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Abstract

Monocular Depth Estimation (MDE) is fundamental in
sports video understanding, enhancing augmented graph-
ics, scene understanding, and game state reconstruction.
Despite remarkable progress in autonomous driving and
indoor scene understanding, there is currently a lack of
MDE datasets tailored for sports. Furthermore, most ex-
isting datasets only focus on single images, disregarding
the temporal aspect. In this work, we introduce the first
video dataset for MDE in sports, SoccerNet-Depth, focus-
ing on football and basketball videos. In particular, we
leverage the graphic engine from video games to automat-
ically extract video sequences and their associated depth
maps, making our dataset easily scalable. Furthermore,
we benchmark and fine-tune several state-of-the-art MDE
methods on our dataset. Our analysis shows that MDE in
sports is far from being solved, making our dataset a per-
fect playground for future research. Dataset and codes:
https://github.com/SoccerNet/sn—depth.

1. Introduction

Deep learning brought significant advancements in the
field of computer vision, allowing a comprehensive anal-
ysis of images and videos. A critical focus area is depth
estimation, whose objective is to determine the real-world
distance of every object in a scene to the camera. This
fundamental aspect allows for a more in-depth understand-
ing of the spatial relationship between the objects and the
environment. In practice, the distance can be estimated
in relative depth, which captures the order and spatial re-
lationships among objects without explicit distance mea-
sures, or in metric depth, which quantifies the exact dis-
tances from the camera to the objects in real-world units.
Estimating depth maps of images or videos can be achieved
through several approaches. Geometry-based methods typ-
ically leverage motion or multiple points of views to de-
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Figure 1. SoccerNet-Depth. We introduce a novel scalable dataset
for Monocular Depth Estimation in sports videos. Our synthetic
dataset is generated from video games, simulating football and
basketball games. We leverage graphics debuggers and automatic
scripts to extract video sequences along with their depth maps.

termine the depth [33]. Sensor-based approaches take ad-
vantage of Time-of-Flight (ToF) or Lidar technology [31].
More recently, deep learning techniques enabled monocular
depth estimation, i.e., injecting domain knowledge to esti-
mate depth from a single point of view.

In the world of sports, where analytics play a crucial
role in enhancing performance, the information brought by
Monocular Depth Estimation (MDE) offers interesting pos-
sibilities. First, the monocular video modality is available
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for all recorded games, providing a cheaper option for depth
estimation compared to expensive sensors or multi-view se-
tups. Second, by providing a three-dimensional perspective
from two-dimensional video captures, MDE significantly
improves scene understanding, such as allowing player and
ball tracking in 3D. Furthermore, depth maps can be used
to enhance the broadcast with the integration of Augmented
Reality (AR) content between the players, or by adding
depth-of-field blur to give a cinematic look to the footage.
However, state-of-the-art deep learning methods are typi-
cally trained on annotated depth data, and yet, those data re-
main scarce in sports. Indeed, gathering depth data is chal-
lenging for real-world sports matches, as depth information
is usually captured through ToF sensors such as LiDAR and
Kinect devices. While these methods are accurate in most
scenarios, they are often obstructed by their high-cost and
low data acquisition rates, in addition to requiring sophisti-
cated setup and calibration processes. Hence, huge playing
fields and high-speed game dynamics limit their accessibil-
ity and widespread adoption in the sports community.

As an alternative solution, we focus on synthetic data
generation, which allows extracting various information au-
tomatically. Nowadays, video games and sports simula-
tions have reached high-level realism, with improved graph-
ics, realistic ball dynamics, and advanced Al-driven player
movements. Leveraging the graphics engine pipeline allows
extracting numerous videos and their computed depth maps
at a low cost. In this work, we introduce and benchmark
a novel dataset, SoccerNet-Depth, composed of synthetic
video sequences alongside their corresponding depth maps.
The data are extracted from two popular video games:
NBA2K22 and EFootball, as illustrated in Figure 1. Our
approach is scalable, both in size and number of sports, and
complements previous efforts in MDE by providing a mean-
ingful dataset to train current methods on sports videos.

