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Figure 1. The pipeline of our proposed rehabilitation exercise analysis method.

Abstract

The assessment of rehabilitation exercises for neurolog-
ical and musculoskeletal disorders are crucial for recov-
ery. Traditionally, assessment methods have been subjec-
tive, with inherent uncertainty and limitations. This paper
introduces a novel multi-modality dataset named FineRe-
hab§ to prompt the study of rehabilitation movement anal-
ysis, leveraging advancements in sensor technology and ar-
tificial intelligence. FineRehab collects 16 actions from 50
participants, including both patients with musculoskeletal
disorders and healthy individuals, and consists of 4,215
action samples captured by two Kinect cameras and 17
IMUs. To benchmark FineRehab, we present a reliable ap-
proach to analyze rehabilitation exercises, and make experi-
ments to evaluate the comprehensive movement quality from
across multi-dimensions. Comparative experimental analy-
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§Our dataset can be found at: https://bsu3dvlab.github.io/FineRehab

ses have verified the validity of our dataset in distinguishing
between the movement of the normal population and pa-
tients, which can offer a quantifiable basis for personalized
rehabilitation feedback. The introduction of FineRehab will
encourage researchers to apply, develop and adapt various
methods for rehabilitation exercise analysis.

1. Introduction
Home-based rehabilitation therapy is crucial for the re-
covery of patients suffering from neurological and muscu-
loskeletal disorders, such as strokes and fractures. Tradi-
tionally, the assessment of rehabilitation progress has relied
on subjective evaluation scales, including the Fugl-Meyer
Scale and Brunnstrom approach, among others [11, 17].
These scales, assessing a broad spectrum of functional ca-
pabilities—ranging from joint mobility and muscle strength
to motor patterns and overall body coordination—are com-
prehensive yet flawed. Their efficacy is compromised by a
reliance on the evaluators’ experience, leading to variability
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in assessments and potentially undermining the consistency
of patient care. Moreover, the subjective and labor-intensive
nature of these assessments does not align well with the
needs of an aging population, posing challenges to global
healthcare systems.

The emergence of advanced sensor technologies, cou-
pled with the rapid advancements in artificial intelligence
(AI) for action analysis, has been instrumental in the de-
velopment of data-driven assessment tools [24]. This inno-
vative integration facilitates the precise, real-time analysis
of patient movements, marking a significant leap forward
from traditional assessment methods. By providing quan-
tifiable metrics of rehabilitation progress, this technology
heralds a new era in rehabilitation medicine. Specifically,
action recognition technology automates the identification
of patient movements, while action quality assessment al-
gorithms evaluate the correctness and efficiency of these
movements [15]. This synergistic approach ensures the de-
livery of personalized feedback and recommendations, sig-
nificantly advancing the rehabilitation assessment towards a
fully automated, scalable solution.

The success of AI in analyzing movements, especially
in rehabilitation, hinges on creating detailed, high-quality
datasets. These datasets are essential for training AI to rec-
ognize and evaluate various patient movements accurately.
Our research is dedicated to assembling this pivotal dataset,
aiming to elevate the precision and reliability of motion
recognition technologies within the domain of telemedicine
rehabilitation, providing patients with real-time, personal-
ized rehabilitation support, ultimately fostering better pa-
tient engagement and improving clinical outcomes. Our
main contributions are as follows:

1. We propose a multi-modality and multi-task dataset for
rehabilitation movement analysis.

2. Independently spatial and temporal categories are pro-
posed to further explore fine-grained action recognition
and quality assessment.

3. We provide comparative experimental comparisons be-
tween the normal population and patients on FineRehab
dataset.

2. Related work

2.1. Action recognition

Human action recognition (HAR) technology is crucial for
identifying human motions, providing an advanced frame-
work for automated monitoring and analysis of patient
movements during rehabilitative exercises. The develop-
ment of three-dimensional skeletal data acquisition through
economical depth sensors and pose estimation algorithms,
has revolutionized action recognition, particularly in sports
domain [6].

