This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Table tennis ball spin estimation with an event camera

Thomas Gossard* Julian Krismer*

Andreas Ziegler

Jonas Tebbe Andreas Zell

Cognitive Systems Group, University of Tiibingen, Germany

thomas.gossard@uni-tuebingen.de

Abstract

Spin plays a pivotal role in ball-based sports. Estimat-
ing spin becomes a key skill due to its impact on the ball’s
trajectory and bouncing behavior. Spin cannot be observed
directly, making it inherently challenging to estimate. In ta-
ble tennis, the combination of high velocity and spin renders
traditional low frame rate cameras inadequate for quickly
and accurately observing the ball’s logo to estimate the spin
due to the motion blur. Event cameras do not suffer as
much from motion blur, thanks to their high temporal res-
olution. Moreover, the sparse nature of the event stream
solves communication bandwidth limitations many frame
cameras face. To the best of our knowledge, we present
the first method for table tennis spin estimation using an
event camera. We use ordinal time surfaces to track the
ball and then isolate the events generated by the logo on
the ball. Optical flow is then estimated from the extracted
events to infer the ball’s spin. We achieved a spin magni-
tude mean error of 10.7 & 17.3 rps and a spin axis mean
error of 32.9 + 38.2° in real time for a flying ball.

1. Introduction

Spin is crucial in ball sports, enhancing ball control and
adding an element of unpredictability for the opponent.
Whether it is topspin in tennis, backspin in table tennis, or
spin variations in cricket, it adds complexity to the game. In
soccer and baseball, players use spin to curve shots, mak-
ing it challenging for opponents to predict the ball’s trajec-
tory. This makes spin esimation decisive for playing such
sports. Thus, it is also a key component for developing au-
tonomous agents and sports analysis systems. However, in
most cases, the spin is too fast for low frame rate cameras,
which results in severe motion blur. Event-based cameras
do not suffer as much from motion blur as standard frame-
based cameras. Indeed, event cameras capture logarithmic
changes in a scene’s brightness with high temporal resolu-
tion in the order of ps. Unlike traditional frame-based cam-
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Figure 1. Comparison between the event stream of an event-based
camera and captured frames from a frame-based camera. Black
and blue dots are, respectively, ON- and OFF-events. The dotted
red box highlights the events generated by the spinning logo.

eras, events are only emitted when there is a visual change,
offering low latency and reduced bandwidth requirements.
This leads to much less information to be transmitted, given
a scene with a static background. As a consequence, we do
not need to limit the Region of Interest (ROI) of the cam-
era to avoid bandwidth issues. This was indeed a problem
in [39], where the full resolution of the camera (1920x1200
pixels) could not be used while maintaining a high enough
frame rate (380 fps). Instead, a ROI of 1920x400 pixels was
chosen. The ball is thus observed for a shorter time, which
decreases the likelihood of observing the ball’s logo for low
spin values. The event camera can use its full resolution
because it does not need to transmit redundant information.
The high temporal resolution of event cameras has an addi-
tional advantage. Estimating spin using a frame-based cam-
era is constrained by the Nyquist-Shannon sampling theo-
rem, which stipulates that the sampling rate must be at least
twice the signal’s bandwidth. In other words, we need a
camera with a certain frame rate to be able to measure high
spin: fps > |w|/2, where w is the ball spin in rps. In Fig. 1,
we can see that we only capture two frames where the logo
is visible. This makes it extremely difficult to estimate spin
accurately. On the other hand, the event camera could con-
tinuously capture the movement of the logo. Occasionally,
the ball rotates in a manner that causes the logo to con-
sistently appear on the opposite side when captured by a
frame-based camera. This is no issue for event-based cam-
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eras, as events are generated asynchronously. This over-
comes the previously mentioned issue as long as the logo
moves in front of the camera. For all the previously men-
tioned reasons, event cameras are better suited for table ten-
nis ball spin estimation.

Contributions of this work are as follows:

* Tracking the ball in real-time and extracting events gen-
erated by the logo.

* A real-time and accurate method for table tennis ball spin
estimation.

* An evaluation using a ball spinner to show the potential
of the approach and a deployment with a ball thrower to
show the approach in a real setup.

