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Abstract

Pass analysis in soccer is essential for predicting play-
ers’ actions and optimizing team strategies. Existing pass
prediction methods involve supervised learning, which re-
quires costly annotations about who passes where and
when. We propose the use of additional synthetic data gen-
erated by a soccer simulator to overcome this challenge.
Specifically, we employ imitation learning to train a policy
network that mimics player behavior patterns using the data
intended for prediction. This policy network, along with the
simulator, is used to generate synthetic data. The gener-
ated synthetic data is then combined with real-world data
to learn pass prediction by an existing model that utilizes
both trajectory and video data. Experiments confirm that
our approach improves the top-1 prediction accuracy of the
intended pass receiver by 3.72% compared to an existing
state-of-the-art method.

1. Introduction
Soccer pass prediction is the task of forecasting which
player will receive the pass based on match data available
up to the moment before the pass is made [13, 31]. The pro-
cess of soccer pass prediction involves analyzing informa-
tion such as the positions and movements of players during
the match, as well as the position of the ball, to predict the
next pass.

In the context of pass prediction, forecasting a player’s
pass selection is crucial for supporting tactical decision-
making and enhancing team performance [5, 28, 30]. When
analysts and coaches can efficiently understand team strate-
gies, they contribute to improving win rates [7]. AI-enabled
detailed data analysis also aids in evaluating teams and play-
ers and enhancing the quality of scouting [29], and analyz-
ing the talents of undervalued players [27]. Accurate pass
prediction assists in devising effective strategies to breach
the opponent’s defense and provides information for choos-
ing the optimal pass options even under the pressure of a
match [26]. Power et al. [23] estimated risk and reward for
passes to analyze the game and the players. These studies

Figure 1. Overview of our method. Our method involves gener-
ating synthetic data based on real-world data. Imitation learning
is performed using the trajectories of players, and the agents ob-
tained through this process are utilized in a simulator. By utilizing
both real and synthetic data simultaneously, the pass prediction
deep learning model is trained to enhance video representation
learning and acquire new passing scenarios. This approach fa-
cilitates a deeper understanding of game dynamics, enabling more
accurate pass predictions. Ultimately, it can predict the probability
of passing to each teammate.

allow teams to approach games more strategically, thereby
increasing their chances of winning.

In the field of pass prediction, there are primarily two
approaches: one utilizing only trajectory data, and another
that employs both trajectory and video data [13]. Although
trajectory-based methods are more prevalent due to the
ease of data acquisition, incorporating both trajectories and
video in pass prediction offers numerous advantages. The
semantic information from video data not only contributes
to improved prediction accuracy but also enables the visual
presentation of pass options within the video. Additionally,
video data, which is rich in information, is utilized in soccer
for tasks such as event detection, ball detection, and player
tracking [11, 16].

However, when utilizing trajectory and video data for
soccer pass prediction, the high costs of annotation and the
scarcity of training data present challenges [16, 24]. Anno-
tation requires careful consideration of multiple variables,
such as player positions, movements, and the configurations
of opposing teams [1]. Video data requires manually label-
ing pass events for all involved players, demanding video
review to identify passers and receivers. High-quality pass
prediction requires extensive video data covering various
passing scenarios, presenting significant challenges.
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In this study, we propose a method utilizing a soccer sim-
ulator to compensate for the lack of real data, as illustrated
in Fig. 1. Specifically, agents are trained through imitation
learning from real soccer data, and these agents are then op-
erated within a simulator to generate realistic play scenes.
The generated virtual data, combined with real data, are
used to train an existing pass prediction model. The existing
model utilizes both video and trajectory data [13]; extract-
ing information such as the orientation of a player’s body
and the direction of their face from video, and combining
it with trajectory data, allows for more accurate pass pre-
dictions. The use of synthetic data in this learning process
proves to be effective.

In our experiments, we observed a 3.72% improvement
in accuracy with the proposed method compared to an ex-
isting method. Additionally, we implemented a baseline
model using reinforcement learning instead of imitation
learning and found that imitation learning tends to select
defensive passes more akin to actual play. The analysis of
the experiments revealed various advantages, including en-
hanced learning of video features and player relationships,
potentially facilitated by the proposed method.