Contributions. We summarize our contributions as fol-
lows. (i) We propose SoccerNet-Depth, the largest pub-
licly available dataset for monocular depth estimation on
team sports videos, with 12,398 pairs of synthetic frames
and depth maps automatically extracted from football and
basketball video games. (ii) We benchmark and fine-tune
several state-of-the-art monocular depth estimation meth-
ods on our new SoccerNet-Depth dataset, showcasing the
remaining challenges for future research.

2. Related Work
2.1. Monocular Depth Estimation

Methods. Significant progress have been noted in the field
of Monocular Depth Estimation (MDE). The early founda-
tional work by Saxena et al. [77] employed Markov Ran-
dom Field (MRF) to predict depth from image features. The
field further evolved significantly with the adoption of deep

learning techniques, particularly Convolutional Neural Net-
works (CNNs) [19,26,37,53,56]. A significant improve-
ment was then brought by BTS [47], which enhanced exist-
ing models by adding new local planar guidance layers in
the network, setting unprecedented records at the time.

More recently, methods based on Transformer [91] were
introduced in MDE, leveraging non-local attention-based
aggregation in contrast with CNNs. The DepthFormer
model [50] exemplifies this trend, combining the strengths
of both Transformer and CNN models. Another signifi-
cant breakthrough was achieved with Ranftl et al.’s DPT
model [70], which employs vision transformers, diverging
from conventional convolutional networks. This model,
drawing inspiration from the ViT model by Dosovitskiy e?
al. [18], sets a new state of the art in the field. Afterward,
Bhat et al. introduced Adabins [21] achieving groundbreak-
ing performance by coupling a standard encoder-decoder
block to a new transformer-based architecture that splits the
depth space into bins. Innovative methods later built on top
of Adabins, such as BinsFormer [52] and LocalBins [4],
pushed the performance even further. Alternatively, depth
completion techniques [65,98, 102] utilize sparse depth data
to generate detailed dense depth maps.

Recently, several works [56, 97, ] investigated tem-
poral consistency for depth estimation in video sequences.
Luo et al. [56] developed a novel system for calculating
depth from monocular videos, ensuring both temporal con-
sistency and geometric accuracy. NeWCRFs [100] lever-
ages fully-connected Conditional Random Fields (CRFs)
and multi-head attention to predict sequences by modeling
the dependencies between their constitutive elements, im-
proving the contextual accuracy of predictions. MAMo [97]
also introduced temporal consistency to perform video
depth estimation. To do so, the work relies on other mod-
els, such as NeWCRFs [100] or PixelFormer [1]. The latter
is based on a skip attention method that facilitates efficient
information flow across different layers of a neural network
by allowing layers to skip connections, enhancing the learn-
ing of both high-level and low-level features.

MiDasS by Ranftl et al. [71] enabled training on multiple
datasets simultaneously [45,51,54,93] and achieved excel-
lent overall performance on unseen datasets. MiDaS [71]
serves as a foundational step in ZoeDepth [5], a promi-
nent monocular depth estimation method, that integrates
relative and metric depth estimation to enhance the per-
formance. ZoeDepth [5] was a turning point for highly
performing methods such as PatchFusion [49] and Depth-
Anything [96]. Finally, diffusion models [43, 40, ] show
good performances on popular datasets. These approaches
might significantly improve the field in the future. In this
work, we benchmark and fine-tune several state-of-the-art
MDE methods on our new SoccerNet-Depth dataset.

Datasets. Typically, deep learning algorithms require large
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Table 1. Monocular depth estimation datasets comparison. SoccerNet-Depth is the largest publicly available dataset for monocular
depth estimation on team sports videos, with 12.4k pairs of synthetic frames and depth maps from football and basketball video games.

