGO 17 315 Outdoor
20230927 MADRID 11 296 Indoor
20230604 BRUSSEL 12 250 Outdoor
20231008 DUITSLAND 7 227 Indoor
20230806 MALAGA 10 201 Indoor
20231015 AMSTERDAM 9 190 Indoor
20231102 MENORCA 6 187 Indoor
20231112 MALMO 7 173 Indoor
20230702 VALLADOLID 6 114 Outdoor
20230709 VALENCIA 4 104 Indoor
Totals: 11 99 2377

Table 1. Distribution of rallies, hits and environment for each tour-
nament’s highlights.

Layer type Hyperparameters Activation
conv2D 1 → 64, (3x3), (1x1) ReLU
maxpool (1x5) -
conv2D 64 → 64, (3x3), (1x1) ReLU
maxpool (1x2) -
conv2D 64 → 64, (3x3), (1x1) ReLU
maxpool (1x2) -
reshape (12x64) → (256x3) -

bidirectional GRU (256x3) → (256x32) tanh
bidirectional GRU (256x32) → (256x16) tanh

time distributed dense (256x16) → (256x16) -
time distributed dense (256x16) → (256x1) sigmoid

Table 2. Adapted SED-net layer configurations for audio-based
hit detection. Conv layers defined by inChannels → outChannels,
kernelSize, stride. Others by inShape → outShape.

of this work and dataset size. Compared to the original ar-
chitecture we reduced the depth of the CNN layers from
128 to 64, reduced the number of units to 16 in the second
GRU layer, kept only the first and last time distributed dense
layer and replaced the loss function with binary focal cross-
entropy [14]. These changes have reduced the number of
trainable parameters from 362,829 to 109,159.

Table 2 shows the adapted SED-net model dimensions.
The network input features are 40 log-Mel energy bins in
the range 0-42 kHz calculated with 50% overlap and an FFT
window length of 2,048, split into sequences of 256 frames.
The proposed network is trained using the Adam optimizer
[13] with a learning rate of 0.001 and a batch size of 128 se-
quences. It should be noted that infrasound and ultrasound
frequencies are unavailable as the raw footage of the pro-
vided videos is unavailable and those ranges were largely
discarded by the compression algorithm of the video con-
tainer.
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Figure 1. Example rally and two common events: Spectrogram of a padel rally, 61s (a). Its gradient gives an indication of the presence
of a hit, but also contains noise artefacts from e.g. footsteps, players speaking, crowd cheers (see end of spectrogram). Spectrogram of a
smash, 678ms (b). Spectrogram of one of the players speaking without a hit occurrence, 809ms (c).

Figure 2. Detection overview at the start of a hit window. Shows
the detected players and their corresponding tracking ID according
to the rally start positions. Location of the ball is indicated by the
yellow circle.

4.3. Ball detection

Knowing when the ball is hit, is crucial, but in order to per-
form a meaningful analysis on the player positions’, it is
also key to know which of the 4 players is hitting the ball.
Although the inter-player analysis only requires knowledge
of which side is attacking, such that the opposite side can
be evaluated, it may be useful for other types of analysis
to know which specific player hit the ball as well. There-
fore the frames before and after a detected hit are taken in
consideration regarding the location of the ball.

To obtain its position in the hit window, we utilized a pre-
trained TrackNet [8] model trained on tennis data. Which
closely resembles padel as the balls in both sports look the

Figure 3. Color-based field extraction for approximating corner
positions. Interference from the environment causes inaccurate
corner approximations along the contour of the court (green line).

same, the padel court is similar to a tennis hardcourt and a
similar static camera viewpoint is used to film both sports.
An example of the output of the ball detection is shown in
Figure 2. The ball predictions are further processed to re-
move outliers to avoid ball teleportation, and interpolates
missing values in smaller subsequences of the prediction
output.