Our study makes two significant contributions. First, it
demonstrates a learning approach that utilizes a simulator
and imitation learning to generate data at low cost, which
can be employed to train models. This allows for covering
a wider range of scenarios without solely relying on actual
match data. Second, by applying this to a pass prediction
model that uses both video and trajectory data, we have im-
proved prediction accuracy. Our analysis confirmed the en-
hanced learning of video features and the relationships be-
tween players, and that our method can produce predictions
with more variability than an existing method.

2. Related Work

Pass prediction Soccer pass prediction uses information
up to the frame just before a player with the ball makes
a pass, to predict which teammate the player will pass
to [4, 15]. Pass prediction models mostly utilize trajectory
data as input. Dauxais et al. [4] uses the coordinates at the
moment of the pass, combining features manually for pre-
diction with a random forest algorithm. Hubacek et al. [15]
predicts the probability of pass destinations using Convolu-
tional Neural Networks (CNNs).

There are also methods that perform pass prediction us-
ing both video and trajectory data. Video data allows for
the utilization of information not obtainable from direction
and speed alone, such as the orientation of a player’s body
and face. Sanguesa et al. [3] uses player coordinates and
information on the orientation of attacking players’ bodies
obtained from video to calculate the pass possibility among
team players. Achieving over 70% Top-3 accuracy from

more than 6,000 pass scenes, the combination with pass
evaluation metrics also enables the refinement of existing
pass evaluation models.

Honda et al. [13] proposes a method combining trajec-
tory and video data for prediction, achieving significant ac-
curacy improvements compared to methods that use only
trajectory data. Video data is processed using a 3D Convo-
lutional neural network (3DCNN), and trajectory data is an-
alyzed with Long Short-Term Memory (LSTM) networks.
Feature vectors are calculated for each player and fused us-
ing a Transformer encoder to predict the probability of the
pass receiver.

Pass prediction using both video and trajectory data
tends to achieve higher accuracy compared to methods us-
ing only trajectory data. However, the challenge lies in the
difficulty of acquiring video data, which limits the quan-
tity and variety of data available. For example, while short-
distance passes tend to be more predictable, the predictive
performance for long-distance passes often decreases [13].

Pass evaluation An important analytical method in soc-
cer is pass evaluation, which quantifies the potential value
of passes to the team. Machine learning-based pass eval-
uation methods often use information before and after the
pass as input, employing manually designed features and
machine learning models to output evaluation scores. Rein
et al. [25] evaluates passes based on field area domina-
tion and the number of defenders between the goalkeeper
and the ball possessor. Chawla et al. [6] classifies passes
into good, neutral, and bad categories based on the pass’s
position, direction, distance, and spatiotemporal informa-
tion during the match. Decroos et al. [8] classifies players’
actions and probabilistically evaluates their contribution to
scoring or conceding goals. Goes et al. [12] assesses passes
using characteristics such as length, speed, and direction.

Some approaches incorporate the prediction of a pass’s
success probability into pass evaluation models, evaluat-
ing passes in conjunction with the expected value of scor-
ing upon success. Fernández et al. [10] proposes the Ex-
pected Possession Value (EPV), which quantifies the poten-
tial value of shots or passes to specific locations based on
the positions of all players and the ball. Power [23] et al.
estimates the success rate of passes based on the distance
and angle between players using a linear regression. Fer-
nández and Bornn [9] uses a CNN to calculate the success
rate and selection probability of passes, producing a Soc-
cerMap that represents the success rate based on the pass
location. Anzer and Bauer [2] utilizes pass length, direc-
tion, and player positions to predict the success probabil-
ity of passes to each player. Liu et al. [20] combines deep
learning and reinforcement learning to learn the spatiotem-
poral dynamics of players, evaluating actions based on the
change in scoring opportunities for home and away teams.

Pass evaluation, particularly in identifying the optimal
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pass selection during actual matches, is challenging. This
is because the models are trained to quantify evaluations
of passes that have already been executed. Improving the
accuracy of pass predictions can contribute to better pass
evaluations.

