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Abstract

Broadcast sports field registration is traditionally ad-
dressed as a homography estimation task, mapping the visi-
ble image area to a planar field model, predominantly fo-
cusing on the main camera shot. Addressing the short-
comings of previous approaches, we propose a novel cal-
ibration pipeline enabling camera calibration using a 3D
soccer field model and extending the process to assess the
multiple-view nature of broadcast videos. Our approach
begins with a keypoint generation pipeline derived from
SoccerNet dataset annotations, leveraging the geometric
properties of the court. Subsequently, we execute classical
camera calibration through DLT algorithm in a minimal-
ist fashion, without further refinement. Through extensive
experimentation on real-world soccer broadcast datasets
such as SoccerNet-Calibration, WorldCup 2014 and TS-
WorldCup, our method demonstrates superior performance
in both multiple- and single-view 3D camera calibration
while maintaining competitive results in homography esti-
mation compared to state-of-the-art techniques. 1

1. Introduction

Camera calibration is essential for a wide range of computer
vision applications, such as structure from motion [2, 4,
12, 13], reconstruction [3, 24], and pose estimation [9, 36].
In the sports domain, accurately estimating pairwise corre-
spondences between the sports field and broadcast video is
crucial for sorting out some high-level tasks. This process
not only streamlines manual labor but also enhances the vi-
sual appeal of broadcast matches through augmented reality
and virtual advertisement insertion, while also facilitating
the development of advanced tools for sports analytics.
Sports fields, with their well-defined dimensions [1], serve
as calibration objects. However, achieving accurate camera
calibration in the broadcast setting poses challenges due to

1https : / / github . com / mguti97 / No - Bells - Just -
Whistles

multiple camera views and partial occlusion of the court,
hindering the matching process between 2D and 3D cor-
respondences. Additionally, the variability of the camera
focal length further complicates calibration efforts. The re-
cent surge in deep learning has led to several data-driven
approaches for field-specific feature prediction [7, 9, 19,
25, 26] or direct homography matrix regression [21, 30].
Others investigate camera calibration as a search prob-
lem [6, 27, 28, 34, 35], generating camera pose databases
and refining homography estimates to improve calibration
accuracy. Moreover, some approaches [9, 10, 15, 16, 25]
leverage temporal homography consistency between video
frames, intending to better align with the nature of sports
video broadcasts. Focusing on the soccer domain, despite
the potential of estimating camera parameters for recon-
structing non-planar points and enabling applications such
as automatic camera control, offside detection or 3D ball
tracking, previous studies [6, 7, 9, 21, 25–29, 34, 35] have
predominantly treated the task as homography estimation
rather than full calibration [31]. Inspired by the limitations
of existing approaches, we propose a novel geometry-based
keypoint retrieval pipeline (see Figs. 1-2) for 3D sports field
registration, additionally capable of addressing the chal-
lenges posed by the multiple-view broadcast nature. This
approach involves defining a hierarchical pipeline to ex-
tract a pre-defined keypoint grid from the court’s geomet-
ric properties and leveraging an encoder-decoder neuronal
to estimate keypoint positions. Specifically, we adopt HR-
Netv2 [32] as the backbone model for the keypoints predic-
tion. Finally, the estimated keypoints are used to compute
the projection matrix using RANSAC [14] and Direct Lin-
ear Transformation (DLT) [18] algorithms. The pipeline of
our proposed method is outlined in Fig. 1. We extensively
evaluate our approach on three real-world soccer broadcast
datasets, (SoccerNet-Calibration [8], WorldCup 2014 [19]
and TS-WorldCup [7]) and compare it with state-of-the-art
methods in both 2D and 3D sports field registration. The
experiments demonstrate that our model achieves superior
performance on 3D camera calibration while maintaining
comparable results on homography estimation with respect
to competing approaches.

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 1. Overview of our proposed framework. Top: Training data generation pipeline. Beginning with SoccerNet [8] annotations,
we utilize field line extraction and ellipse fitting to establish a hierarchical structure for computing each set of keypoints. Bottom: The
encoder-decoder networks produce heatmaps for keypoints and extremities of soccer field lines to extract their positions in the image space.
The obtained keypoint set is augmented with intersections of lines generated by the second model to ensure a sufficient number of points.