5. Inter-player distance
5.1. Court detection

The camera used to film the sloped viewpoint does not move
during the tournament. Consequently, a single homography
can be used for every rally in that tournament (calculated
with manually selected and accurate points). Automatic
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Figure 4. Dimensions of a standard padel court. Measurements up
until the edge of the line. Lines have a width of 5cm.

methods for selecting corresponding points may be suscep-
tible to noise, occlusions, or irrelevant features, which can
lead to inaccuracies in the estimated homography. This is
illustrated in Figure 3. Here a color-based approach was uti-
lized to find the contour of the field and approximate its cor-
ners. Using color features of a padel field is generally dis-
couraged as they are not standardized across tournaments.
The possibility of using the perpendicular divider lines in-
side the court was previously researched by Wennerblom
and Arronet [24], although the authors report similar incon-
sistencies as before. Manual selection of points allows users
to precisely choose corresponding corners of the field in the
images that best represent the desired transformation (ig-
noring the effect of noisy or occluded regions). This level
of control ensures that the selected points accurately capture
the geometric transformation between the images, resulting
in a more accurate homography and subsequently more ac-
curate distances.

Finally, the transformation matrix of the homography is
calculated using the selected corners of the court and their
corresponding point the court plane, which is defined ac-
cording to the dimensions of a padel field (see Figure 4).

5.2. Player detection and tracklet generation

Player bounding box detections and their corresponding
poses and tracks are obtained through the YOLO frame-
work provided by Ultralytics (similarly like YOLO-POSE
[17]). The detections are further processed to differenti-
ate between players and spectators. By applying a mask on
each frame based on the court’s coordinates and a padding
region, we obtain a trapezoid region by which the bounding
box of the pose must overlap to be included (see Figure 5).

Players are assigned a number based on their starting po-
sition in the rally. From the camera perspective, the top-side
(resp. bottom-side) team is assigned numbers 1 and 2 (resp.
3 and 4) from left to right. Note that the annotations pro-

Figure 5. Region-of-interest focused on the padel court. The corre-
sponding mask (based on the court corners) is used to differentiate
player poses from those from the audience.

vided in our dataset follow the same assignment procedure.
To calculate the initial position of each player we reduce
all available poses from the first three seconds of the rally
into four average center-coordinates of the bounding boxes.
These are then assigned number 1-4 by sorting them based
on the x-coordinate into the leftmost and rightmost points.
From both categories we take the first two elements sort
them by the y-coordinate to differentiate between 1 and 3 in
the leftmost points, and 2 and 4 in the rightmost points.

5.2.1 Re-identification and merging tracking IDs

Players are free to roam inside and outside the court dur-
ing the rally. This means that poses might be (temporar-
ily) occluded. Whenever the player is detected again, it
will be tracked under a new ID. In this case it is required
that the newly introduced track ID is merged into the main
tracklets of one of the four players. It is important that the
four main track IDs correspond to the assigned positional ID
as explained in the previous section. Such re-identification
of poses in multi-object tracking (MOT) is commonly ob-
tained through a visual association metric (e.g., DeepSORT
[25] and StrongSORT [5]). A more in depth literature re-
view of MOT techniques has been published by Luo et al.
[16]. The visual metrics often work well in the wild as
tracked subjects have a lot more variance in their appear-
ance, but in team sports this is more often than not an is-
sue as players wear the same outfit (especially on the same
team). In the case of padel we have chosen for an alter-
native technique using the appear and disappear positions
of the tracklets. Because the number of unique tracks we
are interested in is known beforehand (4), and we assume
that it is very unlikely that both players of a side will be
invisible at the same time, we use the points where a pose
is lost and where a new one occurs. Using this informa-
tion we have developed an algorithm (without a predictive
model) to deduce to which of the main track collections
the newly tracked pose corresponds. The algorithm assigns
each tracklet to a player by logic reasoning. For instance
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(a) (b)

Figure 6. Video still of a rally (a). Results of the inter player and net distance calculation pipeline (b).

if a tracklet ends for player 1 and the other players remain
tracked, a newly started tracklet will be assigned to player
1.