Utilization of simulation The field of pass analysis of-
ten faces challenges related to the quantity and quality of
data. Due to the large size of soccer fields and the numerous
players involved, resolution can become limited, leading to
errors in coordinate data. Additionally, the cost of annota-
tion means that soccer pass data are expensive to obtain, yet
the quantity and quality of the trained data can significantly
influence prediction outcomes.

There are examples in other sports where simulations are
used to generate data, enhancing the accuracy of analysis.
Newman et al. [22] utilizes the Madden NFL 2020 PC game
as a simulator for American football formation classifica-
tion, improving identification performance with CNNs and
YOLO. Huang et al. [14] simulates a realistic badminton
environment, predicting flight trajectories with the use of
physical models. Google Research Football (GRF) [18] is
a soccer simulation platform designed for developing and
testing reinforcement learning and machine learning algo-
rithms, based on real soccer matches and capable of simu-
lating realistic scenarios and tactics. It has been used in the
development of soccer reinforcement learning AI [19, 32].

Soccer research also employs simulations. Komorowski
and Kurzejamski[17] utilizes GRF [18] for multi-camera
tracking of soccer players, applying sim2real. They com-
bine real soccer match data with simulation data and employ
graph neural networks to account for the movements and
interactions among players for tracking. Morra et al. [21]
enhanced event recognition during soccer matches by uti-
lizing a modified GRF simulator, achieving improved per-
formance.

The GRF simulator is widely used for player detection
and event recognition. However, in pass analysis, the re-
search field is divided into two areas: robot soccer and the
analysis of actual play. The former uses simulations while
few papers in the latter apply simulations to the analysis of
real players. Simulators have the potential to function as
a complement to actual match data, and their utilization is
anticipated across many applications.

3. Method

Overview Our proposed method generates diverse syn-
thetic data that resembles real data and utilizes this for train-
ing. Thus, it comprises three steps: 1) Learning behaviors
similar to real data, 2) Generating diverse synthetic data,
and 3) Training with a mix of synthetic and real data.

First, there is the learning of agent behaviors. Through
deep imitation learning, the model learns actions frame by

Figure 2. Diagram of behavior cloning and data generation. This
diagram shows the process using machine learning and simula-
tion. Initially, a CNN model learns from the actual players’ tra-
jectories through behavior cloning. The learned behavior patterns
are applied to a simulator to generate synthetic videos and trajec-
tories. This creates data of diverse plays that are difficult to obtain
from real matches, ultimately resulting in the creation of virtual
data. This sequence of processes enables the generation of a di-
verse dataset that contributes to improving the accuracy of pass
prediction models.

Figure 3. Diagram of the pass prediction model. Real and syn-
thetic videos of players, along with trajectory data and the ball’s
trajectory data, undergo feature extraction through 3DCNN and
LSTM networks. These features are then fed into a transformer
encoder, which analyzes the relationships between multiple en-
tities. Through this analysis, probabilistic predictions are made
from the passer to the receiving player. Finally, the outcome of the
pass is outputted by a fully connected layer.

frame from soccer players’ match data, enabling it to mimic
the movements of players. Second, we have the generation
of synthetic training data. Trained agents are pitted against
each other to automatically generate synthetic data, obtain-
ing labels for video, trajectory, and actions. This allows for
the expansion of the dataset. Third, training combines syn-
thetic and actual data. Existing prediction models [13] are
used to learn pass classification, but during this process, we
apply weighting to both real and synthetic data to adjust the
gap between them as training progresses.

The proposed method offers two advantages. First, the
expanded data set facilitates the learning of features, im-
proving the accuracy of predicting the receiving player of
a pass. Second, soccer simulations generate diverse play
styles, including new passing scenarios, enhancing the ac-
curacy of pass predictions. Additionally, simulators reduce
errors compared to manual coordinate setting or person de-
tection from videos, offering a significant advantage.
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Behavior cloning We utilize behavior cloning from imi-
tation learning to teach agents movements close to those of
soccer players, as illustrated in Fig. 2. Our goal is for agents
to mimic the actions of players, using trajectory data from
soccer matches as input to build a model that predicts action
labels in future frames.

The policy function for agent behavior decision is repli-
cated using a model that modifies the CNN used for rein-
forcement learning in GRF. Since the policy function needs
to be executed within the simulator to determine actions,
CNN is appropriate due to its balance of execution speed
and processing capability.