Skeletal data represents a breakthrough in HAR by re-

ducing data volume compared to traditional methods like
RGB and optical flow, leading to improved computational
efficiency essential for real-time rehabilitation assessments.
Its robustness to lighting and background variations, along
with its insensitivity to camera viewpoint changes, makes
it ideal for the varied and unpredictable environments typ-
ical of rehab settings [7]. Notably, skeletal data captures
detailed motion dynamics over time, providing a nuanced
understanding of rehabilitative exercises. The skeletal data
provides intricate structural details within each frame and
ensures strong temporal continuity across frames, provid-
ing a comprehensive spatio-temporal perspective on patient
movements. This level of granularity and precision enables
more refined analysis and evaluation in rehabilitation prac-
tices, supporting the development of treatment modalities
that are more tailored and effective.

The primary challenge of traditional methods lies in
modeling spatio-temporal features, as they often extract
motion patterns from specific skeletal sequences and use
manually designed features for representation [6]. While
effective in certain scenarios, these handcrafted features
struggle to generalize across diverse datasets, limiting
the widespread applicability of behavior recognition al-
gorithms. With the rise of deep learning, methods like
RNNs [5], CNNs [1], and GCNs [27] have been applied
to action recognition using skeletal data. RNN-based meth-
ods can process temporal data effectively. However, these
methods lack effective modeling capabilities for the spa-
tial relationships of skeletal joints. In contrast, CNN-based
methods [5] have the natural ability to learn structural in-
formation from two-dimensional arrays, filling some of the
gaps in RNN methods. To explore spatial information more
clearly, many researchers encode skeletal joints into multi-
ple two-dimensional pseudo-images [7]. In contrast, CNN-
based methods naturally learn structural information from
two-dimensional arrays, complementing RNNs. To en-
hance spatial information further, researchers encode skele-
tal joints into multiple two-dimensional pseudo-images [7].

Skeletal data inherently forms a natural graph topol-
ogy, with joints and bones analogous to graph nodes and
edges, respectively. Recent investigations emphasize the
efficacy of Graph Convolutional Networks (GCNs) [27]
in skeletal data recognition. Yan et al. extended graph
convolution to Spatio-Temporal Graph Convolutional Net-
works (ST-GCN) [29], modeling dynamic skeletons based
on the temporal sequence of human joint positions. How-
ever, conventional GCNs require manual adaptation of ad-
jacency matrices tailored to specific human topologies, hin-
dering model generalization across datasets and necessitat-
ing dataset-specific model training from scratch. UNIK [30]
introduces a pioneering initialization strategy, leveraging
multiple dependency matrices derived from various atten-
tion spectra to facilitate multi-head aggregation. This en-
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ables the model to assimilate spatio-temporal skeletal fea-
tures by exploiting information from diverse representation
subspaces, significantly enhancing cross-dataset generaliza-
tion capabilities.

In this paper, we undertake a comprehensive compari-
son between two distinct skeleton-based action recognition
methods. Through rigorous testing and evaluation, we seek
to provide insights into the efficacy of these methods in
various application scenarios, thereby contributing to the
enhancement of action recognition technology within the
field.

2.2. Action quality assessment

Action quality assessment (AQA) transcends the simple
recognition of physical actions, probing into the subtleties
of movement efficacy and accuracy. This exploration is cru-
cial for providing nuanced feedback and guidance through-
out rehabilitation processes. Initially, AQA in exercise sci-
ence was primarily focused on action recognition, treated
as a classification problem, where spatial and temporal fea-
tures from video data were extracted and classified to eval-
uate action quality using methods such as support vector
machine [24], random forests [4], decision trees and neu-
ral networks [8], to distinguish between “good” and “bad”
execution of actions.

With the advent of deep learning, end-to-end networks
have further refined AQA, enabling more sophisticated as-
sessments including regression predictions of movement
scores [15]. Vakanski et al. [14] proposed three deep learn-
ing models based on CNNs, RNNs, and HNNs for this pur-
pose, normalizing the evaluation scores between 0 and 1 to
assess movement quality accurately. Yet, predicting perfor-
mance directly via regression models faces challenges due
to the complexity of motor skills and the variability in as-
sessment criteria across dynamic movement stages. This
has led to an increased demand for precise and personalized
feedback, pushing AQA towards more detailed parameters
and multidimensional assessment system, including move-
ment duration, rhythm, joint angles, movement distances
and changes in the body’s center of gravity [8, 12, 32].

