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Abstract

The rapid advancement of artificial intelligence has led
to significant improvements in automated decision-making.
However, the increased performance of models often comes
at the cost of explainability and transparency of their
decision-making processes. In this paper, we investigate
the capabilities of large language models to explain deci-
sions, using football refereeing as a testing ground, given
its decision complexity and subjectivity. We introduce the
EXplainable Video Assistant Referee System, X-VARS, a
multi-modal large language model designed for under-
standing football videos from the point of view of a ref-
eree. X-VARS can perform a multitude of tasks, including
video description, question answering, action recognition,
and conducting meaningful conversations based on video
content and in accordance with the Laws of the Game for
football referees. We validate X-VARS on our novel dataset,
SoccerNet-XFoul, which consists of more than 22k video-
question-answer triplets annotated by over 70 experienced
football referees. Our experiments and human study illus-
trate the impressive capabilities of X-VARS in interpreting
complex football clips. Furthermore, we highlight the po-
tential of X-VARS to reach human performance and support
football referees in the future. We will provide code, model,
dataset, and demo upon publication.

1. Introduction

Recently, the field of Artificial Intelligence (AI) has wit-
nessed remarkable progress in the development of large lan-
guage models [4, 8, 18, 27, 68]. These models have ac-
quired a strong language understanding, enabling them to
tackle a broad range of linguistic tasks, ranging from text
generation and conversation to zero-shot question answer-
ing. The development has further progressed with multi-
modal language models, going beyond the constraints of
text-based inputs, but also including images, videos, and
audio [1, 43, 73, 75]. However, as the capabilities of these

Is it a foul or not? Why?

Yes, it is a foul. The defender pulled the 
attacker's jersey backwards with medium 
intensity in the battle for the ball.

Yes, the defender grabs the opposing 
player with both hands and pulls him 
back.

What card would you give? Why?

A yellow card. The player committed a 
foul and should receive a yellow card as 
the foul was made with high speed and 
was reckless.

Even though the defender arrives late, he 
only hits the attacker with low intensity 
on the foot and therefore the referee 
should not give a card here.

Figure 1. SoccerNet-XFoul dataset. Examples of annotations
from two different referees for the same foul. The second example
illustrates the complexity and subjectivity of refereeing decisions.

models continue to advance, the increase in model perfor-
mance often comes at the cost of reduced explainability and
transparency. This trend poses several challenges for users
and developers who seek to understand the why and how
behind a model’s decision-making process. Explaining the
reasoning process of AI models is particularly crucial in do-
mains requiring high levels of trust, such as healthcare, au-
tonomous driving, or sports. In the context of football, ref-
eree decisions can significantly impact the financial future
and existence of clubs, making it essential for AI models to
transparently explain their decision-making process. Such
transparency is key to building trust and facilitating the ac-
ceptance and integration of AI in sports. For instance, dur-
ing the Qatar World Cup 2022, FIFA employed an AI sys-
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tem for semi-automated offside detection [21]. To enhance
the system’s transparency and explainability, it generates a
3D representation of the game to allow referees and spec-
tators to visually verify offside positions with undeniable
clarity, bridging the gap between AI decision-making and
human understanding.

In this paper, we explore the use of large language mod-
els to enhance transparency and explainability of automated
referee decision-making. Football refereeing offers an ideal
environment, as many of the decisions that referees make
are subjective and reliant on each individual’s interpreta-
tion of the rules of the game. Particularly, we introduce X-
VARS, the first multi-modal large language model designed
to explain football refereeing decisions. X-VARS is based
on a Vision Language Model (VLM) [43] that adapts the
design of the LLaVa [40] model for spatio-temporal video
modeling. We train X-VARS using a new training paradigm
where we input the visual features and the multi-task predic-
tions of our fine-tuned visual encoder CLIP ViT-L/14 [53]
to the language model. We validate X-VARS on our novel
SoccerNet-XFoul dataset containing more than 22k video-
question-answer triplets about the most fundamental refer-
eeing questions. More than 70 professional referees anno-
tated our dataset and provided, for each question, detailed
explanations about their decisions. X-VARS achieves state-
of-the-art performance on the SoccerNet-MVFoul dataset,
and our human study demonstrates that X-VARS generates
explanations for its decisions at a level comparable to hu-
man referees. Finally, X-VARS can analyze and understand
complex football duels and provide accurate decision ex-
planations, opening doors for future applications to support
referees in their decision-making processes.