The policy function, π, is represented by

π(a|s) = ef(a(s))∑
a′∈A ef(a′(s))

. (1)

The policy function π, as shown in Eq. (1), represents the
probability of selecting action at given the state st at time t,
and serves as a function to determine which action the agent
should take. The function fatk

(st) represents the evaluation
function for taking action at under state st, where n denotes
the number of types of actions.

The input to the policy function is trajectory data. For
the purpose of action cloning, pairs of trajectory data and
associated player event data are prepared. Using this data,
supervised learning is applied to predict action labels with
a CNN, based on the player’s position and action in the cor-
responding frame. The labels for the data need to be ad-
justed to conform to the definitions used in the simulator.
The agent is trained to predict the true label as the action
with the highest probability in each state.

The action labels include movements in 8 directions and
actions such as sprinting. In this paper, we define 19 types
of action labels and manually set appropriate speeds and
distances. The details of the action labels are available in the
supplementary material. Specifically, the input to the CNN
encoder is a time series of minimaps showing the positions
of all players at time t for the past m frames. The output of
the CNN is the action label for the agent at time t+ 1.

Data generation for simulation The generation of syn-
thetic data utilizes the GRF simulator. This paper details the
method of data generation within the simulator, as well as
the specifics of the simulator’s configuration.

Data generation is performed as follows: Within the sim-
ulator, when a pass command occurs, the passer and the re-
ceiver are identified, and a pass scene is generated. The start
frame of the pass is defined as the moment when the pass
command is first input, followed by the detection of contact
between the ball and a player. Only intentional passes are
captured, excluding accidental passes. The moment when
the receiver catches the ball is defined as when contact with
the ball is confirmed.

Based on the frame in which a pass is detected, the n
frames from the preceding t seconds are saved as data for
the pass scene, and the trajectory of the ball and the video
are extracted. The ID of the receiver is annotated as the
correct label in the data. This provides time-series data up
to the start frame of the pass and training data on which
player will receive the pass.

The simulator settings are as follows: Both action
cloning and pass prediction models require trajectories of
the ball and players. This information is the x and y axis
coordinates of each player’s 3D position within the simula-
tion. The video data for the pass prediction model is also
generated from the simulator. The virtual camera is con-
figured in terms of angle of view, position, and orientation
to ensure the entire soccer field is within view and all play-
ers are visible in the video. Special care is taken to ensure
that, particularly at the moment a pass is made, all players,
except the goalkeeper, are visible in the video.

The pass prediction model requires a time series of
frames cropped with bounding boxes for each player. Since
the simulator’s coordinates are defined in world coordi-
nates, a coordinate transformation is necessary to obtain the
bounding boxes of players in the image. This involves us-
ing quaternions to perform an inverse affine transformation
from 3D geometric coordinates to the camera origin’s 3D
coordinates, followed by perspective projection transforma-
tion and aspect ratio adjustment.

The overall image size of the scene is set to the maximum
possible to ensure stable output, with careful consideration
to prevent the resolution of the video within each player’s
bounding box from becoming too low.

Mixed learning with data in pass prediction This paper
utilizes the model by Honda et al. [13], which employs both
video and trajectory data for pass prediction, due to its su-
perior performance compared to using trajectory data alone,
as illustrated in Fig. 3. Data generated in the simulator and
real data are combined with weighting, and both are used
for supervised learning in the pass prediction model.

4. Experiment
4.1. Dataset

The real data on players’ trajectories and video comprises
successful passes from 25 home games played by Kashima
Antlers, Urawa Red Diamonds, and FC Tokyo in J1 league
in Japan. The dataset consists of tracking data, which in-
cludes the positions of all players on the field during the
games, and wide-angle video footage. The position coordi-
nates were acquired using a high-precision tracking system
and manually corrected by experts, provided by Data Sta-
dium Inc. The tracking data also includes event annotations
and player action labels assigned by experts. The video data
is in wide-angle format. We extracted information for 20
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players, excluding goalkeepers, from this dataset, as the fo-
cus is solely on field players.