Dataset H Data Source ‘ Data Type ‘ Scenario ‘ Images ‘ Resolution ‘ Depth ‘ Video ‘ Public
DIML [45] Kinect-V2/Zed Real Indoor/Outdoor 2M C:1920x 1080 D:512x424 Metric v v
NYUV2 [82] Kinect-V1 Real Indoor 1,449 640x480 Metric v v
KITTI [28] LiDAR Real Driving 93k 1024 %320 Metric v v
Diode [90] Laser Scanner Real Indoor/Outdoor 25.5k 1024 x768 Metric v v
MegaDepth [51] SfM and MVS Internet Photos Outdoor 130k Various Euclidean + Ordinal X v
Mid-Air [23] Unreal Engine/Airsim Synthetic Drone 420k 18001800 Metric v v
UnrealStereo4K [87] Unreal Engine Synthetic Outdoor/Indoor 8k 3840x2160 Stereo X v
MVS-SYNTH [37] Game Synthetic Outdoor 12k 1920x 1080 Metric v v
MADS [101] Stereo Real Individual Sports 5,855 1024 x768 Metric v v
Soccer on Your Tabletop [72] Game Synthetic Football 12k 256x256 Metric v X
SoccerNet-Depth Game Synthetic Team Sports 12.4k 1920x 1080 Relative v v

datasets, consisting of diverse scenes with precise ground
truth labels, to train on. Monocular depth estimation is
not an exception and the field can rely on different kind
of dedicated datasets. The most popular publicly avail-
able depth datasets, NYUv2 [82], made of indoor scenes,
and KITTI [28], captured in driving scenarios, consist
of real-world color images associated with ground-truth
depth maps. Despite their drawbacks, such as low reso-
lution (NYUv2) and sparsity (KITTI), they remain popu-
lar benchmarks for any new MDE method. The DIODE
dataset [90] is another great resource that was collected
using a professional-grade LiDAR scanner to capture ac-
curate depth measurements of diverse indoor and outdoor
real scenes. Additionally, the SUN RGB-D [85] and the
DIML Indoor [45] datasets contribute with real RGB-D im-
ages of indoor scenes and are completed by high resolutions
data from the Middlebury 2014 [78] dataset. Interestingly,
MADS [101] focuses on human pose tracking in sports, of-
fering stereo-based depth images of various sports actions.
Yet the actions are performed by a single athlete and cap-
tured from a single viewpoint in a controlled environment.
Finally, obtaining reliable depth data is expensive and re-
quires efficient technological tools. To battle those down-
sides, Li et al. [51] proposed a novel approach to build their
depth estimation dataset, MegaDepth, using Internet photo
collections as a data source. In this work, we propose a
first dataset for monocular depth estimation in team sports
videos, leveraging synthetic data, as highlighted in Table 1.

Synthetic datasets. Recently, researchers used video
games to generate realistic images with depth data. These
synthetic data are used to train models in simulation be-
fore transferring to real-world data [63, 68,94]. In MVS-
Synth [37], the authors generated diverse urban scenes from
the GTAS5 video game. Particularly, they extracted 120
video sequences, each containing 100 color frames and their
corresponding ground-truth disparity maps, as well as the
camera parameters. Some follow-up works [69, 73] also
used GTAS as baseline to extract data for either depth es-
timation or semantic segmentation. Following a similar

idea, Fonder et al. [22,23] generated the Mid-Air dataset,
a synthetic collection of low-altitude drone flight data cap-
tured in unstructured environments, created using an UAV
simulator. Recently, Unreal Engine has enabled many re-
search teams to easily acquire valuable data such as Un-
realStereo4K [87]. Our dataset follows this current trend,
leveraging sports video games as powerful simulators.

2.2. Sports video understanding.

Methods. Sports video understanding has been a promi-
nent research topic in the past decade [62, 64, 86]. Re-
cent developments enable the delivery of accurate, real-time
data and insights into player performance [7, 80, 89], tac-
tics [2], and game events [13, 36, 83], elevating coaching
strategies and contributing to an improved viewer experi-
ence [60,76]. This expansion encompasses areas like action
spotting [11,16,17,20,25,29,41,44,75,81,95], segmen-
tation and tracking of players or the ball [12,24,38,58,99],
and the creation of video highlights or summaries [10,27].

Datasets. The field has experienced significant growth,
characterized by a diverse array of datasets [39,40,79, 88,

] and tasks [34, 35, 55,59, 61, 84, 92]. The Soccer-
Net datasets and challenges [15, 30] have contributed to
multiple video understanding tasks in sports such as, ac-
tion spotting [8, 29], replay grounding [16], camera cali-
bration [57] and player re-identification [9], multiple player
tracking [14], multi-view video recognition [34, 35], and
dense video captioning [61]. This work extends the Soccer-
Net dataset by adding depth data for football and basketball.