Contributions. We summarize our contributions as fol-
lows: (i) We publicly release SoccerNet-XFoul, a new multi-
modal dataset containing more than 22k video-question-
answer triplets about refereeing questions. (ii) We intro-
duce X-VARS, a new vision language model that can per-
form multiple multi-modal tasks such as visual captioning,
question-answering, video action recognition, and can gen-
erate explanations of its decisions on-par with human level.
(iii) We perform a thorough evaluation of our model, includ-
ing analyses of our new training paradigm, the influence of
the CLIP text predictions, and a human study that compares
X-VARS to human referees.

2. Related work

Sports video understanding. The field of sports video un-
derstanding has gained a lot of interest lately [67]. It en-
compasses a wide range of tasks such as player segmenta-
tion, detection, and tracking [12, 45, 46, 59, 64, 70], summa-
rizing [22,48], player re-identification [46,63], action spot-
ting in untrimmed videos [5, 10, 11, 16, 25, 29, 60–62], pass

prediction and feasibility [3, 28], camera calibration [44],
foul recognition [20,26] or dense video captioning for foot-
ball broadcasts commentaries [2, 50]. Such tasks can be
solved by using recent advances in deep learning for gen-
eral video understanding. Progress in sports video under-
standing heavily relies on the availability of sports-centric
large-scale annotated datasets [33, 34, 47, 52, 57, 69, 74].
SoccerNet [9, 13–15, 23, 24, 36] stands among the largest
and most comprehensive dataset for video understanding in
soccer. SoccerNet-MVFoul [26] further extended SoccerNet
by proposing a novel multi-view football dataset designed
for foul classification annotated by professional referees.
In this work, we further extend SoccerNet-MVFoul into a
visual-question-answering dataset focused on football ref-
ereeing questions, named SoccerNet-XFoul.

Vision language models. Natural Language Process-
ing (NLP) has witnessed remarkable advancements with
the emergence of open-source Large Language Models
(LLMs) [4, 8, 18, 27, 51, 55, 68]. These models have
demonstrated exceptional capabilities in language under-
standing and generation tasks. LLMs have also served as
the basis for the success of many vision-language models
that are based on projecting the visual features of an im-
age [7, 31, 40, 72, 75] or a video [1, 73] encoder onto the
input embedding space of an LLM. This idea and its vari-
ants allowed leveraging the power of LLMs for multi-modal
understanding. In this work, we propose X-VARS, a vision
language model for visual captioning, question-answering,
action video recognition, and conducting meaningful con-
versations based on video content.

Explainability. Recently, explainability in machine learn-
ing has received lots of attention, leading to the devel-
opment of various techniques to demystify complex mod-
els. LIME (Local Interpretable Model-agnostic Explana-
tions) [54] explains the predictions of any machine learning
classifier by approximating any classifier locally with an in-
terpretable model. Meanwhile, SHAP (SHapley Additive
exPlanations) [41] offers a unified perspective on feature
importance by averaging all feature combinations, ensur-
ing consistent attributions. Grad-CAM (Gradient-weighted
Class Activation Mapping) [58] employs gradient informa-
tion from the final convolutional layer to generate a heat
map highlighting crucial input image regions. Counterfac-
tual Explanations [71] identify the least number of changes
required in the input data to alter the model’s prediction,
offering insights into decision boundaries and feature im-
portance. Lastly, Explanation via Language [35] empha-
sizes natural language dialogues for enhanced interaction
between experts and models, underscoring the importance
of interactive systems tailored to user requirements. In this
paper, we investigate how large language models can ex-
plain decisions, using football refereeing as a testing envi-
ronment given its decision complexity and subjectivity.
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Dataset Type #Instances #Questions #Context VQA Captioning AR

Conceptual 12M [6] Images 12M 12M Various - -
LAION-5B [56] Images 3B 3B Various - -
LLava dataset [40] Images 158k 158k Various -
MovieQA [66] Videos 408 15k Movies - -
TVQA [37] Videos 21k 150k TV shows - -
Video Instruction Dataset [43] Videos 100k 100k Various -
HowTo100M [49] Videos 136M 136M Youtube - -

GOAL [65] Videos 1k 53k Football - -
Sports-QA [38] Videos 6k 94k Football -
SoccerNet-caption [50] Videos 942 - Football games - -

SoccerNet-XFoul (Ours) Football 10k 22k Football fouls

Table 1. Comparative overview of relevant datasets. SoccerNet-XFoul contains high-quality answers annotated by more than 70 experi-
enced referees. Our dataset is the largest dataset in sports with complex questions and the only one focusing on refereeing questions. VQA
stands for Visual Question Answering, AR stands for Action Recognition.