Multi-task learning frameworks have proven effective
in enhancing the performance of fine-grained assessments.
Xu et al. [28] developed a model combining Self-attentive
LSTM and Multi-scale Convolutional Skip LSTM for com-
prehensive quality assessments of sports movements in long
videos, significantly improving assessment precision by an-
alyzing both local and global video information and seg-
menting scores into overall and component scores.

Establishing a reasonable standard for AQA remains
challenging. Some studies standardized the movements of
healthy individuals or coaches as templates. For exam-
ple, Baptista et al. [31] utilized Dynamic Time Warping
(DTW) to compare participant movements with template

movements for feedback, while You et al. [29] compared
patients’ movements with therapists’ in terms of angle and
trajectory similarity. Jain et al. [10] introduced a novel met-
ric learning-based Siamese neural network for comparing
action videos, combining relevance scores with sub-scores
to create a comprehensive final score.

Different from the above work, our research aims to de-
velop a quantitative and comprehensive performance eval-
uation system that combines traditional and deep learning
methods for fine-grained movement analysis, thereby offer-
ing patients intuitive and specific feedback.

2.3. Rehabilitation exercise dataset

The development and validation of comprehensive datasets
for rehabilitation exercises have been a pivotal area of re-
search, underpinning the advancement of both action recog-
nition and quality assessment technologies. HPTE move-
ment dataset [2] provided video and depth image data from
Kinect for eight exercises performed by five subjects, while
the dataset constructed by Nishiwaki et al. [19] is limited
to EMG recordings of three lower limb exercises. While
these datasets offer valuable insights, their limited move-
ment diversity and data modality range significantly affect
the accuracy of machine learning models in recognizing and
assessing rehabilitation movements.

To surmount the limitations imposed by single-source
data, recent advancements have seen a shift towards multi-
view, multimodal data acquisition approaches [23]. The
PHYtMO [9] dataset, for example, leverages an optical mo-
tion capture system combined with four IMUs on the limbs
to achieve a more accurate and holistic understanding of
movements. Similarly, the UI-PRMD [26] dataset inte-
grates Vicon optical tracking with Kinect cameras, effec-
tively addressing joint occlusion issues and enriching the
dataset for a deeper analysis of rehabilitation exercises.

The challenge of collecting real patient data has led
to a reliance on data from healthy individuals performing
simulated exercises, which introduces a significant imbal-
ance and fails to accurately represent patient behaviors and
movement nuances. Previous efforts to enrich datasets of-
ten involve subjects mimicking erroneous movement pat-
terns or patient-like behaviors, yet these do not fully cap-
ture the authentic conditions of rehabilitation exercises per-
formed by patients [18, 22, 26]. For personalized treatment
and feedback, it is imperative for datasets to include anno-
tations that reflect the quality of movement execution for
effective model training. Many studies resort to binary or
simple multi-level labels such as “incorrect or correct” or
using a scale of 0/1/2 to evaluate movements [9, 18]. How-
ever, such coarse or inadequately detailed annotations fall
short of enabling the development of models that can meet
the precision required for individualized patient care.

This paper proposes a fine-grained and multi-task reha-
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bilitation exercise dataset designed to encompass a broad
spectrum of movement types through multi-modality data
acquisition strategies. Our dataset characterizes by multi-
dimensional and fine-grained expert evaluation labels, of-
fering a robust foundation for to achieve precise assess-
ments and improve algorithms in rehabilitation contexts.
Our work aims to bridge the gap in current datasets, fa-
cilitating advancements in personalized rehabilitation treat-
ments and enhancing clinical outcomes.

3. Methods
We carried out rehabilitation movements recognition and
evaluation based on multimodal data in FineRehab. Fig. 1
illustrates the entire process of data pre-processing and re-
habilitation exercise analysis. Firstly, we gathered data us-
ing IMUs and Kinects, then aligned the timestamps be-
tween the two datasets to obtain synchronized multimodal
data. Secondly, the multimodal data was fed into recog-
nition and evaluation networks for multi-task analysis. Be-
sides, we conducted pose estimation on the images captured
by Kinect.

