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Abstract

Ball spin estimation in sports is important for analyzing

the game. Since spin is generally too fast to be captured by a

conventional camera, a high-speed camera is often used to

capture images of the ball and estimate its spin. However,

since a high-speed camera is not robust to changes in the

lighting conditions, it is difficult to estimate spin in some en-

vironments. To solve these problems, this paper proposes a

new method for ball spin estimation using an event camera.

An event camera is a sensor inspired by the visual system of

animals, which outputs the brightness changes in a scene.

Event cameras have advantages such as high temporal reso-

lution and high dynamic range, and can accurately capture

the motion of a fast-spinning ball in various lighting condi-

tions. Experimental results in a synthesized dataset showed

that the proposed method can stably estimate spin up to 500

rps. It is also confirmed that the proposed method can esti-

mate spin in the data obtained from actual sports games.

1. Introduction

The analysis of ball motion in ball games has been one of

the most popular research topics in sports analysis. Esti-

mating the trajectory, velocity, and spin provides valuable

insights for analyzing player performance and game strat-

egy.

In this paper, we focus on spin estimation in ball mo-

tion analysis. Spin plays a crucial role in ball games. In

baseball, for example, spin alters the trajectory of the ball,

making it more challenging for the hitter to make contact.

Similarly, in table tennis, the optimal racket angle for re-

ceiving depends on spin, necessitating players to accurately

estimate spin of the opponent’s shots. Thus, spin makes a

game more strategic.

Figure 1. Spin estimation from events.

Ball spin estimation is essential for analyzing players’

performance. Spinning a ball is a fundamental skill in var-

ious ball games, and quantitatively measuring the spin axis

and angular velocity is crucial for evaluation. For instance,

Trackman is among the instruments used to measure spin in

golf and baseball, widely used among professional players

for performance analysis.

Many methods for estimating spin from video have been

proposed. Spin in sports can exceed 100 rps, making it diffi-

cult to accurately capture with ordinary cameras. Therefore,

in the existing method, the ball is captured with a high-

speed camera, and the position and movement of markers

and logos on the ball are used as cues to estimate its pose

and spin. However, existing methods using high-speed cam-

eras have limitations. The exposure time of a high-speed

camera is shorter than that of an ordinary camera, requir-

ing a sufficiently bright lighting conditions. This presents

a practical issue as inference performance may be signifi-

cantly affected by the lighting conditions.

We propose a new method for ball spin estimation us-

ing an event camera. The event camera is a sensor inspired

by the visual system of animals, which outputs informa-

tion on pixel luminance changes as events. Compared to
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conventional cameras, the event camera offers several ad-

vantages including high temporal resolution, high dynamic

range, high data efficiency, and low power consumption. In

particular, spin of a ball in sports is very fast, making it

highly effective to utilize an event camera with high tempo-

ral resolution. Additionally, the high dynamic range of the

event camera allows for the estimation independent of the

lighting environment.

We estimate spin using Contrast Maximization frame-

work [4], which estimates motion parameters from events.

Since this method does not depend on the type of ball, it

can be applied to basically any sport. In addition, by using

events characterized by high dynamic range and high tem-

poral resolution as input, it is possible to estimate the spin

of a high-speed ball under a variety of lighting conditions.

We conducted experiments to verify the effectiveness of

the proposed method in spin estimation and confirmed that

it outperforms the image-based method quantitatively. Ex-

periments on a synthetic dataset demonstrate that the pro-

posed method can consistently estimate spin up to 500 rev-

olutions per second (rps). Additionally, experiments con-

ducted using data collected in laboratory settings and dur-

ing sports games confirm that the proposed method can ac-

curately estimate spin in real-world scenarios.

The contributions of this paper are as follows:

• We propose a new method for estimating spin using an

event camera. By using an event camera, it is possible

to accurately measure spin of a ball at extremely high

speeds.

• The proposed method is general-purpose because it can

estimate spin of balls used in various sports. Experimen-

tal results show that the proposed method successfully es-

timates spin of volleyballs and soccer balls.

• We conducted experiments on synthetic datasets and

quantitatively confirmed that the proposed method can es-

timate spin more accurately than image-based methods.

The experiments show that the proposed method can sta-

bly estimate spin up to 500 rps.

• We conducted experiments on data captured in the labo-

ratory and in actual volleyball matches, and showed that

the proposed method is applicable to real-world data.

2. Related Work

2.1. Ball Spin Estimation

Spin estimation can be classified into two categories. The

first is the direct approach, which estimates spin by directly

observing the logo or texture on the ball and the trajectory

of the ball. The second is the indirect approach, in which

the player’s pose and the racket movement are used as cues

for estimation.

Direct approach There are two types of the direct ap-

proach: texture-based and trajectory-based.

Texture-based methods estimate the pose and angular ve-

locity of a ball by analyzing the position and movement of

a texture on the ball’s surface. This texture could be a pre-

existing logo or pattern on the ball, or a specially applied

pattern designed for measurement purposes. Zhang et al.