Synthetic sport datasets. Isolated efforts have been made
to link sport analysis and video games. Sheng et al. [48]
delved into depth estimation in a football game, FIFA Foot-
ball World, building a dataset of 6.5k pairs of RGB images
and depth maps of football scenes extracted from the game.
Similarly, Zhu et al. [104] offered insights in obtaining im-
ages and using them to perform player reconstruction from
a basketball video game. The dataset was collected play-
ing the NBA2K19 game and intercepting calls between the
game engine and the graphics card using RenderDoc [42].
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Figure 2. Example of RGB frames and depth maps sequences in SoccerNet-Depth. Top to bottom: (1) Basketball sequence showing a
dunk with all players, referees and spectators in the camera field of view. (2) Associated ground-truth depth maps. (3) Football sequence
including a shot and a save with multiple players appearing in the camera field of view. (4) Associated ground-truth depth maps.

Lastly, Soccer on your tabletop by Rematas et al. [72] ex-
plored methods to estimate the depth map of each player,
using a CNN that is trained on 3D player data extracted
from another football video game, FIFA. In our work, we
also leverage video games to extract data and share our
dataset with the research community.

3. SoccerNet-Depth

Our SoccerNet-Depth dataset consists of 74 synthetic
video sequences generated from two widely renowned
video games: Efootball and NBA2k22, respectively simulat-
ing football and basketball matches. Particularly, we extract
two distinct types of sequences: synthetic RGB frames and
associated depth maps. Each frame and 16-bits depth map
is rendered at 1080p resolution (Full-HD), ensuring high-
fidelity visual data. Examples of video sequences and their
corresponding depth maps can be visualized in Figure 2.

Data collection. We played a total of 70 games with auto-
matically piloted players at top skill level for both sports.
To extract the frames and depth maps, we leveraged the
deferred shading principle. This advanced rendering tech-
nique works by decoupling the shading process from geom-
etry processing. Initially, scene geometry is rendered into
multiple buffers. Subsequent stages involve applying light-

ing and shading effects. Therefore, by finding the appro-
priate buffer, depth information can be retrieved. Render-
Doc [42] has been the prevalent tool to extract depth maps
in various synthetic data research [48,72,73,104]. However,
the author restricted its usage, even for research purposes.
As an alternative, we chose NVIDIA Nsight [66] since
our system’s configuration incorporates an NVIDIA graph-
ics card. During a typical gameplay, NBA2K runs at 115
frames per second (fps), whereas Efootball runs at 60 fps.
Since our objective is to mirror real-world sequences, we
wanted to simulate a 30 fps video output. However, Efoot-
ball and NBA2K limit frame accessibility through NVIDIA
Nsight, restricting the frame rate capture capability to an
upper limit of respectively, 1.2 and 6 fps.

Automatic data extraction. Manually extracting a sin-
gle frame and its corresponding depth buffer takes on av-
erage 1.5 minutes for a person, which makes the manual
approach intractable. To overcome this challenge, we devel-
oped a publicly available python script using libraries such
as pyautogui, pydirectinput, and imagesearch [32] to auto-
mate the data extraction process. The script is programmed
to interact seamlessly with NVIDIA Nsight [66], the Win-
dows operating system and the video game environment. It
employs imagesearch [32] to analyze the screen and iden-
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Figure 3. Distribution of football frames and games per

weather condition. A frame can belong to more than one class.

tify precise click locations based on predefined images. As
a result, we reduce the time per frame by approximately 30
seconds and automate the extraction, allowing for contin-
uous operation, including overnight execution, effectively
increasing the number of data extracted per day.