3. SoccerNet-XFoul dataset

The performance of supervised models mostly relies on
the quality and quantity of available annotated datasets.
Multi-modal datasets are generally harder to curate and
annotate, which explains their usually smaller size com-
pared to uncurated datasets. Table 1 shows a comparative
overview of multi-modal datasets in the literature, specif-
ically highlighting those that contain combinations of text
and image, as well as text and video pairs. We intro-
duce SoccerNet-XFoul, a dataset specifically designed for
foul video recognition and explanation. It consists of high-
quality video-text pairs with more than 10k video clips and
22k questions, annotated by more than 70 experienced ref-
erees. Compared to the other sports datasets, SoccerNet-
XFoul has the most video clips and much more complex
questions. In the following, we present our approach to cre-
ating this high-quality human-annotated dataset.

Questions. We identify 4 key questions on the most foun-
dational, complex, and game-impacting decisions a referee
must confront during a game. To answer the two first ques-
tions, “Is it a foul or not? Why?” and “What card would
you give? Why?”, the model requires an in-depth under-
standing of the rules of the game [32] as well as an under-
standing of the context in which an action occurred. Factors
such as the intent, the foul location, the game dynamic and
the intensity of the contact must all be considered. The two
last questions, if “the defender stops a promising attack or a
goal-scoring opportunity?” and if “the referee could have
given an advantage?” add a new layer of difficulty and pre-
diction analysis. The answers to the questions are not only
visual, since the model has to make predictions about po-
tential future outcomes. For instance, in assessing whether
the referee should have given an advantage, the model needs

to evaluate whether the attacking team would benefit more
from continuing play rather than being granted a free-kick.
Annotators. As no public dataset is available that provides
detailed answers and explanations to these refereeing ques-
tions, we conducted an annotation campaign with over 70
referees over a three-month period. To ensure high-quality
answers, only experienced referees were selected for the an-
notations. The referees have officiated between 140 and
2,279 official games, with an average of 655 games. They
were allowed to assess as many video clips as they wished,
with the flexibility to pause at any time to avoid fatigue.
Each annotator had the option to provide answers in Ger-
man, French, English, or Spanish to prevent any linguistic
barriers. The answers were translated from the original lan-
guage to English by ChatGPT-3.5 [4] and then reviewed by
another human referee to ensure accurate translation.
Subjectivity. Figure 1 displays an example of the subjec-
tivity of the annotations. While one referee annotator would
not give a card because he thought the foul was made with
low intensity, the other annotator would give a yellow card
because he believed the tackling was made with high speed
and was reckless. Due to this inherent subjectivity in ref-
ereeing, our objective was to gather multiple answers for
the same action, rather than collecting a single decision
and explanation for each question. Therefore, the multi-
ple decisions and explanations actually help the model to
learn a range of valid interpretations and reasoning strate-
gies employed by human referees. All in all, this can im-
prove the robustness of the AI model, enabling it to make
informed decisions even in ambiguous or subjective situa-
tions. Practically, the annotators were randomly assigned
different video clips, ensuring that the same action might be
evaluated multiple times. In the end, for each action, we
have, on average, 1.5 answers for the same question.
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Figure 2. Distribution of the most common words. The most fre-
quent words are “foul” and “defender,” followed by semantically
related words related to football and referee actions and terms.
There is thus a significant imbalance in the distribution.

Statistics. Our dataset contains 10k video clips with over
22k referee-generated questions and answers. Figure 2,
shows the distribution of the most common words in the
explanations of the referee annotators. The most frequently
used words are specific terminologies for describing a duel
between two players, ranging from descriptive terms such
as defender or card to key terms to consider for evaluating
fouls such as intention or intensity. The number of words
per answer ranges from 1 to 66, with a total of more than
540k words and an average of almost 25 words per answer,
with a significant imbalance in the distribution of words.
Novelty. Compared to traditional visual-question answer-
ing datasets, the SoccerNet-XFoul dataset is the first to an-
swer refereeing questions, with detailed explanations of
why a particular decision is correct. This explainability is a
unique approach that enhances the dataset’s complexity and
ensures a deeper understanding and representation of real-
world scenarios where AI models must make and explain
their decisions. Furthermore, the interpretation of situations
in our dataset is context-dependent. The interpretation of a
foul might differ depending on whether it occurs in the mid-
dle of the field or in the penalty area. To correctly answer
questions, the model must have an in-depth understanding
of the game. Finally, the model needs a level of predictive
analysis. For instance, to determine if a defender stopped
a promising attack, the model must understand what hap-
pened at the moment of the foul and what could have hap-
pened in the immediate future. This involves making com-
plex predictions about potential future outcomes, a task that