2. Related work
2.1. Spin estimation

There are multiple approaches for spin estimation in table
tennis. Human players mostly estimate the spin applied to
the ball from the motion of the opponent’s racket. This can
be reproduced by using human pose estimation [26, 31],
racket tracking [18], or an inertial measurement unit (IMU)
installed in the racket [5, 6]. However, the estimated spin
is only an approximation, as there is no information on
the racket’s bounce dynamics, which are greatly influenced
by its rubber type. For a more quantitative spin estimate,
there are two main approaches: observing the trajectory or
directly observing the ball. Trajectory-based spin estima-
tion [11, 34, 39, 42] makes use of the Magnus effect, which
bends the ball’s trajectory depending on the magnitude and
type of spin applied. Nevertheless, these approaches rely
heavily on precise estimations of ball positions. The Mag-
nus effect correlates directly with the level of spin imparted
on the ball, complicating the differentiation between the
spin-induced curvature of the trajectory and measurement
inaccuracies of the ball positions. While [2] showed that
the ball’s trajectory is insufficient for accurate spin estima-
tion, the estimation of the spin can be further improved by
using the bounce behavior of the ball [42].

However, for the most accurate spin estimation, ball
observation methods are preferred. Using the blur gen-
erated by the logo for spin estimation has been studied
in [7] but it does not seem to scale well to higher spin val-
ues. Within the ball observation methods, we distinguish
two sub-categories: logo-based [22, 39, 43] and pattern-
based [16, 23, 35, 37, 38, 41]. The patterns are always
visible in contrast to the logo which is barely visible or hid-
den from a single camera’s point of view, making previ-
ous logo-based approaches unreliable. For official matches,
custom balls are not allowed. This makes logo-based meth-
ods necessary for competitive games. Our proposed ap-
proach leverages event cameras for ball spin estimation.

All of the previously described methods are not exclu-

sive. They can be combined for better spin estimation.
A more recent work [36] combined a logo-based method
with a trajectory-based approach. The ambiguity about the
spin magnitude stemming from the fact that the Nyquist-
Shannon sampling theorem might not be fulfilled was re-
solved by estimating the ball trajectory for various spin
magnitudes and choosing the spin magnitude for which the
current ball trajectory fits best to the estimated one.

2.2. Event cameras

Event cameras offer many advantages, such as a high tem-
poral resolution and a high dynamic range. However, they
also change the processing paradigm. Most computer vi-
sion algorithms developed in the last decades are either ill-
adapted to process events or do not make the most out of
said advantages. Frames can be reconstructed from events
to apply state-of-the-art computer vision algorithms, but
this introduces extra latency and does not fully utilize the
event cameras’ speed.

Tracking fast-moving objects is a perfect use case for
event cameras, thanks to their high temporal resolution and
less severe motion blur. A lot of research has focused on
fusing the data from frame-based and event-based cam-
eras [8—10, 44] to compensate for each other’s weaknesses:
frames for static or slow moving objects and events for fast-
moving objects.

Because an event camera generates only ON/OFF events,
new algorithms were developed to distinguish different
moving objects in a scene. [14, 15] tackle this issue by
segmenting events generated by the background and events
generated by independently moving objects with a motion-
compensated mean time stamp image. Events are then clus-
tered using DBSCAN. Such methods were used for either
obstacle avoidance for drones [14] or for capturing a ball
with a quadruped robot [15]. Next to the rather specific
motion-compensated mean time stamp image, other com-
mon event representations are accumulated event frames
and time-surfaces [17]. However, the same object will not
be viewed the same way depending on its velocity. This was
solved with an ordinal time surface such as TOS [21] and
EROS [19]. These ordinal time surfaces capture the edge of
objects without any trail of events, independent of the ob-
ject’s velocity. A similar representation could be achieved
with accumulated event frames, but only if the accumula-
tion time was tuned to fit the object’s velocity.

Feature tracking can also benefit from using event cam-
eras, as shown in [3, 12]. However, because of the logo’s
small size and rapidly changing shape due to the curve of
the spinning ball, such methods are difficult to apply.

Optical flow is an alternative for estimating the logo’s
speed. There are multiple ways to infer the optical flow.
There are Lucas-Kanade [27], plane-fitting [4], and time
surface matching [28], just to name a few. However, the
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current state-of-the-art is learning-based [20]. The most
common architectures are U-Net [30], FireNet [32] and
RAFT [40]. The optical flow can be learned in either a su-
pervised [20], semi-supervised [24], or unsupervised [25]
fashion. Although more accurate, learning-based optical
flow methods require more computational power, which
makes achieving real-time performance difficult. For this
reason, we favor a model-based approach.