Data statistics. The 70 games, 62 of football and 8 of bas-
ketball, are split into train, test, and validation sets, publicly
available, and a fourth challenge set, currently kept private
for a future challenge, to prevent overfitting. The three first
sets encompass a total of 12,398 frames, split following a
60/20/20 distribution with each game only appearing in one
set. For football, there are 7,073 football frames, 4,071
for training, 1,423 for testing, and 1,579 for the validation
set. For basketball, we provide a total of 5,325 basketball
frames, 3,270 for training, 1,064 for testing, and 991 for
validation. Extracting information from video games also
brings the advantage of being able to control the external
conditions of a match such as different weather (especially
in football), including snow, rain, or sun, and either a day
or night match. Figure 3 depicts the distribution of the vari-
ous conditions in SoccerNet-Depth for the football dataset.
Basketball being an indoor sport, the conditions remain the
same across games, making it an easier dataset and bench-
mark. During the splitting of the football data, we ensured
that each set has a comprehensive coverage of the different
weather conditions and times of day.

Data format. The dataset is organized into one folder per
sport, i.e., Efootball and NBA2K data. Within each section,
the dataset is compartmentalized into distinct game fold-
ers, which in turn contains a series of video sequence fold-
ers. Each video sequence folder contains four subfolders
named: color, depth, depth_r and depth_buffer. The color
and depth folders contain PNG files, stored in 8-bits, with
the depth scaled for visualization purposes. Conversely, the
depth_buffer folders contains the raw CSV files with 16-bits
depth information. This buffer keeps the temporal consis-

tency across frames of a video sequence. We also provide
the same information in a 16-bit PNG format in depth_r.
In a video folder, files are systematically named according
to their order of appearance in the clip, i.e., [x].[png/csv]
for each frame [x]. At last, one .json file accompanies
each game, providing metadata with contextual details. For
football games, the metadata includes information about the
weather, the shirt color of both teams, and the time of the
day. For basketball games, which are played indoors, the
metadata covers the color of the shirts and the floor. Addi-
tionally, for both sports, the metadata file provides details
about the number of frames in the clip, the resolution of the
frames, and the frame rate.

Novelty. SoccerNet-Depth is unique by its domain of ap-
plication and its scalability. Table 1 shows that SoccerNet-
Depth is the largest public dataset to provide depth estima-
tion from team sports videos, with 12.4k frames. More-
over, unlike other MDE sport datasets [72, 101], SoccerNet-
Depth contains scene-centric data from in-match scenarios.
The video sequences make it valuable for temporally con-
sistent depth estimation, while the synthetic nature and au-
tomated extraction process makes the dataset scalable and
the methodology transferable to other sports video game.

4. Benchmarks

Tasks. Monocular depth estimation (MDE) aims at predict-
ing the depth, i.e., a notion of distance separating the objects
of a scene to a camera, for each pixel of an image taken by
this camera. A depth map is then defined as an image con-
taining the depth information per pixel. In the literature,
the depth map can contain two types of values, either met-
ric depth values or relative depth values. The former is ex-
pressed in real-world units, while the latter is expressed in
relative scale and is thus invariant to scaling operations. In
our work, since video games depth data are only provided
in relative scale, we predict a relative depth value for each
pixel of the different frames of the video sequences.

Metrics. To evaluate the performance of the different mod-
els on our datasets, we consider the four metrics introduced
by Eigen et al. [19]: the absolute relative error (Abs Rel),
the squared relative error (Sq Rel), the root-mean-square-
error (RMSE), and the root-mean-square error on the log-
arithm (RMSE log). Additionally, we use a scale invari-
ant (SILog) metric [19] that measures the relationships be-
tween points in the scene without considering any absolute
global scale. For valid comparisons, we apply a mask to
exclude scoreboard pixels present in color images, as they
do not appear in the ground truths. It is worth noting that
since our dataset provides relative depth ground truths, the
distributions of the predictions of the methods have to be
aligned with the ground-truths distribution. To do so, we
follow the scale and shift operation based on a least-square
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Table 2. Benchmark of state-of-the-art methods. Evaluation of the state-of-the-art methods on the football and basketball test set. We
test 5 methods in inference mode and fine-tune (-ft) two of them, ZoeDepth and DepthAnything, on our football or basketball data. For the

two sports, the best value is highlighted in bold whereas the second best is written in italics.