is far more advanced compared to traditional VQA datasets.
Hence, our SoccerNet-XFoul dataset is the first and largest
visual question-answering dataset for referees in football,
offering many new challenges to be explored.

4. Methodology
In this section, we provide a comprehensive description

of our novel EXplainable Video Assistant Referee System,
“X-VARS”, for foul and severity recognition, providing ex-
planations on its decision-making process. We begin by
presenting the architecture with a detailed description of
each individual component of X-VARS. Then, we provide
an in-depth explanation of its training process.

4.1. Architecture

Figure 3 illustrates the key architectural components
of X-VARS. We use Video-ChatGPT [43], a multi-modal
model capable of understanding and generating detailed
conversations about videos, as our foundation model. We
make several changes to the architecture to adapt it to our
needs. Formally, we input a video clip v ∈ RT×H×W×C ,
with T , H , W and C being respectively the number of
frames, height, width, and channel dimension of the video,
to CLIP ViT-L/14 [53],

fi,hi = CLIP (v) , (1)

and obtain the corresponding frame feature vector fi ∈
RT×D1 and the hidden states hi ∈ RT×S×D2 , with S being
the number of tokens obtained by multiplying w = W/p
and h = H/p, where p is the patch size of CLIP, D1 the
dimension of the output layer and D2 the dimension of
the hidden states. We then average-pool the hidden states
across the temporal dimension to obtain temporal features
t ∈ RS×D2 and along the spatial dimension to get the video-
level spatial representation s ∈ RT×D2 . Finally, we con-
catenate both to obtain spatio-temporal features.

z = [t s] ∈ R(S+T )×D2 . (2)

Before feeding the video features z into the LLM, we
project them into the same feature space as the text embed-
dings by applying a linear projection layer:

w = Linear(z) ∈ R(S+T )×D2 . (3)

with w being a sequence of visual tokens. The feature vec-
tors fi are also average-pooled along the temporal dimen-
sion to obtain a single video-level representation f ∈ RD1 .
The video-level feature representation f is passed through
two classification heads Cfoul and Csev to obtain the type
of foul (i.e. Tackling, Holding, Pushing, Standing tackling,
Elbowing, Dive, Challenge, or High leg) and to determine
whether it is a foul or not, and the corresponding severity

3270



T video frames

Visual Encoder Fine-tuned CLIP (L/14) 

Linear layer

Large Language Model (Vicuna-v1.1)

User input Video tokens

Model output

Multi-task predictions

Cfoul Csev

Figure 3. Architecture of X-VARS. X-VARS is a visual language model based on a fine-tuned CLIP visual encoder to extract spatio-
temporal video features and to obtain multi-task predictions regarding the type and severity of fouls. The linear layer connects the vision
encoder to the language model by projection the video features in the text embedding dimension. We input the projected spatio-temporal
features alongside the text predictions obtained by the two classification heads Cfoul and Csev (for the task of determining the type of foul
and the task of determining if it is a foul and the corresponding severity) into the Vicuna-v1.1 model, initialized with weights from LLaVA.

(i.e. No offence, Offence + No card, Offence + Yellow card
or Offence + Red card), with the predictions being:

Pfoul = argmaxCfoul , (4)

Psev = argmaxCsev . (5)

These predicted labels with the highest confidence are in-
jected as a textual prompt to the LLM. Hence, this multi-
task classification enables the model to utilize acquired in-
formation to enhance the performance of the explanation.

To obtain high performance with LLMs, a crucial part
consists in determining a prompt which is understandable
by the LLM. As we use the Video-ChatGPT backbone, we
design our prompt with the following query:

USER :< Question >< Pfoul >< Psev >< w > (6)
Assistant :

where < Question > represents one of our questions
randomly sampled from the training set of video-question-
answer triplets, < Pfoul > and < Psev > are the two
predictions on the foul type and severity recognition task
obtained from the fine-tuned CLIP, and < w > are the pro-
jected spatio-temporal features. X-VARS is trained to pre-
dict the answers of the assistant as an auto-regressive model.