3. Method

Our table tennis ball spin estimation pipeline is divided into
three phases. Initially, a ball tracker, outlined in Sec. 3.1,
estimates the ball’s position, velocity, and radius. Next, this
information is used to extract events generated by the logo,
as described in Sec. 3.2. Finally, the ball’s spin is estimated
from the extracted events, detailed in Sec. 3.3.

3.1. Ball tracker

We set up a static event camera, observing a primarily static
background (a table tennis table). This configuration is ben-
eficial since the flying ball triggers most of the events.

We use the Exponential Reduced Ordinal Surface
(EROS) [19] event representation for processing the events.
EROS works by having new events decay the values of
surrounding pixels by a factor, thus enabling objects to
have sharp edges, whatever their velocity. This representa-
tion enables continuous and asynchronous updates from the
event stream, maximizing the potential of the event camera.
The update of EROS depends on a parameter named ke;.os,
which represents the update zone around the event. k..o
was hand-tuned for the best circle detection and set to 10.
A comparison between the accumulated event frames and
EROS can be seen in Fig. 2. One issue with the EROS time
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Figure 2. Pairs of representations for the same events. (left)
EROS [19] event representations with keros = 10. (right) Accu-
mulated event frames with an accumulation time of 4. = 2ms.

surface is the accumulation of noise. Because the noise is
spatially and temporally sparse, it stays in the representa-
tion. We thus “clean” the EROS time surface by removing
isolated pixels. We do so with a hit-or-miss transform to
detect isolated non-zero pixels. Detected isolated pixels are
then set to zero. This hit-or-miss transform is performed on

every update of the EROS time surface. For more details,
we refer to Sec. 9 in the supplementary material.

We do not use convolutions like in [19] because we also
need the radius of the ball for extracting the events gener-
ated by the logo as explained in Sec. 3.3. Instead, we apply
a Hough circle transform to detect the ball and extract the
peak value when the accumulation exceeds a certain thresh-
old.

We added a Kalman filter to improve the ball tracker’s
performance. This allows for smoother tracking as well as
ball velocity estimation. We also estimate the ball’s radius
to reduce the search space of the Hough circle transform for
faster processing and for converting distances in pixels to
meters. The state of the Kalman filter is defined with the
state X =[xy, Yp, Lb, Y, | where x;, and y, are the coor-
dinates of the center of the ball, &; and g, are the ball’s
velocity in pixels/s and r is the ball’s radius in pixels. Esti-
mating the ball velocity and radius is relevant for extracting
the events generated by the logo as explained in Sec. 3.2.
The state transition of the Kalman filter is defined as

1 0 d¢ 0 0

01 0 dt 0
F=100 1 0 o0, (1)
00 0 1 0
00 0 0 1

where dt is the time difference between two Kalman fil-
ter updates. The observation vector of the Kalman filter is
z = [xb,houghv Yb,hough 7ﬂhough] where T, hough and Yb,hough are
the coordinates of the ball center returned by the Hough cir-
cle transform and 7yougn is the corresponding radius. The
observation model of the Kalman filter is defined as

10 0 00
H=|(0 1 0 0 0]. (2)
0 0 0 01

Though the ball’s velocity is not directly observed, it can
implicitly be estimated from the sequential measurements
of ball positions. The initial variance of the velocities must
be set high enough to converge fast enough to the correct
velocity. In Fig. 3, we show an example of the Kalman filter
tracking the ball. We can observe that the radius of the ball
is not constant. This is because the ball can get closer to the
camera after being shot.

3.2. Extracting logo events

The ball is tracked accurately using the previously described
method. With the Kalman filter, we have an estimate of the
ball’s velocity and radius. The ball’s velocity and radius can
be used to extract the events generated “inside” the ball, i.e.,
events generated by the logo. Events that we assume are
generated by the logo have to satisfy

(yb(te) - ye)2 + (mb(te) - xe)2 < (’I“ - pad)27 3)
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Figure 3. Tracked states of the Kalman filter: Positon, p, =
[xb, yp], velocity, vy = [Zb,9s) and ball radius r. The Kalman
filter runs with 200 Hz. The dots indicate measurements from the
hough circle transform. The colored band around the estimated
values represents the standard deviation.

where t. is the event’s time stamp, x. the x-positon of the
event, y. the y-position of the event, r the radius of the ball
and pad is a tolerance to avoid extracting events from the
edge of the ball.