5.3. Player hit assignment and positioning

The first part of this section will describe how hits are as-
signed to a player/team. If the predicted hit window is long
enough, we use the boundaries provided by the model pre-
diction. If not, or if using a ground truth prediction from
the video (singular values), the window is padded on both
sides until it is 500ms long (corresponds to 12 frames at
25 FPS). For each selected frame we check the number of
detected bounding boxes and if the ball’s location was pre-
dicted. Utilizing multiple frames increase the robustness of
the approach as it is still able to assign a player even though
some frames have missing or inaccurate information. For
frames which include a ball detection we calculate its dis-
tance to each of the four players if possible. The distances
between the ball and each player are used to obtain the clos-
est player ID in a weighted majority vote. The weights
(W = w1, w2, ..., wN ) are determined by the standardized
euclidian distance:

wi = 1− di − dmin + 0.1

dmax − dmin
(1)

In case of a tie, the player with the closest euclidean dis-
tance over all frames is selected. To which point of the
player this distance is measured depends on a few condi-
tions:
• If no bounding box is available for the current frame, we

calculate the average bounding box for the current player
in a symmetrical window of 2 seconds around the cur-
rent frame timestamp. If the larger interval still has no

available poses, there is no distance added for the current
player in the voting mechanism, else the center coordinate
of the bounding box is used.

• If the bounding box was predicted with an absent pose
detection, the center coordinate of the bounding box is
used.

• If the bounding box and the pose are detected, the dis-
tance of both wrists is calculated with respect to the ball
position. Only the smallest distance is kept. In case the
pose has no prediction for the wrists, the player’s coordi-
nate falls back to the center of the bounding box.

A secondary sweep is performed to fill gaps where there
was not enough pose information to assign a team such that
the alternating nature of which team hits the ball is not vio-
lated. The results are then mapped to a string that indicates
the side and player ID.

To calculate the distance measurements, the pose for
each player is further reduced to a single point on the court.
Before the transformation to the court plane, we calcu-
late the central hip point and use its x-coordinate. The y-
coordinate is obtained by averaging the y-coordinate of both
ankles. In case the pose is absent but the bounding box is
not, we use the bottom middle of the bounding box. Using
the four reduced representations, we calculate the distance
between both players of each team and for each individual,
the distance to the net (centerline of the court). The result
of this procedure is shown in Figure 6.

6. Results

The audio-based hit detection model has been vali-
dated through a standardized evaluation framework, called
sed eval [18]. It combines class accuracy with temporal
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position checks at instance level by evaluating the onset
and offset conditions, also called event-based evaluation.
Events are either classified as: (i) true positive (TP) if it has
a temporal position overlapping with the temporal position
of an event with the same label in the ground truth. (ii) false
positive (FP) if there is no correspondence to an event with
the same label in the ground truth. (iii) false negative (FN)
if an event in the ground truth that has no correspondence
to an event with same label in the predicted output. All
temporal checks must lie within the collar window (in ms).
The two metrics used to evaluate the system are: firstly, the
F1-score, and secondly, the error rate (ER), which is the ra-
tio of the sum of substituted (S, the number of events with
correct temporal position but incorrect class label, irrelevant
for binary SED), inserted (I , the number of predicted events
unaccounted for as correct or substituted), and deleted (D,
the number of ground truth events unaccounted for as cor-
rect or substituted) labels compared to the ground truth and
the total number of labels (N ):

ER =
S +D + I

N
(2)

The dataset was divided in four splits without overlap-
ping files (full rallies were assigned to splits) with for each
a 70%-30% split between training and testing, or approxi-
mately 570 hits. This was evaluated using the event-based
metrics with a collar size of 250ms or a minimum overlap of
50% and achieved an average F1-score of 92% (σ = 1.6%).
The model trained on the first split is used for inference and
reported an error rate of 0.16 (0.13 deletion rate, 0.03 inser-
tion rate) on its validation split.

As indicated by the deletion rate, most of the errors are of
type two. The most common cause of false negatives were
from slice movements which produce little to no sound and
are also underrepresented in the dataset as this type of shot
is less common then a direct hit. Causes of false positives
that we’ve noticed were racquet hits against the metal frame
of the field, players running into the plexiglass or stomping
hard on the ground and racquets hitting the floor just after a
hit.

In regards to the hit assignment task, a subset of 319 hits
of two tournaments of the original dataset is further anno-
tated for evaluation purposes. It includes for each hit win-
dow, the timestamp of the closest video frame where the hit
is visible and the ID of the player that hit the ball (accord-
ing to the assignment scheme in Section 5.2). As the system
output can be used to assign to one of the individual players
as well as a team, we will report metrics for both assign-
ment types. Our mapped output corresponds to the labels
in the ground truth. This yields an accuracy for each evalu-
ated rally that is weighted accordingly to its total number of
hits before calculating the global accuracy. This achieved
an accuracy of 83.70% for player specific assignment and

Figure 7. Boxplot and scattered accuracy values of hit assignments
for each rally. Compares both player and team specific assign-
ment.