4.2. Training Paradigm

We propose a two-stage training approach. The first
stage fine-tunes CLIP on a multi-task classification to learn

CLIP Cfoul & Csev Linear Layer LLM

Stage 1 - -
Stage 2

Table 2. Overview of the training stages. In stage 1, we fine-
tune CLIP and the classification heads Cfoul and Csev to give
X-VARS some prior knowledge about refereeing. In stage 2, we
keep them frozen and fine-tune the linear layer and partially the
LLM.

prior knowledge about football and refereeing. The second
step consists in fine-tuning the projection layer and several
layers of the LLM to enhance the model’s generation abili-
ties in the sport-specific domain.
Stage 1: Fine-tuning to inject football knowledge. While
CLIP is excellent at generalizing across various image
tasks, it lacks the ability to recognize fine-grained actions
or events. These actions are mostly recognizable by consid-
ering the temporal dimension rather than images alone. For
instance, assessing the severity of a foul requires consider-
ing factors such as the intensity and the speed, which cannot
be determined by simply examining images. Since CLIP
was not trained specifically on football data, the feature rep-
resentation between two football clips would be very simi-
lar, despite the videos depicting different scenarios. Hence,
since all our videos are related to football, the output fea-
tures will share similarities. This proximity between fea-
tures actually poses a challenge for the LLM, making it
difficult to effectively distinguish between different actions.
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To avoid these issues, we fine-tune CLIP on the SoccerNet-
MVFoul dataset [26] to learn prior knowledge about foot-
ball. The training consists of minimizing the summed cross-
entropy loss of both tasks. Given the similar magnitudes of
both losses, we sum them without scaling or weighting.
Stage 2: Feature alignment and end-to-end training. We
freeze the fine-tuned CLIPs weights and continue training
the linear projection layer and the LLM. Training a projec-
tion layer from scratch requires many high-quality video-
text pairs and computational resources. To alleviate this,
we use the pre-trained weights of the projection layer from
Video-ChatGPT [43], which was trained on a dataset of
100k video-text pairs. We further fine-tune this projection
layer to map the spatio-temporal features of our football
clips into the same dimensional space as the word embed-
dings. As demonstrated in [40, 42, 43, 75], a simple lin-
ear layer is sufficient for connecting video features with the
word embedding. During training, we replace the predic-
tions of CLIP < Pfoul > and < Psev > by the ground truth
< Gfoul > and < Gsev > as CLIPs predictions might be
noisy, which could lead to confusions. Since determining
foul type and severity is subjective, alignment between the
ground truth of the SoccerNet-MVFoul dataset and the ref-
eree responses from our SoccerNet-XFoul dataset may vary.
Consequently, even when giving < Gfoul > and < Gsev >
during training, the model may not only use this informa-
tion without using the video tokens to produce the text.

5. Experiments

In this section, we analyze the performance of X-VARS
on the two most important refereeing questions: “Is it a foul
or not? Why?” and “What card would you give? Why?”.
Given the importance of these questions, we conduct a com-
prehensive and detailed analysis, providing insights into the
improvements in the video recognition performance, a hu-
man study to assess the model’s explanations, some quali-
tative results, and a thorough ablation study.

5.1. Implementation details

We fine-tune CLIP-L/14 on the SoccerNet-XFoul dataset
for 14 epochs with a learning rate of 5 × 10−6 on a sin-
gle Nvidia V100 GPU with a batch size of 64, using gra-
dient accumulation to overcome memory limitation. The
fine-tuning of the model takes about 9 hours. We use 16
frames in 224p resolution per clip, with 8 frames before
and 8 frames after the foul. For the second stage, we em-
ploy QLORA [17, 30] to enhance memory efficiency and
enable training on a single GPU. We only fine-tune 1% of
the layers for 3 epochs using a learning rate of 2×10−4 and
an overall batch size of 32. The training on 2 A100 40GB
GPUs takes about 2 hours. Table 2 provides an overview of
the state of the various key components during training.

Distribution

Mean 1 2 3 4 5

Referees 4.0 3% 10% 8% 46% 33%
X-VARS 3.8 3% 17% 4% 46% 30%

Table 3. Score and distributions obtained during our human
study comparing the quality of referees and X-VARS gener-
ated explanations. The mean scores of X-VARS closely match
those of human referees. In 46% of the video clips, X-VARS
achieved higher scores for its explanations than the human ref-
erees. The distribution of the results is very similar for human
referees and X-VARS. A score of 5 is the highest and represents
strongly agree while 1 is strongly disagree.