For maximal accuracy, the ball’s position is continuously
updated to the time stamp of the selected event, according
to

(xb(te)ayb(te))
vp(ti) - (te — i) + Po(ti),

pb(te) = (4)

where ¢; is the previous time the Kalman filter’s state was
updated. With this, we can get the events generated by the
logo of a flying ball.

3.3. Spin Estimation

Frame-based table tennis spin estimation methods cap-
ture successive logo orientations and then regress the spin.
Though this method could be translated to event-based cam-
eras, it would not fully exploit their advantages.

Generally, optical flow is a good tool for estimating ve-
locities or, in this case, spin. As mentioned in Sec. 2, there
are numerous optical flow methods for event cameras.

We first explain how we obtain the ball’s spin w from
the optical flow v; generated by the logo. From the flow,
we can calculate the velocity v of the point on the ball’s
surface where the flow is generated

Vf,w
v = Uty . ®)
TV wera=Uf yery
€r,z
We can calculate the z component of v by knowing that the
velocity is tangent to the ball’s surface, e, - v = 0. This is
sketched in Fig. 4. We can then calculate the rotation vector

‘ Observed event
» Ball surface velocity
=P Estimated optical flow

Figure 4. Sketch showing how the spin is calculated from the op-
tical flow.

from the cross-product of the radius and the velocity.
w=—— (6)

When working with different optical flow methods, we
noticed that they are able to infer flow correctly when the
logo is in the center of the ball. But they fail as soon as
the logo is on the edge of the ball. This is due to multiple
factors. First, table tennis ball logos have multiple edges.
As such, events are simultaneously generated at different
places of the logo and not in a straight line. This makes
identifying successive events generated by the same edge
difficult. Secondly, because of the geometry of the ball, the
logo’s velocity is not constant. There are several parame-
ters to tune the different optical flow algorithms. The main
one is the accumulation time, ¢,.., which aggregates events
into an event frame used for optical flow. To obtain the best
optical flow results, the ¢,.. should be chosen based on the
logo’s speed to ensure enough change to observe flow but
not so much as to cause motion blur. For a fast, first es-
timate, we choose t,.. as a constant value, based on the
median of the expected spin speeds as t,.. = [(w/10)].
From testing, we divided each rotation into 10 time slices
because it ensures that even if the true spin speed is higher
than we estimated, we still observe the flow multiple times
per rotation.

For a better estimate of the spin magnitude and there-
fore t,.., we also consider a second approach based on the
variation of the event rate from the extracted logo events.
Indeed, peaks in the event rate indicates when the logo is
periodically the most visible. This approach is inspired
by [29] and it returns results after a longer observation time
but with a higher accuracy. We first apply an exponential
moving average (EMA) and subtract the mean event rate.
Then, we apply a low pass filter to smooth the curve. Af-
ter that, we locate all the time stamps at which the sign of
this curve transitions from positive to negative values. Since
the change in the event rate is periodic and depends on the
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ball’s spin, as the logo appears and disappears, it can be
used to estimate the magnitude of the ball’s spin. Figure 5
shows how the sign transitions of the event rates EMA can
be used to calculate the magnitude of the spin, by taking
the time difference between adjacent time stamps, calculat-
ing the mean, and converting this time per rotation into the
number of rotations per second.

—— EMA with low pass filter

Top/back-spin
pred rps: 19.8

x Sign transition to neg

Sidespin
pred rps: 21.3

0
2
=
=]
[3\}
g pelbil !
]
pred rps: 89.9 pred rps: 89.4
0
=R
=
=]
=]
E
]
T T T T T T
0 50 100 0O 50 100
time [ms] time [ms]

Figure 5. Prediction of the spin magnitude from the event rate.
The histograms of the event rate are displayed. We first apply an
exponential moving average (EMA) and subtract the mean event
rate. Then, we apply a low pass filter to smooth the curve. After
that, we locate all the time stamps at which the sign of this curve
transitions from positive to negative values.

We can then apply the various optical flow methods for
both methods of choosing t,... The parameters are chosen
for each one depending on ¢, to return the best results.

For each t,.., several flows and consequently spins are
estimated, with the resulting value being the mean of all
computed w. This process can be repeated for each .. to
generate additional spin estimations, which are then aver-
aged collectively.