Tracking coordinates range within (0, 0) ≤ (x, y) ≤
(5250, 3400), with a position coordinate sampling rate of 25
Hz. The video resolution is 1920 × 1080, with a sampling
rate of 30 Hz. Only successful pass scenes were selected
for analysis, with scene lengths set between 1.0 and 5.0 sec-
onds. The total number of scenes is 15,586, of which 10,911
scenes were allocated to the training set, 1,559 scenes to the
validation set, and 3,116 scenes to the test set.

For the purposes of utilizing both video and trajectory
data, the dataset was processed accordingly. The ball’s po-
sition information was estimated through linear interpola-
tion from pass and shot event data and was resampled to 30
Hz for synchronization with the video. The coordinates of
players and the ball were normalized to ensure visual con-
sistency within the range (−1,−1) ≤ (x, y) ≤ (1, 1) and
were horizontally flipped as necessary to maintain unifor-
mity in the attacking direction. To extract trajectory fea-
tures, 150 frames (spanning 5 seconds) depicting the move-
ment of each player and the ball were used, incorporating a
broad temporal context. Scenes with less than 150 frames
were supplemented with zero padding. For improved mem-
ory use efficiency and accelerated learning speed, the video
data’s sampling rate was set to 15 Hz. Cropped images of
players were extracted from clips consisting of 15 frames
per second, with each frame resized to 100× 100 pixels.

4.2. Synthetic Dataset Processing

The synthetic dataset consists of simulated soccer match
data generated using a Gaussian Random Field (GRF) ap-
proach. The simulator is a 3D soccer simulator, designed to
replicate the soccer match environment with high fidelity.
In the simulation, realistic actions are possible, including
considerations of players’ body axes and orientations, and
adjusting the force of kicking the ball to match that of real
human physical capabilities.

In the simulator, an 11-versus-11 match format was em-
ployed, mirroring the flow of actual games. For each match,
the data output includes the x, y coordinates of the ball
and 20 field players, excluding the goalkeeper, along with
match video from an overhead perspective that captures all
players. The simulation matches were structured with 45-
minute halves and 5 minutes of additional time, aligning
with real soccer games, resulting in a total game time of 50
minutes. Simulation videos were produced at a resolution
of 3840 × 2160 to ensure a stable full-screen display, with
a sampling rate set to 30 Hz to match the real dataset.

For the passing scenes, the video and coordinate data
from the 5 seconds leading up to the pass are included, with
both the video and coordinate data flipped to maintain con-
sistency in the direction of attack. Due to the soccer court
being symmetrically identical on both sides, this procedure

ensures data consistency and simplifies conditions. Further-
more, when the ball is located at the (x, y, 0) coordinates,
the camera’s field of view (FOV) is set to 32.12 − 0.025y
degrees, capturing the scene from a diagonal overhead per-
spective at the coordinates (0.85x, 0.75y − 84.12, 47.27)
meters. In the synthetic dataset, similar to the real dataset,
10,911 scenes were utilized for training purposes only and
not for validation or testing. This approach is intentional,
as the primary objective of this research is to assess the
model’s accuracy against real data.

4.3. Implementation of Behavior Cloning Model

The behavior cloning model used 19 types of actions as the
correct labels and predicted the sender’s action at time t+1
using the minimap information from frames t− 4 to t.

The behavior cloning model was trained as a 19-category
multiclass classification using a CNN as the encoder model.
Details on the 19-type labels and the CNN model are elabo-
rated in the supplementary material. The batch size was set
to 128, with a learning rate of 1.2e − 4 applied. The total
number of epochs was set to 2,000, with an early stopping
criterion that ended training if no performance improvement
was observed for 40 epochs. The Adam optimization was
used, with parameters set to β1 = 0.9, β2 = 0.999, and
ϵ = 1e − 8. The total number of training samples used in
this study was 12,544.

For comparison, a method was also implemented that
trained the agent using Proximal Policy Optimization
(PPO), a reinforcement learning approach. The reward
function was defined by a gain or loss of points by scoring
a goal, with a score of ±1.