5.2. Human study on explanation performance

Evaluating generative tasks, such as text, image, or video
generation, remains a significant challenge due to their sub-
jective nature and the absence of proper evaluation metrics.
Traditional language metrics are not very informative for
our purpose, as two sentences can be linguistically very
similar, yet have entirely different meanings. To achieve
quantitative results, we conducted a human study with 20
football referees who evaluated the quality of responses
without knowing if they were generated by a human referee
or by X-VARS. The referee officiated between 85 and 850
official games, with an average of 490 games. Each partici-
pant assessed 20 random video clips, each lasting 5 seconds,
with no time restrictions. They evaluated the quality of the
explanation, considering whether the evaluation was con-
sistent with the video and if the decision and explanation
aligned with the Laws of the Game [32]. They rated each
explanation on a scale of 1 to 5, with 5 indicating strongly
agree and 1 indicating strongly disagree. Table 3 shows the
results, with X-VARS performing similarly to the human
referees, with only minimal score differences. X-VARS’s
explanations were more convincing in 46% of the cases than
the referee’s. While both show similar results for strongly
agree and agree, X-VARS obtains more disagree responses
than human referees. The majority of videos where partici-
pants disagreed with X-VARS involve types of fouls that are
rare in our dataset, i.e. when the defender uses his arms ille-
gally by pushing his opponent or hitting him with the elbow
in the face. Overall, the human study highlights X-VARS’s
impressive ability to understand football videos and explain
its decisions at a level comparable to human referees.

5.3. Qualitative results

Figure 4 showcases two examples of conversations gen-
erated by our proposed X-VARS. Particularly, we illustrate
its remarkable ability to understand and generate decisions
with explanations related to visual content and the Laws of
the Game [32]. Although X-VARS was only fine-tuned on
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No card, as the defender is holding onto the attacker's 
jersey without it being unsportsmanlike and without 
any risk of injury.

What card would you give? Why?

Should the defender receive a red card?

No, the defender should not receive a red card. The 
foul was committed with low intensity and without 
any risk of injury.

Describe what you can see in the video.

In the video, the defender is holding onto the 
attacker's jersey with both hands. The attacker is 
trying to run past the defender, but the defender is 
preventing him from doing so by holding onto his 
jersey.

No, the defender did not touch the attacker on the 
foot. The defender is holding onto the attacker's jersey 
with both hands.

Did the defender hit the attacker with his 
hand in the face?

No, the defender did not hit the attacker with his hand 
in the face. The defender is holding onto the attacker's 
jersey with both hands.

Did the defender touch the attacker on 
the foot?

(a) Q: What card would you give? Why? GT: No card because the defender
briefly held onto the attacker’s arm during the fight for the ball, without it
being unsportsmanlike.

The defender's tackling was done with moderate 
intensity while he attempted to play the ball. 
However, the speed of the tackle and the direction of 
his feet show a lack of consideration for the 
well-being of his opponent, and therefore, such 
action should be considered reckless. The player 
should be punished with a yellow card.

What card would you give? Why?

Did the defender touch the ball?

No, the defender did not touch the ball. He only hit the 
attacker with his tackle.

Did the defender intend to play the ball?

No, the defender did not intend to play the ball. He 
only hit the attacker with his tackle.

Where was the point of contact?

The point of contact was on the attacker's foot.

Would it be red if he had hit your 
defender on the knee?

Yes, it would be a red card if the defender had hit the 
attacker on the knee. Such an action is considered a 
serious foul and endangers the health of the 
opponent.

(b) Q: What card would you give? Why? GT: No card. Even though the
defender had no chance to play the ball, he touched the attacker with low
intensity on the foot.