In a nutshell, this paper makes the following contributions:
• A novel geometry-based keypoints grid and a robust

pipeline for their retrieval.
• A calibration pipeline capable of integrating non-planar

points for 3D camera calibration and extending to multi-
ple views from the broadcast.

• A pipeline structure focused solely on 2D-3D correspon-
dences, without further refinement. In other words, a min-
imalist approach without bells and whistles—or, in soccer
terms, no bells, just whistles.

2. Related Work

Sports field registration is a critical component of most
sports applications in computer vision, whose common ap-
proaches intend to estimate homography matrices in team
sports. Homography estimation has traditionally relied on
the corresponding features, or keypoints, identification be-
tween images and the court field model. These keypoints,
usually obtained by exploiting geometric primitives such as
lines and/or circles, are subsequently used to estimate the
mapping between the images by using RANSAC [14] al-
gorithm with DLT [18] or non-linear optimization through
the minimisation of a chosen loss function. More recent ap-
proaches either directly predict an initial homography ma-

trix. Alternatively, they seek the optimal matching homog-
raphy within a reference database that includes synthetic
images with known homography matrices or camera param-
eters.

Homography Estimation. Various recent methods for
sports field registration obtain an initial homography esti-
mation through a grid of uniformly sampled and predicted
keypoints [7, 9, 10, 20, 22, 25, 26], or line and circle pix-
els using semantic segmentation [19, 27, 30, 31, 34, 35].
These are obtained with Deep Neural Networks (DNN) and
used as corresponding features between the field template
and camera image. Following a prediction-based strategy,
[21, 31] proposed an optimization-based framework to ob-
tain homography estimation and camera parameters by min-
imizing image registration and segment reprojection error,
respectively. Shi et al. [29] proposed an iterative estima-
tion process to estimate any homography transformation,
regardless of the degree of misalignment between the im-
age and the template, in a self-supervised manner. More-
over, end-to-end approaches [30] have been proposed with
promising results. Search-based approaches involve creat-
ing databases and searching for the best matching homogra-
phy through the usage of edge maps [6, 28] or semantic seg-
mentation [27, 34, 35]. However, while search-based meth-
ods are highly accurate and robust, they often incur a signif-
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icant computational cost due to their time-consuming pro-
cessing steps. Furthermore, recent approaches [9, 10, 25]
leverage broadcast sequentiality to enforce temporal con-
sistency between subsequent frames’ homographies.

Homography Refinement. Homography refinement is
a crucial step in camera calibration, aiming to achieve an
even more accurate homography estimation, if necessary.
Previous works use one or a combination of the following
methods to refine the initial estimate. [21] and [29] directly
regress the refined homography from the input image and
field model with DNNs. [6, 28] obtained an estimate for
the camera pose by matching with a feature-pose database,
and used 100k templates to ensure the assumption of small
transform between the input image and the matched tem-
plate. Iterative optimisation of the camera pose or homog-
raphy is also proposed in previous works [6, 21, 31], com-
monly based on re-projection or registration error. More-
over, other approaches [25, 27] exploit the temporal consis-
tency between subsequent video frames.

Camera Parameters Retrieval. Approaches using
feature-pose synthetic databases [6, 27, 28, 34, 35] allows
for homography and/or direct camera parameters retrieval
as templates are created through projective geometry. How-
ever, due to small transform assumption, smaller databases
lead to larger reprojection errors, making homography re-
finement a crucial step. Carr et al. [5] estimate camera’s
extrinsic and intrinsic parameters leveraging gradient-based
alignment to edge images. Moreover, homography decom-
position [18] allows for access to individual camera param-
eters, as shown in [9, 31].

3. Methodology
Sports TV broadcasts consist of sequences of images featur-
ing a fraction of the sports field from an uncalibrated mov-
ing camera perspective. Our approach focuses on both ex-
trinsic and intrinsic camera parameters retrieval from each
individual frame without any prior information about the
camera position or orientation. The proposed method com-
prises four processing components: Soccer field modelling
and keypoint generation, keypoint and line detection, DLT
algorithm, and camera parameters retrieval. Next, these
components are introduced.