3.1. Data acquisition

The dataset was collected by two Microsoft Kinect Azure
cameras and 17 inertial measurement units (IMUs System
Perception Neuron Studio from Noitom)[20] to capture the
kinematic data of rehabilitation movements. The Kinect
cameras was configured to a sampling rate of 30 Hz, while
the IMUs were set to 96 Hz. The IMUs were strapped to
the subject’s head, shoulder blades, upper back, lower back,
arms, forearms, hands, thighs, calves, and feet. Videos were
recorded by two Kinect Azure cameras from front and side
view simultaneously. This arrangement was designed to ac-
quire image data from multiple perspectives, addressing the
challenge of occlusion of joint points during movements
and improving the accuracy of evaluator annotation. The
setup of our experiment is detailed in supplement material.

Data collection was undertaken at the China Rehabil-
itation Research Center and Beijing Sport University, fa-
cilitated by a collaborative effort among patients, students,
and physiotherapists. The rehabilitation exercises, were vet-
ted by rehabilitation experts for clinical applicability and
relevance. Fig. 2 shows 16 movements of three positions
(upright, seated, and supine) to meet the needs at differ-
ent stages of recovery. Detailed descriptions of the se-
lected exercises are provided in supplement material, with a
schematic representation of rehabilitation movements.

This study was conducted in strict compliance with eth-
ical standards, adhering to local clinical trial protocols, and
was formally approved by the respective ethics committee.
To ensure consistency in the execution of these exercises,
all subjects received instructions from the same physiother-
apist. Each movement was performed in three repetitions to

Figure 2. Schematic of 16 movements in FineRehab.

increase the diversity of our dataset. In total, we recorded
more than 60 hours of videos over the course of several
days.

3.2. Subjects information

Fifty volunteers (22 females and 28 males) participated in
this study. Among these participants, 30 are musculoskele-
tal disorders patients, exhibiting varying degrees of stroke-
induced motor dysfunctions due to musculoskeletal disor-
ders. The remaining 20 subjects are healthy individuals who
reported no movement disorders or other health problems
that could affect their mobility. Detailed inclusion and ex-
clusion criteria are available in the supplementary materials.
In addition, further details on demographic and anthropo-
metric measurements are provided in FineRehab Dataset.

3.3. Data pre-processing

To get a complete and accurate 3D skeleton pose for rehabil-
itation exercise analysis, we processed the action sequences
mainly through the following steps:

Camera calibration: The calibration for Kinect cam-
eras were performed before yoga pose capturing. 15-
25 checkerboard images were selected in each calibration.
The intrinsic matrices of each camera were obtained from
Kinect azure SDK, while the geometric relationship of two
cameras in front and side views were computed by the tool
of stereo camera calibration with MATLAB. The grids in
the checkerboard were 13×8, and the actual side length of
each grid was 30 cm. The average reprojection error of
stereo camera calibration was 2.55 pixels.

Video cropping: Since subjects may perform actions
other than those required movement during data acquisi-
tion, to avoid the influence of this part on the subsequent ex-
periments, we cropped the long video into short repetition-
united snippets. At the same time, the incomplete and re-
dundant clips of the original videos were removed.
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Time synchronization: Each Azure Kinect sensor de-
vice included 3.5-mm synchronization portals, which were
used for image synchronization among the different de-
vices. Due to the disparity in timestamp recording between
Kinect and IMUs,, we developed a synchronous acquisition
program based on the synchronization trigger provided by
Point Grey industrial camera SDK[21] to ensure the simul-
taneous start-up of both devices.To effectuate temporal syn-
chronization between two devices, the following procedure
was executed for each frame of both devices:

fn = fcur − fint (1)

where n ∈ (0, N) is the length of an action sequence.
The processed timestamp is fn, fcur is the timestamp of
each frame, and fint is the first frame timestamp. Subse-
quently, timestamps were uniformly rounded to three dec-
imal places, and frames sharing identical timestamps were
retained as synchronized frames.