4.4. Implementation of the Pass Prediction Model
and Mixed Data Training

The processed trajectory and video data were incorporated
into the prediction model by Honda et al. [13], as depicted
in Fig. 3. This deep learning model consists of a 3D CNN
for extracting features from video, an LSTM for extract-
ing features from trajectories, and a Transformer for un-
derstanding the relationships between features. Initially,
features were extracted from trajectory coordinates using
LSTM. The features from the intermediate layers were then
embedded into a 64-dimensional vector. The ball’s trajec-
tory features were used independently due to the absence of
corresponding image features. The 3D CNN utilized a por-
tion of ResNet3D-6 for video feature extraction. Features of
the 20 players and the ball were input into a Transformer en-
coder, with input-output integration performed via residual
connections. This encoder had a four-layer structure, each
layer featuring four heads, with parameters optimized ex-
perimentally. Features corresponding to potential receivers
were fed into a fully connected layer and converted into pass
reception probabilities using the softmax function.
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Table 1. Prediction accuracy comparison. PPO RL∗ is our imple-
mentation where agents learn policy by manually designed reward.

Methods Top-1 Top-3 Top-5 Loss
Honda et al. [13] 62.28 91.92 97.79 1.025
PPO RL∗ 65.72 92.95 97.86 0.9745
Cloning (Proposed) 66.00 93.20 97.95 0.9681

In the proposed model, training was conducted using
both real and synthetic data simultaneously, leveraging deep
learning-based predictive models. A batch size of 24 was
employed for training. Both models utilized the ADAM
optimizer with parameters β1 = 0.9, β2 = 0.999, and
ϵ = 10−8, and the learning rate was set to 1e − 4. Train-
ing utilized the cross-entropy loss function, and testing was
performed using top-k accuracy. To prevent overfitting, an
early stopping strategy was adopted, selecting the model
with the highest top-1 accuracy on the validation data.

We adjusted the hyperparameters of the loss function and
the scheduling of the learning rate when training with a
combination of real and synthetic datasets. This optimiza-
tion of the model’s training process enabled effective uti-
lization of both real and synthetic data. We conducted ad-
justments on the hyperparameters related to the weighting
of the loss function when using real and synthetic data si-
multaneously. Furthermore, in scheduling the learning rate,
an appropriate scheduling method was selected, taking into
account the characteristics of both real and synthetic data.

Ltotal = αLreal + βLvirtual (2)

Eq. (2) represents the total loss when training with both real
and synthetic data combined. α and β are the weight pa-
rameters, which were fixed to be time-invariant. For the
purpose of an ablation study, implementations where the
weight parameters varied over epochs linearly, sinusoidally,
and according to a sigmoid function were also explored, and
each was compared with the application of their respective
hyperparameters. Details on the scheduling of these loss
functions are elaborated in supplementary material.

4.5. Results

Experimental results are presented in Tab. 1. Our method
improved accuracy in both behavior cloning and reinforce-
ment learning compared to the conventional method cited in
[13]. Notably, in behavior cloning, our approach increased
Top-1 accuracy by 3.72%, Top-3 by 1.28%, and Top-5 by
0.16%, and also reduced loss on the test data. An increase in
accuracy was also observed in comparison with reinforce-
ment learning. Since behavior cloning involves learning the
actions of players from data, this improvement in accuracy
is attributed to the effectiveness of our method in leveraging
the data.

Table 2. Accuracy comparison when adjusting the scheduling of
the mixing ratio between real and synthetic data.

Methods Top-1 Top-3 Top-5
PPO RL - Fixed 24.76 60.05 80.34
PPO RL - Linear 65.72 93.01 97.92
PPO RL - Sinusoid 64.30 93.33 97.82
PPO RL - Sigmoid 63.89 93.08 98.02
Cloning - Fixed 66.00 93.20 97.95
Cloning - Linear 65.46 92.78 97.46
Cloning - Sinusoid 61.96 92.24 97.85
Cloning - Sigmoid 63.41 92.08 97.31

Additionally, to investigate the impact of the presence
and level of strategy on accuracy, comparative experiments
were conducted using synthetic data data generated with ac-
tion strategies based on the simulator’s built-in AI and ran-
dom action strategies based on a uniform distribution. Our
behavior cloning largely surpasses those based on gener-
ated data with simple agents. The results are detailed in
supplementary material.