3.1. Modelling the Soccer Field

A soccer field is composed of lines and circle segments,
representing all field markings, goal posts, and crossbars.
Our approach, like keypoint-based methods [7, 9, 10, 22,
25, 26], relies on the lines painted on the ground, their in-
tersections, and the corners they define, due to its known
position on the world coordinate system. We follow the seg-
ment definitions of Cioppa et al. [8], and set them as starting
points to hierarchically compute our pre-defined keypoints
from court geometric properties.

3.1.1 Keypoint Generation

The full set of sampled keypoints is organized into sub-
groups based on the specific geometric features they rep-
resent (Fig. 2). The hierarchical nature of the computation
ensures that information from initially identified keypoints
is exploited for computing the subsequent ones (some in-
stances in Fig. 1-top). Next, we define the keypoints sets:
• Line-Line intersections. This set of points (Kp) includes

the intersections of boundary lines or the penalty area
markings. Considering the 23 lines depicted in [8], in-
cluding goal posts and crossbars, up to 30 points can be
included.

• Extended Line-Line intersections. This set (Ke) ad-
dresses the intersections of extended lines that represent
non-adjacent segments of the soccer field. To obtain that,
the lines are extended by exploiting their equations be-
yond their original boundaries.

• Line-Ellipse intersections. This set (Kp1) is to consider
the intersections between the field lines and the circles or
semi-circles present on the court. Given the distortions
introduced by the camera perspective, conics on the field
are considered ellipses for equation computation. The pa-
rameters of these ellipses are fitted using the least squares
method [17]. Intersection points were analytically de-
rived using ellipse and line formulas.

• Ellipse tangent points. Augmentation of available points
is achieved through the utilization of tangent points on
tangent lines, extending from a specified point to the pre-
viously defined ellipses. These tangent points (denoted
by Kp2) were analytically determined by employing an
ellipse equation, incorporating the known coordinates of
an external point.

• Additional points. Once the previous points are in-
ferred, and the corresponding homography, an additional
set (Kp3) of 9 points is integrated along the central pitch
axis, encompassing the pitch center and penalty points.
Additionally, 4 points are strategically placed to designate
quarter turns along the central circle. Furthermore, the
homography facilitates the inclusion of other points that
are initially missing, addressing situations such as unan-
notated lines.

3.1.2 Keypoint Disambiguation

Due to the multi-view nature of the SoccerNet dataset [11]
and, considering, for instance, one of the soccer field’s
semi-circles, ambiguity appears in its respective Kp1 and
Kp2 keypoints candidates, as shown in Fig. 2-bottom. To
avoid that, we define two different strategies to handle that
disambiguation depending on the total number of keypoints
generated in the previous sets: when there are sufficient
points in the Kp ∪ Ke set to infer a homography, i.e.,
four points, Kp1 is computed first by choosing the can-

3327



didates combination that minimizes a reprojection error.
Then, we include Kp1 in the homography estimation and
apply the same strategy to Kp2. Otherwise, we perform
a grid-search involving both Kp1 and Kp2 candidates when
Kp∪Kpe∪Kp∗1∪Kp∗2 ≥ 4, where ∗ denotes a possible can-
didate combination. The grid-search iterates over all key-
points candidates in a set-wise manner to avoid unfeasible
combinations and keeps the one with minimum reprojection
error. It is worth noting that when none of the strategies
can be applied, the current frame is deemed invalid for cal-
ibration purposes. Moreover, once we define the new sets,
two additional constraints are applied in the case homog-
raphy estimation or ellipse fitting is not accurate enough.
Initially, we manually establish a reprojection error thresh-
old to validate points. Subsequently, through iteration over
combinations of keypoints, we construct vectors and ensure
that the cross-products maintain consistent signs in both
world and image coordinates. This final step is essential
in cases where two distinct combinations yield valid top-
and bottom-view perspectives of the field while exhibiting
identical reprojection errors. Utilizing cross-products en-
ables us to differentiate and retain the keypoint combina-
tion corresponding to the field’s top-view. The full keypoint
generation process is depicted in Fig. 1-top.