Sport | Models || Abs Relx10-* | RMSEx10-* | RMSE Logx10-* | SqRelx10-* | SILog
PatchFusion [49] 69.464 46.663 82.451 40.642 8.224
Marigold [43] 55.124 36.510 65.833 25.538 6.568

- ZoeDepth [5] 46.545 31.085 55.874 18.020 5.576

S MiDaS [71] 9.791 7.693 13.291 1.829 1.328

2 | DepthAnything [96] 4105 3.680 6.130 0262 | 0.613

= DepthAnythingfi 2.584 2.401 4167 0.125 0.417
ZoeDepthN-ft 2.429 2.343 4.002 0.121 0.400
PatchFusion [49] 3.586 4.223 4.430 0.196 0.443
Marigold [43] 3.276 4.188 4.396 0.195 0.440

5 ZoeDepth [5] 2.898 3.556 3.732 0.140 0.373

% MiDaS [71] 1.715 2.519 2.637 0.0745 0.264

2 DepthAnything [96] 0.725 1582 1.653 0.029 0.165

m DepthAnything-ft 0.691 1.341 1.401 0.020 0.140
ZoeDepthN-ft 0.741 1.399 1.463 0.023 0.146

criterion procedure introduced by Ranftl et al. [71]. How-
ever, we do not include any threshold metric such as 41, do,
and 03, since they measure the proportion of pixels where
the ratio between the ground-truth value and the estimate
falls below a specified threshold. Therefore, the threshold
value is directly influenced by the depth distribution, which
is subjective for relative depth. Hence, the metric may not
hold meaningful significance in our case. Finally, since
SoccerNet-Depth contains two sports with distinct depth
distributions, we evaluate each sport separately.

Baselines. We evaluate five state-of-the-art monocular
depth estimation methods. Two are fine-tuned, as training
codes for the others were not available. (i) MiDaS [71]
computes relative inverse depth, also called disparity. The
innovation came through the introduction of a new training
loss called scale-and-shift invariant, allowing to mix dis-
tinct datasets for training. Ever since the work was pub-
lished, multiple derived models were proposed using dif-
ferent encoder backbones [6], transitioning from convolu-
tional methods to vision transformers such as ViT [18]. (ii)
ZoeDepth [5] reunites both relative and metric depth esti-
mation to boost performances. Built on a more recent ver-
sion of the DPT [70] encoder-decoder, the method starts by
leveraging the MiDaS [71] relative depth estimation frame-
work to obtain the relative depth map. After that, the re-
sult constitutes the input for an enhanced version of the
LocalBins [4] module to obtain a final metric depth esti-
mation. (iii) Depth Anything [96] is a foundation model
that aims to predict depth accurately for any images in a
broad range of scenarios. It uses the power and quantity
of unlabeled data by automatically annotating them to pro-

vide both zero-shot relative and metric depth estimation.
(iv) Marigold [43] is a latent diffusion model that has been
fine-tuned on synthetic data and can also provide zero-shot
generalization. Using Stable Diffusion [74] pre-trained and
a fine-tuned U-Net, the method encodes the input into its
latent code and concatenates it with the depth latent code
learned during training. The result is passed at each de-
noising operations to the adapted version of the U-Net. (v)
PatchFusion [49] enables accurate depth map prediction
on high-resolution images. The framework consists in three
distinct steps: the first one, the Coarse Network, loses de-
tails while gaining global awareness of the images, the sec-
ond one, the Fine Network, splits the input into patches to
understand all the fine details and, finally, a Guided Fusion
Network with a Global-to-Local (G2L) module combines
those results. Mechanisms are implemented during training
and inference to maintain consistency among patches.