Posture estimation: Due to significant loss of 3D key-
points estimated through tracking technology of Kinect
SDK [25], especially when processed the supine posture
movement, thus, our study employed MediaPipe [16] for
pose estimation on video data recorded by Kinects. The
skeletal data acquired by 17 IMUs and estimated by Medi-
aPipe are shown in Fig. 3. In the Sec. 5, data from these two
skeletons were used for comparative experiment.

Figure 3. The skeleton data from IMUs and MediaPipe.

4. FineRehab dataset
4.1. Data annotation

In order to assess movement quality in this study, we
developed a detailed multi-dimensional evaluation frame-
work for rehabilitation exercises with suggestions from re-
habilitation experts and clinical doctors. This tool evalu-
ates the quality of exercise execution across three dimen-
sions—completeness, correction, and smoothness using a 0
to 4 scale to assess 16 specific rehabilitative actions based
on joint-specific performance. The evaluation framework,
including dimension parameters, evaluation purposes, ob-
jects, criteria, and scores, is summarized in Tab. 1.

All the snippets were independently annotated by
three annotators majored in kinesiology and rehabilitation
medicine through watching the simultaneous videos cap-
tured from multi-view Kinects. In order to ensure the qual-
ity of annotation, all annotators participated in rigorous,
uniform training sessions instructed by two experts in mus-
culoskeletal neurology before annotation. The inter-rater
reliability of annotators resulted in an ICC of 0.784 (95%
CI: 0.878, 0.958) and was considered good[13]. The final
annotation of single snippets was determined by a majority
vote. The statistical results of data annotation are presented
in the supplementary materials. Eventually, our FineRehab
dataset accrued 51,547 annotated labels as the ground truth
for following action quality assessment experiments.

Besides, we further required experts providing the con-
tributory significance of each body parts and evaluation di-
mensions within each movements in FineRehab. Based on
that, the score of overall action quality was accumulated by
each dimension score, and defined by following formula:

Score =

k∑
i=1

Wdi

m∑
j=1

WbjAij (2)

where Wd and Wb is the weight of dimension and body part
of each movement determined by experts, Aij denotes the
final annotation result of the j-th body part within the i-th
evaluation dimension.

4.2. Data organization

The dataset introduced in this study comprised 4,215 move-
ment snippets in total, each corresponding to a single repe-
tition of rehabilitative exercise. The structure of FineRehab
in a hierarchical format is illustrated in Fig. 4. This root
directory included two sub-folders: one dedicated to image
data and the other to skeletal data. Besides, there were two
CSV files containing expert annotations and subject infor-
mation in the root folder.

Skeletal data: The skeletal data was categorized by
Kinects and IMU sensors, and stored as JSON files. Each
file contained time stamps, subject IDs, joints number,
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Table 1. Evaluation Dimensions and criteria of movement quality assessment.

Dimension Evaluation Purpose Evaluation Object Evaluation Criteria Score

Completeness
Joint mobility&
muscle strength

Primary active
joints

The primary active joint has achieved the required
range of motion needed for recovery. 0-4

Correction
Compensation

situation
All involved

joints
Each joint moves according to the correct kinetic chain

without misdirection or compensatory behavior. 0-4

Smoothness
Movement

control
Initiation phase&

Reverse phase
Movements are performed smoothly without lag or

abnormal jitter andobvious acceleration. 0-4

Figure 4. The organization of FineRehab.

3D spatial coordinates and quaternions (IMU only) of
joints. As we distinguish between the left side only,
right side only and two sides together, the SideID was
used to record the main limb part during the movement.
The nomenclature of the files was as follows: Subjec-
tID MovementID SideID RepetitionNo.json. For example,
24 12SL Cut01.json referred to the exercise performed by
the subject with ID 24, on the first repetition of the move-
ment labeled 12, and performed primarily by left body side.