3.1.3 Left-Right Disambiguation

In sequences where the camera angle aligns with the lon-
gitudinal axis of the court, an ambiguity arises regarding
the distinction between the right and left halves of the field.
Hence, a critical step to ensure consistency and robustness
across keypoints and lines detection processes involves dif-
ferentiating between the two sides. This is accomplished by
implementing a remap to the ground-truth (GT) values, en-
suring that the goal area closest to the camera consistently
represents the left side. The process to check whether or
not the mapping should be applied is defined in a heuristic
fashion. We compute angles of horizontal and vertical soc-
cer field lines, respectively, and then set a threshold taking
into account angle distribution and visual inspection.

3.2. Keypoints and Lines Detection

Our approach makes use of two encoder-decoder convolu-
tional neural networks to estimate the position of the pre-
defined keypoints and the soccer field lines depicted in [8]
excluding conics, giving the last one an auxiliary role to
enhance keypoint completeness. During inference, the for-
mer produces heatmaps for each pre-defined keypoint with a
single Gaussian peak with 2px sigma positioned in the key-
point location, accompanied by an additional target channel.
This additional channel reflects the inverse of the maximum
value among the other target feature maps, ensuring that the
resultant target tensor behaves as a probability distribution

Figure 2. Definition of keypoint positions on a soccer field. Top:
Distribution of points on a zenithal view, including all the relevant
locations as a result of intersecting lines or curves in the field. Kp,
Ke, Kp1, Kp2 and Kp3 point sets are displayed in red, yellow,
blue, pink and green points, respectively. Bottom: Given an exter-
nal point, both Kp1 and Kp2 candidates are analytically derived,
marked as blue and pink crosses, respectively.

function at every spatial point. Meanwhile, the latter net-
work produces heatmaps for each visible soccer field line
within the frame, assigning two Gaussian peaks at the line
extremities’ locations. Additionally, we introduce an extra
channel, known as the boundary channel, to our heatmap
following the approach outlined in [33]. This augmenta-
tion aims to enhance the efficient capture of global infor-
mation regarding the soccer field and improve extremities
detection, particularly near image borders. We effectively
extract the positions of keypoints and line extremities from
the generated heatmaps by employing a max pooling oper-
ation, drawing inspiration from the methodology proposed
in [38]. This process is summarized on Fig. 1-bottom.

3.2.1 Architecture

The keypoint and line extremities detection utilized a mod-
ified HRNetV2-w48 [32] as the encoder’s backbone net-
work. HRNetv2 [32] is a new family of convolutional
networks that maintains high-resolution representations
through the whole process resulting in semantically richer
and spatially more precise representations. To improve the
spatial resolution of the predicted heatmaps, we incorpo-
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rated 2× upsampling and concatenated skip-connection fea-
tures from the corresponding resolution of the convolution
stem to fuse the features at different scales. The final predic-
tions exhibit half the resolution of the original image, with
softmax employed as the final activation function.

3.2.2 Keypoints Mask

When homography was unavailable due to a limited number
of points, the heatmaps associated with points belonging to
Kp1, Kp2, and Kp3—which would have been indicated by
homography—were masked out from the loss function as
long as the line to which they belong is included in the GT
annotation. Additionally, when the external point required
to compute ellipse tangent points in Kp2 is not present in
Kp, the pair of tangent points candidates is also excluded.

3.3. Camera Projection Model

We employ a standard full perspective camera model:

P = KR[I | −c] ∈ R3×4, (1)

where K ∈ R3×3 denotes the intrinsics to transform from
camera coordinates to image ones, and R ∈ R3×3 and
c ∈ R3 determine the extrinsics (rotation and translation)
to map from scene coordinates to camera ones. Follow-
ing [18], we assume zero skew and a known pixel aspect
ratio. Additionally, for simplicity, we assume the principal
point coincides with the center of the image, and we neglect
astigmatism or distortions.

3.3.1 Camera Parameters Estimation

Extrinsic and intrinsic parameters are inferred by leveraging
the coordinates of 3D object points and their corresponding
2D projections using the soccer field model as a calibration
rig, following [37], which consists of a closed-form solu-
tion followed by a non-linear refinement based on the max-
imum likelihood criterion. To calibrate the 3D soccer field
model rig, we also consider two additional vertical planes
containing the goal polygons, including non-planar points
such as keypoints belonging to the goal posts and crossbars.
This strategy enhances completeness by providing estima-
tions when insufficient points are on the ground plane.