Figure 8. Confusion matrix of the hit assignments. Unassigned
may occur if the hit window has no frames for which both ball
location and enough player detections are known.

86.83% if only the team indicator is considered. The ac-
curacy distribution of the rallies is visualized in Figure 7.
Further investigation showed that rallies with a consider-
ably lower accuracy contain less hits. Therefore has a sin-
gle missed hit a large impact on the overall rally accuracy.
Discrepancies between both assignment types, as shown in
Table 3, are caused by missing poses by 1 or 2 players but
still recoverable such that the correct side is determined.

From the confusion matrix in Figure 8 we can see that
most errors originate between opposing players (1 with 3
and 2 with 4). This is due to the limitations of a single cam-
era viewpoint. At some point, when the player on the far-
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Rally ID P2P Acc. (%) Team Acc. (%) Hits
1 87.50 87.50 16
2 83.87 87.10 31
3 88.89 88.89 9
4 61.54 76.92 13
5 87.50 87.50 8
6 100.00 100.00 10
7 81.48 81.48 27
8 88.24 94.12 17
9 100.00 100.00 16

10 77.14 82.86 35
11 90.00 100.00 10
12 86.96 86.96 46
13 85.00 90.00 20
14 80.95 80.95 21
15 82.86 85.71 35
16 40.00 60.00 5

µ = 83.70 µ = 86.83 319

Table 3. Overview of individual rally accuracies for player-to-
player (P2P) and team assignment. With µ calculated as the
weighted average using the number of hits.

(a) (b)

Figure 9. Examples of assignment failure: Distance between the
ball and players 1 and 3 is very similar due to the limitations of
a 2D representation (a). Defending players both try to hit the ball
such that they are both very close to the ball (b).

side moves closer to the net, their detection start to overlap
with the opposite player due to the depth perception prob-
lem and the limitations of working with a 2D representation.
A similar circumstance is shown in Figure 9a. Player 3 is
about to smash the ball but due to the camera viewpoint,
the distance from the ball to player 2 is close to that of the
ball and player 3, possibly causing an incorrect assignment.
Less common but also possible, is when players of the same
side move towards the ball to try and hit it, causing ambigu-
ity in the assignment algorithm. This is illustrated in Figure
9b.

Implemented procedures like the majority voting or
multi-frame assignments are used to make the system more
robust against these types of errors. But in situations where
there is simply not enough information for prolonged peri-

ods of time, the system will not be able to recover until the
it becomes available again later in the rally.

7. Conclusion
In this paper, we propose a multi-modal method to de-
tect and analyse padel hits using audio and video features.
For this purpose, we introduce a new dataset consisting of
videos of padel rallies of high level tournaments which will
remain public for others to work with. The padel dataset
comprises of 2377 hit annotations and a subset of 319 also
indicate which player has hit the ball.

These methods can be used to automatically identify and
track the four players in the rally and calculate the inter-
player distance and their placement with respect to the net.
This is valuable information which can be used by coaches
to analyse field coverage and attacking strategies. The de-
veloped predictive model for hit detection based on audio
signals demonstrates robust performance, with an average
F1-score of 92%, highlighting its effectiveness in identify-
ing the most interesting frames during rallies. Additionally,
our system employs a custom re-identification and voting
algorithm to assign hits to individual players. This system
achieves an overall accuracy of 83.70% for player-specific
assignment and 86.83% for team-based assignment, pro-
viding valuable insights into player movements and inter-
actions.

Overall, this research contributes to a deeper understand-
ing of padel gameplay dynamics and offers practical impli-
cations for coaching staff and players to optimize perfor-
mance and strategic decision-making. Future research di-
rections may include further refining the predictive mod-
els into a single unified model, exploring additional per-
formance metrics utilized by coaches to quantify attack-
ing/defensive quality of the rally, and analyzing player
movement patterns to provide more comprehensive insights
into padel gameplay.
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