Image data: The image data was systematically
divided further into two sub-folders representing the
perspectives from front and side views. In addition,
calibration information was also provided in Image folder.
Then, the sub-folders of image folder consisted of depth
images and color images. The nomenclature of the
files was similar to the rules above, shown as: Subjec-
tID CameraID ExerciseID SideID RepetitionNo frame.jpg.

5. Rehabilitation exercise analysis
In this section, we made experiments with rehabilitation ex-
ercise analysis methods on FineRehab dataset. All exper-
iments were carried out on a 16GB NVIDIA Tesla P100
GPU.

To better understand the performance of prominent ac-
tion recognition models on this proposed dataset, we bench-

marked two skeleton-based models on FineRehab. The 3D
skeletal data was trained on ST-GCN [29] and UNIK [30],
which offers advanced ways to understand and recognize
human actions from skeletal data. ST-GCN captures spatio-
temporal dynamics by modeling spatial relations and tem-
poral variations, while UNIK automates the learning of spa-
tial dependencies, enhancing generalization and efficiency
in action recognition from skeletal data.

Figure 5. Confusion matrix of 16 movements classification.

5.1. Action recognition

The dataset was divided into a training set and a test set
at a ratio of 3:1 according to the subject partition strategy,
thus, the test set only consisted of samples from unseen sub-
jects not included in the training set. Three augmentation
methods, including rotation, transformation, and Gaussian
noise, were applied to the data. Our benchmark experiment
focused on multi-modality action recognition, cross-subject
datasets comparison. The parameters of all models are pro-
vided in the supplemental material.

Tab. 2 presents the action recognition results across two
models, two groups of subjects and data derived from two
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modality. Experimental results demonstrates that the dense
network structure of UNIK is capable of learning mo-
tion information more effectively, achieving an accuracy
of 92.63% on our dataset. Moreover, it also converges
significantly faster than ST-GCN. The result also indicates
that both modals, when trained with data from healthy sub-
jects, generally outperformed that of the patient and mixed
groups. Overall, the experimental accuracies of the skele-
tal data obtained by pose estimation are lower than that of
the skeletal data collected directly. Fig. 5 displays the con-
fusion matrix for action classification using mixed group’s
skeletal data estimated by MediaPipe. It suggests that the
classification accuracies for supine movement (01-07) are
relatively low, which may associate with the inferior pose
estimation performance for supine posture.

Due to UNIK achieving exceptionally high accuracy
without data augmentation, the comparison of results with
data augmentation was conducted solely on ST-GCN, as
shown in Tab. 3. After data augmentation, the accuracy of
healthy individual group increases almost 6%. Conversely,
data augmentations in the patient group have no effect on
accuracy improvement, or even causes it to decline as com-
pared to the baseline, which may be attributed to the greater
variability in the movements of patients.

5.2. Action quality assessment

The action quality assessment within this study was to com-
prehensively evaluate the rehabilitative movements perfor-
mance. We employed traditional methods for comparative
analyses between healthy individuals and patients, as well
as self-comparisons between a patient’s affected and unaf-
fected sides. Features were manually derived, encompass-
ing metrics such as the maximum, minimum, and average
rotation angles, alongside movement distances of specific
joints. Furthermore, in consideration of the prevalent asym-
metries observed in individuals afflicted with unilateral im-

Figure 6. Difference of kinematic metrics between patients and
healthy subjects.

Table 2. The Top-1 accuracy of action recognition cross-models,
cross-skeletons and cross-subjects.

Models Data Estimated Best Epoch Accuracy

ST-GCN H1 174 84.35%
ST-GCN H1 ✓4 74 77.07%
ST-GCN P2 124 77.61%
ST-GCN P2 ✓4 59 52.32%
ST-GCN H&P3 139 87.94%
ST-GCN H&P3 ✓4 79 80.02%

UNIK H1 35 92.63%
UNIK H1 ✓4 37 84.58%
UNIK P2 63 76.07%
UNIK P2 ✓4 68 59.23%
UNIK H&P3 54 86.49%
UNIK H&P3 ✓4 34 80.33%

1 H represents healthy participants.
2 P represents patients.
3 H&P refers to all participants.
4 “✓” indicates that the skeletal data was estimated using MediaPipe,

while the absence of “✓” indicates that the skeletal data was directly
collected via IMUs.