To account for keypoint misdetections and other com-
plexities in camera parameter retrieval, such as frames with
only one non-planar keypoint visible, the calibration pro-
cess was repeated on several subsets of keypoints. These
subsets were selected based on various heuristics: full-
keypoints, including all keypoints sets Kp, Kpe, Kp1, Kp2
and Kp3; main-keypoints, comprising only line-line inter-
sections from the original SoccerNet annotations [8]; and
ground-plane-keypoints, which excludes non-planar key-
points. Furthermore, we applied a grid of RANSAC [14]

reprojection error thresholds to each subset. The final cam-
era calibration values were determined through a heuristic
voting process, prioritizing the method yielding a lower re-
projection error, with emphasis on the full-keypoints subset.

3.3.2 Homography Estimation

Assuming the world coordinate system such that z = 0
corresponds to the ground plane, the ground-to-image ho-
mography H can be obtained from the first, second, and
fourth columns of the camera projection matrix P. Never-
theless, inaccurate estimations for keypoints associated with
the non-planar rig, such as those belonging to the goal posts
and crossbars, may result in a flawed homography estima-
tion. To address this issue, we employ classical homogra-
phy estimation with DLT [18] and RANSAC on the ground-
plane-keypoints subset. We define a maximum allowable
reprojection error to consider a point pair as an inlier and
subsequently refine the computed homography matrix us-
ing the Levenberg-Marquardt method [18] on the point cor-
respondences and initial homography estimation.

4. Experiments
We implement our proposed method for sports field regis-
tration. This section provides an overview of the datasets
utilized, the evaluation metrics employed to assess our ap-
proach, and implementation specifics. Subsequently, we
present both qualitative and quantitative results, comparing
our method with state-of-the-art approaches.

4.1. Datasets

To evaluate our method, we follow state-of-the-art methods
by using the SoccerNet Calibration [8], the WorldCup [19]
and the TS-WorldCup [7] soccer datasets.

SN-Calib Dataset: The SoccerNetV3-Calibration
(SN23) dataset [8] comprises 22,816 images extracted from
SoccerNet [11] videos and encompasses a broadcast-based
multi-view nature, offering a broader range of camera per-
spectives beyond the main broadcast camera. Cioppa et
al. [8] provide annotations for all segments of the soccer
field, encompassing lines, conics and goal posts. For each
visible segment on the court, at least two annotated po-
sitions are provided, optimally representing the segment
in a polyline format. For the conics drawn on the pitch,
the annotations consist of a list of points that roughly give
the circle shape when connected. Additionally, Theiner et
al. [31] provided manual camera view annotations for the
SoccerNetv3-Calibrationim 2022 (SN22) dataset version,
allowing the creation of data subsets taking into account the
camera view distribution.

WC14 Dataset: The WorldCup 2014 dataset
(WC14) [19] stands as the reference benchmark for
sports field registration and consists of 209 images from ten
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games for training and 186 images from other ten games
for testing and the corresponding manually annotated
homography matrices from the FIFA WorldCup 2014. Ad-
ditionally, Theiner et al. [31] provides segment annotations
in SN-Calib [8] format.

TS-WC Dataset: The TS-WorldCup dataset
(TSWC) [7] contains detailed field markings on 3,812
field images from 43 videos of Soccer WorldCup 2014 and
2018 in a time-sequence fashion, which is ten times larger
than the WorldCup 2014 dataset.

4.2. Evaluation Metrics

The quality of estimated camera parameters or homogra-
phy matrices can be evaluated both in 2D image and world
spaces.