Figure 4. Qualitative results. Although X-VARS has never been specifically fine-tuned for conversation, it has inherited its conversational
capabilities from the pre-trained model. X-VARS demonstrates impressive discussion skills while being aligned with the video content
and the Laws of the Game. (a) X-VARS is close to the ground truth and is able to accurately answer the user’s question. (b) This example
shows the subjectivity of foul situations. X-VARS interprets the foul as medium intensity, while the human referee interprets it as low
intensity with no chance to play the ball.

two questions, Figure 4 illustrates that X-VARS can gener-
alize and accurately answer or describe video content with-
out any specific fine-tuning. Furthermore, X-VARS was
not fine-tuned for conversation, but we inherited these ca-
pabilities from the pre-trained conversational model Video-
ChatGPT [43], which serves as the foundation for X-VARS.
Hence, throughout our two fine-tuning stages, we retained
the conversation capabilities of the foundation model and
can generate meaningful conversations with X-VARS about
football and refereeing. Another interesting fact is the typ-
ical characteristic of LLMs to consistently agree with hu-
man users. Surprisingly, X-VARS mostly maintains its de-
cision and offers comprehensive explanations for it, even
when asked questions such as “Should the defender receive
a red card?”, when the specific foul would not require any.

However, similarly to other LLMs, X-VARS has also inher-
ited typical issues such as hallucinations, in which it rec-
ognizes actions in the video that are not present. Future
work could investigate if more high-quality data or more
advanced LLMs would limit this hallucination effect.

5.4. Ablation study

Video action recognition performance. Table 4 shows
the performance of CLIP-L/14 after the fine-tuning process
in foul classification tasks. We compare it to the previous
state-of-the-art (SOTA) achieved by Held et al. [26] by us-
ing the same number of frames and video quality to have a
fair comparison. Held et al. used the MViT [19, 39] video
encoder to extract spatio-temporal features. As SoccerNet-
MVFoul contains multiple views for each action, they ag-
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Type of Foul Offence Severity

Feat. extr. Pooling Acc. BA. Acc. BA.

ResNet [26] Mean 0.30 0.27 0.34 0.25
ResNet [26] Max 0.32 0.27 0.32 0.24
R(2+1)D [26] Mean 0.32 0.34 0.34 0.30
R(2+1)D [26] Max 0.34 0.33 0.39 0.31
VARS-MViT [26] Mean 0.44 0.40 0.38 0.31
VARS-MViT [26] Max 0.45 0.39 0.43 0.34

CLIP-L/14 Single-view 0.51 0.39 0.52 0.35
X-VARS Single-view / / 0.62 0.35

Table 4. Multi-task classification. We compare the multi-task
classification accuracy of the fine-tuned CLIP-L/14 and X-VARS
(fine-tuned CLIP + LLM) to the performance obtained by Held et
al. [26]. We obtain state-of-the-art performances for three of the
four metrics while using a single view instead of multi-views. X-
VARS enhances the classification accuracy of offence and severity
by 19% compared to the previous SOTA. Acc. stands for Accuracy
and BA. stands for balanced accuracy.

gregate the features of the different views by mean or max
pooling. In this work, we fine-tune CLIP on a single view
and evaluate it on the same actions, using only a single view
instead of the multi-views. Despite fewer views, CLIP out-
performs the previous SOTA in three of the four metrics,
especially enhancing foul and severity classification, with
an increase of 9% in accuracy. To determine the recognition
performance of X-VARS, we asked X-VARS for each video
clip, if it was a foul or not, and its corresponding severity.
We then asked ChatGPT-3.5 to extract the classification pre-
dictions from the generated explanations. Finally, compar-
ing these predictions of X-VARS to the ground truth, we ob-
serve a significant performance increase to 62% accuracy in
determining whether a foul occurred and its severity com-
pared to CLIPs predictions. Hence, X-VARS outperforms
the previous state-of-the-art VARS (MViT+Max Pool) sys-
tem [26] by 19%. However, since most of the explanations
of X-VARS do not explicitly indicate the type of foul, it is
not possible to accurately extract it from the explanations.
For this reason, we were not able to evaluate the accuracy
of X-VARS in determining the type of foul.

Influence of the video tokens. We investigated if the LLM
simply generates its answers based on the multi-task predic-
tions that we give as input to the LLM or if it also considers
the video tokens. To test this hypothesis, we use the X-
VARS prediction obtained in the previous section, and we
compare it to the CLIPs prediction provided as input. Inter-
estingly, X-VARS did not simply replicate the CLIP predic-
tion as it only agreed on 76% of the cases. This result shows
that X-VARS, throughout its training, developed the ability
to re-evaluate the multi-task predictions and understand that
they are not always reliable. Consequently, X-VARS does
not only rely on the text predictions for its answers but also
incorporates information from the video tokens.