[17] proposed a method to estimate the pose by tracking

the position of a logo mark on a table tennis ball from the

difference images. Tebbe et al. [16] also employ a similar

approach to estimate angular velocity by detecting the posi-

tion of a logo mark. While these methods excel in using the

official ball itself and can thus be utilized in official games,

they encounter challenges in estimating the angular velocity

when the camera loses sight of the logo due to changes in

the ball’s orientation. Furuno et al. [3] introduced a tech-

nique involving colored lines drawn on the ball’s equator

and perpendicular great circle, estimating spin from the in-

tersections of these lines. Similarly, Gossard et al. [6] esti-

mated the ball’s orientation by applying a specific dot pat-

tern to the ball surface, tracking its position using Convolu-

tional Neural Network (CNN), and employing the Kabsch

algorithm. While these methods can estimate the pose of

the ball as long as the markers are visible to the camera,

they cannot be applied directly to the official ball because

of the need to add patterns to the ball, making it impossible

to measure the pose in official games.

The trajectory-based method estimates spin of a ball by

analyzing changes in its trajectory resulting from its spin.

When a spinning ball moves through the air, it experiences

a force determined by the direction and velocity of its spin,

known as the Magnus effect, which alters its trajectory. This

phenomenon is akin to the curve observed in a baseball

pitch. The trajectory-based method tracks the trajectory of

a ball by continuously estimating its position in the image

and then calculates spin based on physical principles. Chen

et al. [2] and Su et al. [14] utilize stereo vision to acquire

the 3D trajectory of the ball, incorporating spin into their

predictions using a physical model based on fluid dynam-

ics.

Balls in ball games often move at high speeds, which

causes motion blur when captured by ordinary cameras.

Therefore, many methods use a high-speed camera to cap-

ture the ball in order to minimize the effect of motion blur.

Generally, a high-speed camera is susceptible to the lighting

environment in that the exposure time is short and sufficient

illumination is required during the shooting. In addition, if

the frame rate of the camera is insufficient, the motion of the

ball between adjacent frames may be too large to estimate

the fast spin.

To address the limitations of the high-speed camera

method, we propose a novel approach for estimating the ro-

tation of a ball utilizing an event camera. Event cameras

offer a high temporal resolution on the order of microsec-

onds and are immune to motion blur. Moreover, their high
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Figure 2. Example of events. The color of the dots corresponds to

the polarity of the event. Events are spatio-temporally sparse point

cloud-like data.

dynamic range enables operation in diverse lighting condi-

tions.

Indirect approach The indirect approach utilizes the

player’s posture and racket movement as cues to estimate

spin. Sato and Aono [12] employed a DNN model to clas-

sify strokes based on estimated joint positions. Blank et

al. [1] classified players’ strokes using data gathered by an

IMU attached to a table tennis racket. While these methods

can roughly classify strokes, accurately estimating details

such as the spin axis and angular velocity of the ball proves

challenging.

2.2. Event­based Motion Estimation

Due to its high temporal resolution, the event camera can

accurately capture high-speed motion that would cause mo-

tion blur in conventional cameras. Unlike images, events

are sparse data and conventional image-based algorithms

cannot be applied directly to them. Several algorithms

[4, 7, 10, 13] have been proposed for estimating information

about motion in a scene (translational velocity, angular ve-

locity, optical flow, etc.) from events. The proposed method

extends the Contrast Maximization framework to spin esti-

mation.

3. Preliminaries

3.1. Event Camera

An event camera is a sensor that outputs luminance changes

as events. Unlike conventional cameras, which syn-

chronously acquire luminance at all pixel positions at fixed

time intervals, event cameras output events asynchronously

at each pixel position only when the luminance changes.

Therefore, the events are spatio-temporally sparse data, as

illustrated in Figure 2. An event e can be expressed as

e = (x, t, p), where x = [u, v] represents the pixel co-

ordinates, t denotes time, and p indicates polarity. p can

be either +1 or -1 depending on whether the luminance is

greater or less.

Figure 3. Events that occur when the ball spins. Events are con-

centrated around the edges on the image.

As events are triggered by luminance changes in the

scene, they predominantly occur along edges, where spatial

luminance changes significantly. Figure 3 illustrates the dis-

tribution of events over a certain period of time, demonstrat-

ing their concentration around moving edges. In essence,

events encode the motion of objects within the scene.

3.2. Contrast Maximization Framework

We utilize Contrast Maximization framework [4] to esti-

mate the spin axis and angular velocity from events. Con-

trast Maximization framework is a method used to estimate

parameters associated with scene motion from events.