Accuracy@threshold (Acc@t): The evaluation relies
on calculating the reprojection error between each anno-
tated point and the line to which it belongs. Adopting a
binary classification approach, each pitch segment is treated
as a single entity. To be considered correctly detected, all
points within the segment must have a reprojection error
smaller than a threshold. The projection of pitch elements
from densely sampled points of the soccer field 3D model
yields a polyline for each segment. Therefore, a poly-
line representing a soccer field segment s is classified as
a true positive (TP) if ∀p ∈ s : min (d(p, ŝ)) < t, being
ŝ the corresponding annotated segment and t the distance
threshold in pixels. Otherwise, this segment is counted as
a false positive (FP). Segments only present in the annota-
tions are counted as false negatives (FN). Hence, the Ac-
curacy for a threshold of t pixels is given by Acc@t =
TP/(TP +FN+FP ). We also measure the completeness
rate (CR) as the number of camera parameters provided di-
vided by the number of images with more than four seman-
tic line annotations in the dataset. The final score (FS) as an
evaluation criterion is calculated as the product of CR and
Acc@5.

Intersection over Union (IoU): The intersection over
union (IoU) includes two components: IoUpart quantifies
the visible area of the video frame by warping the video
frame using both the refined homography and the GT ho-
mography, projecting them onto the template, and then cal-
culating the IoU. IoUwhole evaluates the entire sports field
by warping the template with the refined homography, pro-
jecting it onto the original template, and calculating the IoU.

Projection Error: The projection error was quantified
as the average distance, in meters, between the projected
points using the predicted homography and the GT homog-
raphy. To achieve this, we uniformly sampled 2, 500 pixels
from the visible field area of the camera image and pro-
jected them onto the field to compute the distance. The
standard dimensions of a soccer field are 105× 68 meters.

Reprojection Error: The reprojection error was cal-
culated by averaging the distance between the reprojected
points in the video frame, utilizing both the predicted and
the GT homography.

4.3. Implementation Details

Due to the absence of publicly available results on the
multiple-view SN23 distribution, we trained two models
from scratch: Multi-view (MV) and Single-view (SV). The
latter is composed almost entirely of non-replay frames, en-
suring a high percentage of central camera shots. We train
separate networks for the keypoints and line extremities de-
tection tasks on the SN23-train dataset [8]. For the MV
model, we train for 200 epochs, using an initial learning
rate of 1e−2 and a batch size of 2. For the SV model, we
train for 200 epochs, using an initial learning rate of 1e−5

and a batch size of 2. We utilize the Adam optimizer with
default parameters β1 = 0.9 and β2 = 0.999. l2-loss is
used for heatmap regression in both neural networks. Data
augmentation such as random horizontal flip, color jitter,
and Gaussian noise are applied to enhance model robustness
and generalization. Furthermore, we fine-tune both SV net-
works on the WC14 and TSWC datasets. GT homographies
are transformed into our proposed keypoint sets and line ex-
tremities by projecting their respective world coordinates to
the field’s ground plane. The experiments are conducted on
a single NVIDIA GeForce RTX 2080 Ti GPU with 12 GB
of memory, and the implementation is carried out in the Py-
Torch framework.

4.4. Results and comparisons

In this section, we present the results of an extensive evalu-
ation, divided into camera calibration and homography es-
timation. The former assesses the accuracy of individual
camera parameters using Acc@t metric, while the latter
evaluates the quality of homography estimation using IoU
metrics, projection error, and reprojection error.

4.4.1 Camera Calibration

In team sports such as soccer, the action takes place on
a nearly planar field. Consequently, most methods uti-
lize homography estimation to map all elements positioned
on this plane but cannot project non-planar points such as
points belonging to goal posts or crossbars. Conversely,
Theiner et al. [31] employs a 3D model of the soccer
field to extract camera pose and intrinsic parameters di-
rectly. In homography-based approaches, parameter re-
trieval is accomplished through homography decomposi-
tion (HDecomp). We conduct a quantitative comparison
of our proposed method with respect to state-of-the-art ap-
proaches [6, 21, 31] on the SN22-test-center dataset, com-
prising only images where the main camera center is vis-
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Figure 3. Qualitative results of our MV model on SN23-test.
Left: Projection of soccer field lines and goal posts from world
to image coordinates using predicted camera parameters. Blue
lines correspond to segment projections, and colored points rep-
resent predicted keypoints (along with auxiliary points retrieved
from line extremities detection). Right: SN23-test dataset annota-
tions, where each soccer field line is delineated by a point set.

ible (1,454 images). Furthermore, utilizing the SoccerNet
annotation format for the WC14-test dataset provided by
Theiner et al. [31], we conduct a comparison of our pro-
posed method’s performance in camera parameter estima-
tion on the WorldCup 2014 dataset distribution.