Next, as part of an ablation study, we present the results
of experiments that involved changing the learning schedul-
ing between real and synthetic data in Tab. 2. We con-
ducted a comparative analysis of different learning schedul-
ing methods (fixed, linear, sinusoidal, and sigmoid). The
results showed that linear scheduling achieved the high-
est Top-1 accuracy in reinforcement learning, while fixed
scheduling yielded the highest Top-1 accuracy in behavior
cloning. For reinforcement learning methods, the highest
accuracies were observed with linear scheduling for Top-1,
sinusoidal scheduling for Top-3, and sigmoid scheduling for
Top-5, indicating that time-dependent scheduling changes
were most effective in achieving the highest accuracy.

Reinforcement learning agents often exhibit significantly
different strategies between generated and real data in soc-
cer scenes, potentially causing a gap in play styles be-
tween the datasets. On the other hand, when using behavior
cloning, there is a likelihood of more similar strategies in
soccer scenes between generated and real data, suggesting
a smaller gap in play styles.

4.6. Analysis

Examples of successes and failures are presented in Fig. 4.
The red box represents the player passing the ball, green
indicates predictions by the existing method cited in [13],
and yellow represents predictions by the proposed method.
In examples where both methods were correct, the player
consistently faces the right side of the field, and the cor-
rect receiver is located diagonally to the upper right. In this
case, the absence of change in body orientation is believed
to have led to correct predictions by both methods. In ex-
amples where only the proposed method was correct, the

3199



(a) An example where both methods predicted correctly

(b) An example where our method only predicted correctly

Figure 4. Comparison of pass prediction using existing and pro-
posed methods. In the upper sequence, both methods share ac-
curate predictions, with the Sender (highlighted in red) consis-
tently facing to the right. In the lower sequence, only the proposed
method makes an accurate prediction, where the Sender initially
faces the top-right but changes orientation over time to eventu-
ally face left. This observation suggests that the proposed method
excels in capturing significant changes in the player’s body orien-
tation to make accurate predictions.

initial orientation of the player making the pass is towards
the back of the screen, followed by a counterclockwise ro-
tation of body orientation, eventually facing the left side of
the field. The correct receiver is located on the left side of
the screen. While the existing method predicted a pass to a
player on the right side based on the initial orientation, the
proposed method accurately predicted the receiver based on
the final body orientation. This suggests that the proposed
method takes into consideration significant changes in the
body axis of players in motion.

To assess the learning effectiveness of visual informa-
tion, we analyzed the feature maps that exhibited the highest
activation in the first layer of the 3DCNN. The heatmap is
shown in Fig. 5. The left side shows three ally players, and
the right side shows two enemy players. Across all meth-
ods, activations were higher for ally players, indicating that
visual information about allies is prioritized.

Using synthetic data resulted in higher activations for
characters, and the proposed method for behavior cloning
clearly delineated the shapes of ally players with high acti-
vation levels. The shapes of enemy players were also accu-
rately recognized, and the areas of high activation matched
their orientations. This suggests that the proposed method
may effectively learn from visual information.

We conducted a visualization and comparison of the
scaled attention map in the final layer of the Transformer.
The attention map is shown in Fig. 6. In the figure, player 0
is the one passing the ball, players 1 to 9 are potential ally
receivers, players 10 to 19 are opponents, and number 20
represents the ball, with player 3 at the bottom of the im-

Figure 5. Visualization of the maximum average heatmap in
the intermediate layers of the 3DCNN for each player’s footage.
Since these are the heatmaps with the maximum average for each
method, the steps are different for each. The existing method
presents ambiguous shapes and body orientations, whereas the
proposed method clearly delineates shapes and body orientations,
particularly in behavior cloning, where it is most distinct.

age being the correct receiver. Using the proposed behavior
cloning method, the correlation between number 3 and 20
in the final layer of the attention map reached a maximum
value of 0.35, suggesting a high level of relevance between
player 3 and the ball. Additionally, player 10, the closest
opponent, showed high relevance with many other players,
indicating that this opponent affected numerous players. In
contrast, high relevance scores for players 3 and 10 were
not observed with the compared method [13]. These results
suggest that the proposed method is more capable of cap-
turing the intricate relationships between players.

We analyzed the distribution of successfully predicted
passes between the existing method [13] and the proposed
behavior cloning method. The results are presented in
Tab. 3. We compared the average pass length, the circu-
lar mean of passes with the right direction as 0 degree, and
the circular variance.