CLIPs classification predictions vs. no text predictions.
To validate our new training paradigm, we compared the
quality of our X-VARS trained with classification prediction
as additional text input against training it only with video
features. To compare the two models, we randomly selected
a set of 40 video clips with a uniform distribution of various
types of actions and severities. By qualitatively analyzing
the results on the selected set, both models generate similar
outcomes for most of the video clips. The main difference
occurs for less frequent types of actions and severities. For
instance, X-VARS without predictions fails to predict a sin-
gle “No foul” instance and achieves a balanced accuracy of
only 29%, while X-VARS obtains a 6% higher balanced ac-
curacy. Figure 4a shows a clip of a defender holding his op-
ponent, an underrepresented action in our dataset. X-VARS
without predictions incorrectly predicts: “No card, as the
defender pushed the attacker in the back with low intensity
during the fight for the ball, without any risk of injury”. On
the other hand, X-VARS with predictions provides an ac-
curate explanation: “No card, as the defender is holding
onto the attacker’s jersey without it being unsportsmanlike
and without any risk of injury.”. Throughout our testing,
we encountered several instances where X-VARS with pre-
diction tokens aligned more closely with the ground truth,
especially for underrepresented actions. These results show
the effectiveness of our new training paradigm in achieving
higher accuracy and more accurate explanations.

6. Conclusion
In this work, we investigated the potential of using LLMs

to enhance transparency and explainability within decision-
making processes. We proposed X-VARS, a multi-modal
language model, which can perform a multitude of tasks,
including video description, question answering, video ac-
tion recognition, and conducting meaningful conversations
based on video content. X-VARS achieves state-of-the-art
performance in determining whether a duel between players
constitutes a foul and in assessing the corresponding sever-
ity. The qualitative results and human study underscore the
exceptional capabilities of X-VARS in explaining its deci-
sion, indicating its potential to enhance football refereeing
by providing accurate decisions and explanations.
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Ghanem, and Marc Van Droogenbroeck. Scaling up Soccer-

Net with multi-view spatial localization and re-identification.
Sci. Data, 9(1):1–9, Jun. 2022. 2

[10] Anthony Cioppa, Adrien Deliège, Silvio Giancola, Bernard
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ane Magera, Vladimir Somers, Le Kang, Xin Zhou, Olivier
Barnich, Christophe De Vleeschouwer, Alexandre Alahi,
Bernard Ghanem, Marc Van Droogenbroeck, Abdulrahman
Darwish, Adrien Maglo, Albert Clapés, Andreas Luyts, An-
drei Boiarov, Artur Xarles, Astrid Orcesi, Avijit Shah, Baoyu
Fan, Bharath Comandur, Chen Chen, Chen Zhang, Chen
Zhao, Chengzhi Lin, Cheuk-Yiu Chan, Chun Chuen Hui,
Dengjie Li, Fan Yang, Fan Liang, Fang Da, Feng Yan, Fufu
Yu, Guanshuo Wang, H. Anthony Chan, He Zhu, Hongwei
Kan, Jiaming Chu, Jianming Hu, Jianyang Gu, Jin Chen,
João V. B. Soares, Jonas Theiner, Jorge De Corte, José Hen-
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Jonathan Tow, Alexander M. Rush, Stella Biderman, Al-
bert Webson, Pawan Sasanka Ammanamanchi, Thomas

3277



Wang, Benoı̂t Sagot, Niklas Muennighoff, Albert Villanova
del Moral, Olatunji Ruwase, Rachel Bawden, Stas Bek-
man, Angelina McMillan-Major, Iz Beltagy, Huu Nguyen,
Lucile Saulnier, Samson Tan, Pedro Ortiz Suarez, Vic-
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Eduardo González Ponferrada, Efrat Levkovizh, Ethan Kim,
Eyal Bar Natan, Francesco De Toni, Gérard Dupont, Germán
Kruszewski, Giada Pistilli, Hady Elsahar, Hamza Benyam-
ina, Hieu Tran, Ian Yu, Idris Abdulmumin, Isaac John-
son, Itziar Gonzalez-Dios, Javier de la Rosa, Jenny Chim,
Jesse Dodge, Jian Zhu, Jonathan Chang, Jörg Frohberg,
Joseph Tobing, Joydeep Bhattacharjee, Khalid Almubarak,
Kimbo Chen, Kyle Lo, Leandro Von Werra, Leon Weber,
Long Phan, Loubna Ben allal, Ludovic Tanguy, Manan Dey,
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