We report the statistics from [31] paper for the results
of state-of-the-art approaches [6, 21, 31]. As shown in Ta-
bles 1-2 for SN22-test and WC14 datasets, respectively, our
SV method outperforms state-of-the-art approaches on sev-
eral metrics for both datasets. Minor variations in CR arise
due to our approach requiring a minimum number of visible
keypoints for calibration.

Finally, we evaluate our method on the entire SN23-test
dataset, which defines the first public camera calibration
benchmark on the SoccerNetV3-Calibration [8] dataset, and
the first one extending calibration assessments to encom-
pass multiple-view scenarios.

4.4.2 Homography Estimation

The proposed method is compared to state-of-the-art ap-
proaches [6, 7, 9, 21, 23, 25, 26, 29, 31, 34, 35] using the
WC14-test dataset. Additionally, our method is also com-
pared to state-of-the-art approaches [6, 7, 23, 25, 26] using
the TSWC-test dataset. For computing IoU, projection er-
ror, and reprojection error, we adopt the approach outlined
in [7]. The dimensions of the soccer field template are set
at 115× 74 yards for fair comparison.

Acc@t [%]
Dataset Approach 5 10 20 CR FS

SN23-test OursMV 73.7 86.7 90.4 77.5 57.1

SN22-test
-center

[6] + HDecomp 34.4 64.6 81.3 66.6 22.9
TVCalib (τ ) [31] 57.6 81.7 93.2 93.7 53.9
TVCalib [31] 54.8 78.5 90.4 100.0 54.8
OursSV 75.3 89.4 91.1 97.8 73.7

Table 1. Evaluating camera calibration on SoccerNet distribu-
tions. We assess our Multi-view model on the entire SN23-test
dataset and quantitatively compare our Single-view model with
other approaches on the SN22-test-center dataset.

Acc@t [%]
Approach 5 10 20 CR FS

[6] + HDecomp 32.7 67.3 87.3 81.7 26.7
[21] + HDecomp 36.9 66.4 83.9 84.9 31.3
TVCalib (τ ) [31] 41.3 73.6 91.4 95.7 39.5
TVCalib [31] 39.9 71.9 90.5 100.0 39.9
OursSV 80.4 91.1 94.2 99.5 80.0

Table 2. Quantitative comparison of our Single-view model on
camera calibration conducted on the WC14-test dataset.

Regarding the evaluation on the WC14-test dataset, we
present the performance metrics based on the findings re-
ported in the respective papers of the state-of-the-art ap-
proaches, as detailed in Table 3. To ensure a fair com-
parison with [9], we use the results of the approach ”ours-
w/o-players” reported in their paper. Our fine-tuned model
achieves competitive results in comparison with other meth-
ods, which are topped by [26, 29], on most of the metrics.
Notably, we attain state-of-the-art performance in the me-
dian value of the reprojection error without requiring further
homography refinement, unlike [6, 7, 26].

For the evaluation on the TSWC-test dataset, we report
the statistics from the papers [7, 23, 26] in Table 3, observ-
ing how our fine-tuned model outperforms those methods in
most of the metrics, once again demonstrating the effective-
ness of our approach without the need for further homogra-
phy refinement.

4.4.3 Ablation Study on Keypoint Sets Contribution

The contribution of each keypoint set, namely Kpe, Kp1,
Kp2, and Kp3, is analyzed in Table 4. The integration of
Kp1 notably enhances accuracy, particularly along the mid-
field line, as no points were available in the previous sets.
The inclusion of Kp2 augments the completeness rate by
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Dataset Approach IoUpart ↑ (%) IoUwhole ↑ (%) Proj. ↓ (m) Reproj. ↓
Mean Median Mean Median Mean Median Mean Median