The circular mean is introduced to investigate the trend
in the direction of passes. To calculate it, following circu-
lar statistics, we compute the unit vectors corresponding to
these angles, take their average, and then convert this av-
erage back into degrees. When angles are distributed, the
mean is close to 0 and takes some value if there is similar-
ity in the estimated passes. Similarly, the circular variance
is introduced for the purpose of grasping the consistency
and degree of dispersion of passes. We calculate the dis-
tance from the origin of the mean direction, and subtract
this value from 1. This metric takes values from 0 to 1, with
higher values indicating that passes are more distributed.

Mathematically, the circular mean θ̄ and the circular
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Table 3. Comparison of pass distributions of proposed (BC) and Honda et al. [13].

Mean length (SD) (m) Circular mean (deg) Circular variance
Correct prediction by both 14.10 (5.868) -54.19 0.7752
Correct prediction only by proposed (BC) 13.80 (6.979) -20.58 0.7207
Correct prediction only by [13] 13.08 (6.784) 1.570 0.6657
Neither predicts correctly 16.37 (9.309) 20.31 0.5200

Figure 6. The scaled attention map from the final layer of the trans-
former is presented, where the vertical axis represents queries and
the horizontal axis keys. Higher values indicate stronger correla-
tions between queries and keys. The proposed method shows the
highest correlation of 0.35 between the query for player 3, the cor-
rect receiver, and the key for ball 20. The key for player 10, being
closest to 100,000 players, is considered to have generated rela-
tions with many players, suggesting it played a role in obstructing
the passing course and attracting attention from other players.

variance v are calculated as shown in Eq. (3).

θ̄ = arctan2

(
1

N

N∑
i=1

sin(θi),
1

N

N∑
i=1

cos(θi)

)
(3a)

v = 1−

√√√√( 1

N

N∑
i=1

cos(θi)

)2

+

(
1

N

N∑
i=1

sin(θi)

)2

(3b)

where N is the number of passes and θi is the angle of each
pass.

As shown in Tab. 3, cases where only the proposed
method succeeded show a longer average distance and a
larger circular variance compared to cases where only the
existing method succeeded. This suggests that while hav-
ing a similar distribution of pass distances as the existing
method, the proposed method can accurately predict a more
diverse range of passes. Additionally, the average pass an-
gle was -20.58 degrees, a value between the successes of
the existing method and those of both methods. The cir-
cular variance was 0.7207, which is larger than that of the
successes of the existing method alone. This suggests that
the proposed method is capable of capturing and accurately
predicting a wider variety of pass angles.

5. Conclusion
We have presented a method for enhancing pass predic-
tion performance by employing behavior cloning to instruct
agents in policies, generating synthetic data, and integrating
this with real data for the training process. As a result, in
pass prediction, the accuracy improved by 3.72% for Top1,
1.28% for Top3, and 0.16% for Top5. Additionally, The
qualitative analysis demonstrated that the approach is more
effective than an existing method in scenarios including
changes in the player’s body axis and complex pass scenes.
This is attributed to the effective learning of player’s video
representations and the relationships between players.

However, this study is limited to specific simulation data
and real match data. Therefore, there is room for further re-
search on improving generalization capabilities across dif-
ferent datasets. In the future, further accuracy improve-
ments could be considered by applying inverse reinforce-
ment learning, combining with pass evaluation, and incor-
porating more detailed data for each scene.
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[15] Ondřej Hubáček, Gustav Šír, and Filip Železný. Deep learn-
ing from spatial relations for soccer pass prediction. Machine
Learning and Data Mining for Sports Analytics, pages 159–
166, 2019. 2

[16] Paresh R Kamble, Avinash G Keskar, and Kishor M Bhur-
chandi. A deep learning ball tracking system in soccer
videos. Opto-Electronics Review, 27(1):58–69, 2019. 1

[17] Jacek Komorowski and Grzegorz Kurzejamski. Graph-based
multi-camera soccer player tracker. In 2022 International
Joint Conference on Neural Networks (IJCNN), pages 1–8,
2022. 3

[18] Karol Kurach, Anton Raichuk, Piotr Stańczyk, Michał Zając,
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