Implementation details. For all baseline methods, we first
use the inference code to obtain predictions on our test
set. For MiDaS [71], we use the best pre-trained model,
called BEiT_512-L [6], that leverages a BEIT [3] backbone
trained at a 512 x 512 resolution. To feed the data to the
encoder, we resize the images while keeping the aspect ra-
tio. For ZoeDepth [5], we investigated two pre-trained mod-
els, respectively pre-trained on NYUvV2(N) and on a mix of
KITTI [28] and NYUvV2(NK). For both, we use the recom-
mended MiDaS [71] backbone. Additionally, we fine-tune
both pre-trained models on each sport of our dataset. As
we have high-resolution data, we keep a small batch size
(i.e., 4), and fine-tune the models on a Tesla V100 GPU for
12 epochs. We denote the resulting models as ZoeDepthN-
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ft and ZoeDepthNK-ft. For Depth Anything [96], we use
the DINOvV2 [67] encoder for feature extraction and the
DPT [70] decoder. To obtain metric depth predictions, they
follow the ZoeDepth [5] framework, replacing only the Mi-
DaS [71] encoder by their ViT-L encoder. To perform in-
ference using DepthAnything [96], we use their ViT-L en-
coder, as it performs best on almost all datasets. Addition-
ally, we denote DepthAnything-ft the fine-tuned version of
the method on our dataset. The training is performed with
a batch size of 4 for 12 epochs on a modified version of
ZoeDepth where the initial encoder has been substituted
with the DepthAnything pre-trained ViT-L encoder. For
Marigold [43], we keep the default inference settings and
use the pre-trained weights on Hypersim and Virtual Kitti.
Particularly, as the predictions are rescaled to the original
resolution by the method, we maintain the 768 x 768 pro-
cessing resolution. This resolution is optimal for Stable Dif-
fusion [74], the model from which Marigold is derived. Fi-
nally, for PatchFusion [49], we use the weights pre-trained
on the MVS-Synth [37] dataset. Our choice is motivated by
the fact that this dataset contains images of outdoor scenes
extracted from a video game at a resolution of 1920 x 1080.
To enhance the predictions, we specify the input resolution,
activate the reduction of patch artifacts, and keep the num-
ber of random added patches to 128.

Main Results. The performances of the five state-of-the-art
models are presented in Table 2. First, in inference mode,
it can be noted that similar rankings are observed across
both sports. Without specific training tailored to our dataset,
Depth Anything [96] displays the best performances across
all metrics. This can be explained by its objective to provide
state-of-the-art zero-shot relative depth estimation. No-
tably, it significantly outperforms MiDaS v3.1 [6], whose
objective is similar. Conversely, the two diffusion-based
models, Marigold and PatchFusion, are underperforming
on unseen sports data. Finally, we show that fine-tuning
ZoeDepth [5](N) and Depth Anything [96] on each sport
leads to state-of-the-art performances. Depth Anything-ft
is the best performer in basketball and ZoeDepthN-ft in
football. Hence, fine-tuning from the NYUv2 pre-trained
weights enables the most substantial improvements on foot-
ball data. This can be explained by the fact that there are no
existing sport datasets dedicated to monocular depth estima-
tion. Thus, even methods like MiDaS or Depth Anything,
which are trained on a greater quantity of data, are not used
to the specific football domain. However, basketball resem-
bles a more daily life scenario with a closer point of view
and indoor scenes, leading to better zero-shot performance.
Note that the metrics scales depend on the relative depth dis-
tribution and are thus not comparable between the sports.

Ablation study. In the previous section, we fine-tuned
ZoeDepth on each sport individually and evaluated its per-
formance on the same sports. This section first proposes an

Table 3. Effect of pre-trained weights and generalization capa-
bilities. F- and B-ZoeDepth-ft stands for a model fine-tuned either
on Football or on Basketball, with initial weights obtained from a
pre-training on the NUYv2 (N) or KITTI (K) dataset.

Football Basketball

REL RMSE | REL RMSE
Algorithm Pre-training %1073 x107% | x107%  x107°
F-ZoeDepth-ft No 2705  3.078 | 3.244 4.034
F-ZoeDepth-ft N 2429 2343 | 1.876 2.850
F-ZoeDepth-ft N+K 2405 2488 | 2.131 2943
B-ZoeDepth-ft No 12.885 9.175 | 1.234 2.134
B-ZoeDepth-ft N 9.785 8354 | 0.741 1.399
B-ZoeDepth-ft N+K 12.301 10.049 | 0.761  1.396

analysis on the importance of the pre-trained weights when
fine-tuning on sports-specific distributions for ZoeDepth
and then provides an out-of-domain performance analy-
sis. In Table 3, we show that, for both sports, the fine-
tuned model without pre-training performs slightly worse
than the pre-trained models. For basketball, fine-tuning
pre-trained weights obtained by combining the KITTI and
NYUv2 dataset improves the RMSE performance com-
pared to NYUv2 alone, while for football, it is the opposite.
Next, the out-of-domain performance analysis explores the
inference performance on the sport that the model was not
trained on. Table 3 shows that fine-tuned pre-trained models
outperform models trained from scratch in predicting depth
values from scenes of the other sport.