Table 3. The Top-1 accuracy of action recognition cross-subjects
and data augmentation.

Model Data Aug Best Epoch Accuracy

ST-GCN H1 174 84.35%
ST-GCN H1 ✓4 119 90.34%
ST-GCN P2 124 77.61%
ST-GCN P2 ✓4 94 75.51%
ST-GCN H&P3 139 87.94%
ST-GCN H&P3 ✓4 94 87.44%
1 H represents healthy participants.
2 P represents patients.
3 H&P refers to all participants.
4 “✓” indicates that the skeletal data was augmented.

pairments, the discrepancy between left and right body sides
was computed for both rotation angles and movement dis-
tances. Dynamic Time Warping (DTW)[3] was applied
to align and compare movement sequences of patient and
healthy subject. Fig. 6 shows the ankle moving distances
during movement 11 (Heel Raises) between patient and
“healthy template” which derived from healthy individual
averages. The DTW distances are 13.04 and 13.36 for the
patient’s left and right side, respectively, versus the tem-
plate, with an inter-limb distance of 4.78 for the patient and
2.72 for the template. This underscores significant mobil-
ity range disparities and a lack of functional symmetry in
patients.

Traditional machine learning were applied for binary
classification of exercises as abnormal or normal. The data
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Figure 7. Classification accuracies of assessment results for each
dimension by traditional machine learning.

was split, allocating 70% for training and 30% for test-
ing, enhanced by five-fold cross-validation for performance
evaluation. Techniques tested in our experiments included
Random Forest (RF), Decision Tree (DT), Logistic Regres-
sion (LR), K-Nearest Neighbors (KNN), Bayesian meth-
ods, and Neural Networks (NN). Fig. 7 illustrates the ac-
curacies of the best-performing algorithm across 16 move-
ments. The experiment also compared outcomes from fea-
tures extracted from snippets (cropped data, pink) versus re-
peated movement (uncropped data, blue). The results show
segmented features demonstrated greater efficacy in classi-
fying rehabilitation movements, achieving an average ac-
curacy of 93.84%, which illustrates the importance of the
pre-processing process of action segmentation. Moreover,
instances of classification accuracy falling below the mean
are predominantly from multi-joint movements, as manual
feature extraction may result in crucial information loss.

In this section, we also employed deep learning meth-
ods, such as UNIK and ST-GCN, to classify the movements
quality. The rating of action quality was based on the score
calculated by Eq. (2). The final score for each action was
obtained by aggregating weighted scores across three di-
mensions: completion, accuracy, and smoothness. Each
dimension’s score was determined by the multiplication of
each joint’s assessment labels with its relative weight. Sub-
sequently, the final scores of all movements were used to
establish a distribution, from which five levels were defined
to represent the overall performance of movement execu-
tion: poor, below average, average, above average, and
good. Fig. 8 and Fig. 9 respectively show the performance
from 16 movements. The experiment also incorporated
other two dimensions assessment experiments :complete-
ness and correction, which referred in Tab. 1. The blue
dashed line in Fig. 8 and Fig. 9 presents the accuracy of
level prediction using whole 16 movement data in training
progress, achieving 71.9% with UNIK and 54.1% with ST-
GCN, respectively. When training with data from specific
movements under identical parameters, the accuracy notice-

Figure 8. Classification accuracies of assessment results for each
dimension by ST-GCN.

Figure 9. Classification accuracies of assessment results for each
dimension by UNIK.

ably surpasses that of combined training, indicating signifi-
cant potential for improvement in learning the unified action
evaluation criteria of different rehabilitation movements.

6. Conclusion
In this study, we introduce the FineRehab dataset, a multi-
modality and multi-task resource designed for fine-grained
rehabilitation movement analysis. We have conducted ex-
haustive action recognition and multi-dimensional action
quality assessment on our dataset using both traditional
and deep learning methods, and offer insights into differ-
ences between healthy individuals and patients, validating
our dataset’s utility for personalized rehabilitation. Future
work may include designing a network to efficiently assess
the quality of diverse rehabilitation movements.
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