4. Experiments

We start this section by describing our experimental setup
in Sec. 4.1. In Sec. 4.2 we evaluate the ball detector and
in Sec. 4.3 we describe our experiment to evaluate the spin
estimation of our proposed approach.

4.1. Setup

We use a Prophesee EVK4 event camera with a resolution
of 1280x720 pixels for capturing events. The camera is
mounted ~ 2m above the table tennis table, equipped with
a 8mm lens. This allows us to cover the whole width of
the table, as shown in Fig. 6. The camera’s focus was ad-
justed using the protocol provided by Prophesee [1]. Event-

LED Light
LED Light Event camera )

NN - |

- N

Figure 6. Event camera recording setup

based cameras possess particular settings that differ from
standard, frame-based cameras. These were investigated
and tuned to generate the most events related to the ball
and logo observation while minimizing noise. For more in-
formation about the bias settings used with quantitative and
qualitative results, please refer to Sec. 6 in the supplemen-
tary material. We use LED panels to light the scene uni-
formly from the ceiling, leading to a luminosity of around
1930 Lux measured on the table. This is to avoid the flick-
ering light from standard lighting powered with 50Hz AC,
which triggers events over the entire scene in the event cam-
era, though events generated by the flickering light can also
be filtered out with a band-cut filter.

We rely on a custom-made static ball spinner and a ball
thrower (Amicus Prime from Butterfly) to generate record-
ings with known ground truth. The ground truth spin can
be calculated from the ball spinner by knowing its relative
position to the event camera. We mounted the balls with
different logo orientations on the ball spinner to study its
impact on the spin estimation, as shown in Fig. 7.

Figure 7. Balls with different logo orientations

For the ball thrower, we rely on SpinDOE [23] to gen-
erate ground truth spin, using balls with a custom pattern
drawn on them. A frame camera, the Grasshopper3 GS3-
U3-23S6C (1900x400), was installed next to the event cam-
era for capturing frames of the balls.

4.2. Ball detection

To evaluate the ball tracker, we recorded multiple balls fly-
ing in front of the event camera with speeds ranging from
4 m/s to 12 m/s. The ground truth was generated auto-
matically with blob detection applied on accumulated event
frames with a large accumulation time. In Fig. 8, we show
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our ball detector’s Mean Absolute Error (MAE) for differ-
ent ball thrower settings (arbitrary unit). We can see that we
have sub-pixel accuracy, which is necessary for extracting
the events generated by the ball’s logo.
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=

0.0 T T T T T T T T
10 12 14 16 18 20 22 24

Ball thrower speed setting

Figure 8. Evaluation of our ball detector for different ball thrower
settings (integer values), reporting the MAE in pixels. The colored
band around the error represents the standard deviation.

4.3. Spin estimation

We tested our spin estimation method by two different
means: with a ball spinner and with a ball thrower. The
former has the advantage to give us an extremely accurate
and reliable ground truth while the later is closer to real use
case. Both benchmarks are still quite similar from the way
events generated by the logo are extracted from the flying
ball as explained in Sec. 3.2. Indeed, the extracted events’
position is recalculated using the ball position as a refer-
ence.

We selected Triplet Matching [33] as the optical flow al-
gorithm. Triplet Matching is the fastest optical flow method
we found. It has a sub-millisecond run-time while main-
taining competitive accuracy. Moreover, it runs on a CPU,
which limits hardware requirements.

We distinguish two types of spin: backspin/topspin and
sidespin. Because the ball is observed from the top, back-
spin, and topspin are almost the same, if only mirrored.
With top and backspin, the logo will come into view of
the camera and then disappear again. Sidespin balls, on the
other hand, will either always have their logo hidden or al-
ways visible.

4.3.1 Ball spinner benchmark

We used table tennis balls with different logo orientations to
evaluate our proposed spin estimation approach, as shown
in Fig. 7. Next to the spin magnitude, our method also es-
timates the spin axis. The spin magnitude estimation error
and the spin axis estimation error with the ball spinner for
different ball types are shown in Tab. 1.

Entries with ”-” indicate that we did not get any results.
For ball 1, the sidespin could not be estimated since the logo
and spin axis coincide. The logo of balls 6 and 7 is a rotated
version of ball 1; therefore, the same restriction applies.