WC14-test Chen et al. [6] 94.5 96.1 89.4 93.8 - - - -
Jiang et al. [21] 95.1 96.7 89.8 92.9 - - - -
Citraro et al. [9] - - 90.5 91.8 - - 0.018 0.012
Zhang et al. [34] 95.9 97.5 91.4 94.2 - - - -
Nie et al. [25] 95.9 97.1 91.6 93.4 0.84 0.65 0.019 0.014
Shi et al. [29] 96.6 97.8 93.1 94.8 - - - -
Chu et al. [7] 96.0 97.0 91.2 93.1 0.81 0.63 0.019 0.014
Zhang et al [35] 95.9 97.3 91.4 94.1 - - - -
Maglo el at [23] 96.3 97.4 92.0 94.1 0.74 0.55 0.018 0.014
Oo et al. [26] 96.9 97.9 92.9 94.6 0.65 0.46 0.016 0.012
Theiner et al. [31]∗ 95.3 96.6 - - - - - -
Ours∗SV 94.4 96.9 89.4 93.0 1.23 0.58 0.026 0.014
Ours∗†SV 96.2 97.8 92.2 94.3 0.68 0.46 0.016 0.011

TSWC-test Chen et al. [6]‡ 96.8 97.4 90.7 94.1 0.54 0.38 0.016 0.013
Nie et al. [25]‡ 97.4 97.8 92.5 94.2 0.43 0.38 0.011 0.010
Chu et al. [7]‡ 98.1 98.2 94.8 95.4 0.36 0.33 0.009 0.008
Maglo et al. [23]‡ 98.3 98.5 95.7 96.2 0.26 0.23 0.008 0.006
Oo et al. [26]‡ 98.5 98.7 95.8 96.7 0.26 0.21 0.007 0.006
Ours∗SV 97.9 98.5 94.4 95.7 0.30 0.24 0.008 0.006
Ours∗‡SV 98.6 98.8 96.3 96.8 0.23 0.20 0.005 0.005

Table 3. Evaluating the homography estimation on WC14-test and TSWC-test. ∗ denotes the methods trained on SoccerNet distribu-
tion, † denotes the methods fine-tuned on the WC14 dataset and ‡ denotes the methods fine-tuned on the TSWC one.

Acc@t [%]
Kpe Kp1 Kp2 Kp3 5 10 20 CR FS

✗ ✗ ✗ ✗ 66.8 73.9 91.9 85.9 57.4
✓ ✗ ✗ ✗ 66.9 86.0 91.9 85.9 57.5
✓ ✓ ✗ ✗ 74.6 89.1 92.1 91.8 68.6
✓ ✓ ✓ ✗ 73.8 87.8 91.1 96.5 71.3
✓ ✓ ✓ ✓ 75.3 89.4 91.1 97.8 73.7

Table 4. Ablation study of our keypoint sets. The table shows
the effect of every keypoint set on the SN22-test-center dataset.

increasing the keypoint density within the field circles but
shows a small decrease in accuracy metrics. This is due to
the still low number of keypoints across these field circles;
we are adding new low-quality detections, hence decreas-
ing the overall accuracy. Furthermore, the integration of
Kp3 further elevates accuracy and completeness rate, ulti-
mately defining our robust keypoints grid. These conclu-
sions can be straightforwardly seen in the field model grid
presented in Fig. 2. Although Kpe does not contribute to
a score boost, its significance lies in increasing the number
of points to allow the computation of the subsequent sets
during the training data generation.

5. Conclusion

In this paper, we introduce a novel framework for 3D sports
field registration. Our proposed pipeline adopts a minimal-
ist approach by solely utilizing the geometric properties of
the soccer field. We demonstrate superior performance in
3D camera calibration on SoccerNet and WorldCup 2014
datasets compared to state-of-the-art methods, while also
achieving comparable results in homography estimation
on WorldCup 2014 and TS-WorldCup datasets. Addition-
ally, we extend our pipeline to multiple-view camera cali-
bration, thereby establishing the first public multiple-view
broadcast-based camera calibration benchmark in soccer.
Our method exhibits promising results, highlighting the ef-
fectiveness of utilizing a robust field template without the
need for further refinements. As long as the video frame
distortions are not too harsh (i.e. fisheye shots) and a min-
imum of four keypoints are visible, sports field registration
is shown to be effective. In future work, we plan to en-
hance our approach by incorporating temporal consistency
between subsequent video frames, aligning better with the
nature of sports video broadcasts.
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