Qualitative Results. Figure 4 displays 4 frames extracted
from distinct sequences for a qualitative analysis of the pre-
dictions of state-of-the-art models. The selected images il-
lustrate various conditions as well as different viewpoints. It
can be seen that, without fine-tuning, Depth Anything [96]
performs the best across both sports, which is confirmed by
Table 2. The model accurately reproduces the depth values
of the field plane while maintaining precise border descrip-
tions of the players. Let us note that it is critical to differ-
entiate between the precision of depth estimations and the
aesthetic quality of depth maps. As an example, PatchFu-
sion can accurately represent the details and joints of the
players but is struggling to predict the ground plan.

Moreover, we analyze the effect of fine-tuning
ZoeDepth [5] on both sports in Figure 5. As can be seen,
the predictions are significantly better when fine-tuning the
model. Furthermore, we observe that the model has a
deeper understanding of the camera angle, allowing it to
better depict the notion of plane for the football field, as
evidenced by the shades of color becoming darker with in-
creasing ground truth depth values. For both sports, the
players silhouette and objects are also more precise, show-
ing that fine-tuning on our dataset leads to state-of-the-art
performance for monocular depth estimation in sports.
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(a) Input (b) GT (c) PatchF. (d) Marigold

(e) ZoeDepth

(f) MiDaS (g) D.Any. (h) D.Any.-ft (i) ZoeD.-ft

Figure 4. Qualitative monocular depth estimation results. Depth estimations predictions of state-of-the-art methods on our dataset. The
first row shows a player holding onto the basketball hoop. The second row represents a close-up basketball image of a player initiating
a play. The third row displays players relatively far from the camera and exhibits a shot at the goal in snowy conditions. The last row
displays a football game with two players running for the ball near the camera. For each example, we display the (a) input RGB image, (b)
ground-truth depth map, and (c-i) the predicted depth maps of each method.

W/o fine-tuning W/ fine-tuning

Figure 5. ZoeDepthN-ft qualitative results. Comparison of the
predicted depth maps of ZoeDepth with and without fine-tuning on
our dataset for each sport. Fine-tuning improves the objects and
players borders, as well as the understanding of the field plane.

Basketball

Football

Finally, we provide a Sim2Real gap analysis in Figure 6.
To do so, we apply our ZoeDepthN-ft model on real video
sequences from an NBA match and a professional football
game. It can be seen that the depth maps produced by our
model show promising results as the model still understands
the notion of field, demonstrated by the shades of color in-
creasing with the further part of the field, while keeping the
players silhouettes relatively well separated from the field.

5. Conclusion

We release the new SoccerNet-Depth dataset, which is
the first scalable, synthetic dataset dedicated to monocu-
lar depth estimation in team sports videos. Our dataset is
built by leveraging the high-quality sports simulations pro-
vided by two sport video games: NBA2K?22 and Efootball.
Particularly, we automatically extract video sequences and
their associated depth maps, which can easily be adapted to

Figure 6. Sim2real gap analysis. Predicted depth maps of the
ZoeDepthN-ft model on frames extracted from two real-world
video sequences. The top row presents the estimation for an ac-
tual NBA match, while the bottom row features the prediction for
a Swiss-League football match.

other sport simulations. Furthermore, we benchmark five
state-of-the-art methods on the monocular depth estimation
task, highlighting their performance and fine-tune some of
them on our dataset to establish a new state-of-the-art re-
sult on our dataset. We show that the models trained on
synthetic data transfer well on real data, and provide an ab-
lation study on pre-training and generalization. Finally, our
work aims to encourage research in monocular depth esti-
mation in sports through the release of future challenges.
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