The errors with the ball spinner for different ball spins
are reported in the top part of Fig. 9. As can be seen in
the plot, the MAE for the lowest spin magnitude of 10rps is
very high. The reason is twofold. First, due to the relatively
slow rotation speed, the logo triggers fewer events, which
makes it difficult for the optical flow to get accurate flow es-
timations. Second, with the relatively slow rotation speed,
the likelihood of observing the logo over 10ms is relatively
low. With 20rps, the MAE is already lower and relatively
stable up to 100rps for all four cases except for the sidespin
with 10ms observation time. For sidespin with 10ms obser-
vation time, the MAE increases linearly with the spin speed.
This underlines the difficulty of estimating sidespin.

The MAE of the spin axis estimation errors with the ball
spinner for different ball spins are plotted in the bottom
graph of Fig. 9. As can be seen in the plot, the spin axis
estimation error decreases with higher spin values. This is
because higher spin values lead to more events, allowing the
optical flow algorithm to achieve higher accuracy.

4.3.2 Ball thrower benchmark

Next to the evaluation with a ball spinner, we also deployed
our method in a setup to estimate the spin of flying balls.
A ball thrower shot 20 balls. We used velocity settings of
10, 15, 20, and 25 for the ball thrower (respectively ap-
proximately 4, 5.5, 7.5 and 9 m/s ) and top- and side-spin,
with spin strength settings ranging from —5 to 7. Both our
event-based approach and a state-of-the-art frame-based ap-
proach [39] were tested on the same observations. The re-
sults are listed in Tab. 2. The success rate in the first row is
the ratio between the number of successful spin estimations
and the total number of ball trajectories. As can be seen,
our approach has a success rate slightly above the frame-
based approach. Our approach is a bit behind in terms of
spin axis and spin magnitude MAE, however, with overlap-
ping error ranges. Given that there is already a consider-
able body of literature covering frame-based spin estima-
tion methods and our method is the first event-based one,
this should show the potential of our approach.

In Fig. 10, we show the spin magnitude MAE on the top
and the spin axis MAE on the bottom for a state-of-the-art
frame-based approach [39] and our event-based approach.
As expected, we see that the frame-based approach has
more problems with higher spin settings, while the event-
based approach struggles with low spin settings. It is worth
noting that though both frame and event cameras have the
same FOV, the frame camera boasts a higher resolution
(~ x1.5). With a resolution similar to the frame camera,
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Ball 1 2 3 4 6 7

Back/Top-spin 30.0 £ 28.7 27.0£ 275 2336 +264 | 224+219 320£27.3 | 32.5+£282

10ms 18.1 £10.4° 253+20° 276 +12.7° | 25.6+39° | 154£196° | 95+£7.2°
Sidespin - 31.0 £20.6 30.5+18.8 32.0+£234 - -
- 38.17£14.6° | 403 +£143° | 428£79° - -

Back/Top-spin 0.8+0.1 0.5+0.1 28+2.7 37+£39 0.6 +0.1 05+0.1

100ms 125+40° 251+ 1.8° 257+14° 255+19° 10.7+£55° | 62+32°
Sidespin 48+138 8415 80+35 6.5+32 - -
- 16.7+94° 11.6 £ 13.5° | 24.0£10.5° - -

Table 1. Evaluation of our spin estimation with the ball spinner. Our test was performed with balls with different logo positions relative to
the spin axis, as shown in Fig. 7 (white rows: MAE for the spin magnitude in rps, green rows: MAE for the spin axis in degrees). 10ms and
100ms indicate the amount of observation time allowed. Entries with ”-” indicate that we did not get any results. For ball 1, the sidespin
could not be estimated since the logo only rotates around the spin axis of the ball spinner, and there is no sidespin. The logo of balls 6 and
7 is a rotated version of ball 1; therefore, the same restriction applies.

= 60
ﬁ $ 100ms Top/back-spin $ 10ms Top/back-spin + + T
% 40 = 100ms Sidespin ¢ 10ms Sidespin + + +
2 201 o ¢!
o
g ¢
g e ® ® ° ¢
@ o - ® 2 ] L 2 T & ® |+
10 20 30 40 50 60 70 80 920 100 110 120 130
o0
£ 3]
=] Lt |4 t + ¢ ¢4 {} $
P $ b $ b
x
g1 e + + ¢ ¢ + ¢ ¢ & g ¢ P L ® e ° ¢ °
< o T T T T T T T T T T T T T
10 20 30 40 50 60 70 80 920 100 110 120 130
w [rps]

Figure 9. (top) Spin magnitude (speed) error with the ball spinner for different ball spins. (bottom) Spin axis estimation error with the ball
spinner for different ball spins. 10ms and 100ms indicate the amount of observation time allowed. Only the events recorded during that
time window can be used for the estimation. Backspin/Topspin was evaluated with balls 1, 6, and 7, and sidespin was evaluated with 2, 3,
and 4, with an equal number of samples.

Table 2. Benchmark with the flying balls from a ball thrower

the event-based spin estimation would work better. With
these complementarity properties, an approach combining
an event-based camera and a frame-based camera could be
an option.

4.4. Run times

Since our goal is a real time capable spin estimation
pipeline, the run-time is another important metric. We used
an Intel Core 17-9700 CPU @ 3.00GHz for our experiments,

Frame Event with all the components written in Python.
Success rate 0.79 0.81 From the moment the events are received from the cam-
Spin axis MAE 26.6 £ 33.4° 32.9 £ 38.2° era, generating the EROS time surface, detecting and track-
Spin magnitude MAE | 8.8 £ 15.6 rps | 10.7 £ 17.3 rps ing the ball, and extracting the logo events takes 12.8 £

1.2ms. We run the spin estimation in post-processing and
report the ratio between the time it took to process all the
events and the duration of the recording. With a ratio of
0.84 £ 0.8, the spin estimation can process more data than
it receives and, therefore, runs in real time.

While it can already be considered capable of being in
real time, the setup could be improved. Improving the soft-
ware design and implementing the software pipeline in C++
instead of Python is expected to boost performance.

4.5. Limitations

While working on the spin estimation for the flying balls
from a ball thrower, we noticed fewer events being gen-
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thrower.

erated compared to the ball spinner setup. This led to an
increase in spin estimation failures because there were too
few events generated by the logo for the optical flow esti-
mation. Our interpretation of this phenomenon is that pix-
els respond slower to negative luminosity changes, such as
the movement of a logo, after being triggered by a posi-
tive change, such as the appearance of the leading edge of a
flying ball. This is sometimes referred to as the event cam-
era equivalent of motion blur. Though our method works
with the Andro logo displayed in Fig. 11a, it does not gen-
eralize to all logos. For example, our spin estimation al-
gorithm does not work with the ball in Fig. 11b since the
logo does not generate enough events. This is despite the
fact that it works with the ball spinner. We tested differ-
ent custom logos to determine the causing factor. The logo
lines must be thicker than a certain threshold to be detected.
We drew lines of different line widths on logoless balls to
show this. The ball with the 0.8mm line shown in Fig. 11c
did not generate enough events, but the ball with 1.4mm
line shown in Fig. 11d worked well with our spin estimation
method. As such, only logos with lines of a certain width

(a) Logo 1

(b) Logo 2 (c) 0.8mm line (d) 1.4mm line

Figure 11. Different ball logos used to estimate the spin of the ball

can be used for our spin estimation with an event camera.
Of course, there are different solutions to circumvent this.
We could use an event camera with a higher resolution or

a lens with a longer focal length. However, with the latter
solution, the camera’s field of view would no longer cover
the whole width of table.

We also noticed that the spin estimation has a singularity.
Indeed, out of all the balls shown in Fig. 7, there is one logo
position, ball 5, for which the spin estimation failed com-
pletely, whatever the spin type. Ball 5 does not work for
backspin/topspin because the logo is barely visible on the
side of the ball. For sidespin, the estimation failed because
the rotation axis and the logo coincided. This could poten-
tially be circumvented by using an optical flow algorithm
better suited to our specific application.

5. Conclusion

In this work, we presented a spin estimation method for ta-
ble tennis using optical flow based on the event stream of
an event camera. Though this method was implemented
and tested for table tennis, it could be generalized to other
sports. We were able to compensate for the drawbacks of
frame-based cameras with an event-based camera, which al-
lows for more reliable spin estimation.

Although we have shown that our presented approach
works for balls on a ball spinner and also for flying balls,
depending on the setup, there are still some limitations, no-
tably the slower reponse of OFF events of pixels after being
triggered ON.

For future work, we plan to improve our setup and gener-
ate a dataset of event recordings of spinning balls to train a
neural network specifically for event-based spin estimation.
This would allow us to bypass the optical flow estimation.
With such a method, we hope to achieve faster and more
accurate spin estimation.
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