The Contrast Maximization framework estimates the

motion parameter θ from Ne events {ek}
Ne

k=1
. Each event

is represented as ek = (xk, tk, pk). Let xk be warped to

the reference time tref by θ. W is the motion model, and

x′

k be the coordinates after warping, expressed as follows:

x′

k = W (xk, tk; θ). (1)

For example, if a constant velocity linear motion is assumed

for W , then

W (xk, tk; θ) = xk + (tref − tk)θ. (2)

In this case, θ denotes the velocity. The motion model W

warps all events and creates an Image of Warped Events

(IWE) by adding the polarity pk to the warped coordinates

x′

k. The value of IWE at pixel position x is calculated as

follows:

H(x; θ) =

Ne
∑

k=1

pkδ(x− x′

k), (3)

where δ is defined as follows:

δ(x) =

{

1 |x| = 0

0 otherwise.
(4)

As mentioned above, since events follow points on the edge,

all events generated from the same point will be warped to

the same position if the events are warped with the correct

motion paramete. In this case, the variance of IWE is maxi-

mized. Assuming that the value of IWE at coordinate (i, j)
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Figure 4. Overview of the proposed method. The proposed method uses the event and ball bounding box as input and normalized spin axis

vector, angular velocity, and translational velocity as output. The proposed method first projects the events into a three-dimensional space

by calculating the depth. Next, the parameters are estimated by iterative optimization using the Contrast Maximization framework.

is hij and the mean value of IWE is µH , the variance V (θ)
is calculated as follows:

V (θ) =
1

Np

∑

i,j

(hij − µH)2, (5)

where Np denotes the total number of pixels in IWE. The

Contrast Maximization framework estimates motion by op-

timizing the parameter θ to maximize V (θ). Therefore, the

Contrast Maximization framework is expressed as follows:

θest = argmax
θ

V (θ). (6)

4. Method

4.1. Problem Definition

Our method takes as input the bounding box of the ball at

time t0 and an event sequence {ek}
Ne

k=1
that have occurred

since t0, and outputs the normalized spin axis vector n =
[nx, ny, nz]

T in the camera coordinate system, the angular

velocity ω, and the translational velocity v = [vx, vy]
T .

Our method assumes that the size of the ball on the im-

age remains constant during the estimation process. Strictly

speaking, the size of the ball changes due to its translational

motion, but this change is considered negligible since the

input event sequence is very short in time.

4.2. 3D Projection

Since the input events include events that occur on back-

grounds other than the ball, we first extract only events that

occur on the surface of the ball. Given the bounding box,

we extract only the events that occur inside the bounding

box.

Although xk represents two-dimensional coordinates,

we initially compute the depth corresponding to each event

to estimate the three-dimensional spin of the ball. The

method for determining depth is based on the approach pro-

posed by Tamaki et al. [15]. The position ct = [ut, vt] of

Figure 5. The process of IWE optimization. As the optimization

progresses, the warp location of the event is concentrated on the

edge of the ball, and the value of variance increases.

the ball center on the image at time t is expressed as follows:

ct = ct0 + v(t− t0). (7)

Assuming that the ball is a perfect sphere of radius r, for a

point (x, y, z) on the ball surface at time t, we have

(x− ut)
2 + (y − vt)

2 + z2 = r2. (8)

Thus, the depth zk corresponding to the event ek is ex-

pressed as follows:

zk = ±
√

r2 − (xk − utk)
2 − (yk − vtk)

2. (9)

If the camera is oriented toward the positive direction of the

z-axis, it observes the z < 0 side of the sphere. Therefore,

we utilize the negative value of Equation 9 as the depth.

4.3. Event Warping

The operation of spinning a point around an arbitrary spin

axis can be concisely expressed using quaternions. Con-

sider an event ek projected in 3-dimensional space around a

normalized spin axis vector n = [nx, ny, nz]
T and warped

to a reference time tref with the angular velocity ω. Let

i, j,k denote the imaginary units in the quaternion. Since

the magnitude of the spin angle corresponding to the event

ek is φ = ω(tref − tk), the quaternion qk corresponding to
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Figure 6. Comparison of events with frames in Synthetic Dataset, Lab Dataset, and Real-world dataset. Events that occurred within a

certain period of time were accumulated and visualized. Green dots correspond to events with p > 0 and red dots to events with p < 0.

spin is expressed as follows:

qk = nx sin
φ

2
i+ ny sin

φ

2
j + nz sin

φ

2
k + cos

φ

2
. (10)

Let pk and p′

k be the quaternions corresponding to the

events before and after the spin, respectively. The relation-

ship between pk and p′

k is expressed as follows:

p′

k = qkpkq̄k, (11)

where q̄k denotes the quaternion conjugate of qk.

4.4. Optimization

As discussed in Section 3.2, the Contrast Maximization

framework optimizes the motion parameters to maximize

the variance of the IWE, defined by Equation 5. To com-

pute the IWE, we require the warp position of an event in

two dimensions on the image plane. To project the 3D warp

positions of the events computed in Sections 4.2 and 4.3

onto the image plane, we simply exclude the event depth.

For a more precise computation of the projection position

on the image plane, it is necessary to utilize the pinhole

camera model, which requires camera calibration. How-

ever, excluding the event depth from the projection compu-

tation does not necessitate knowledge of the camera’s inter-

nal parameters. Therefore, we adopt this simplified method.

Any method (e.g. steepest descent, Adam [8]) can be

used for parameter optimization. Figure 5 illustrates that

as the optimization progresses, the projection position of

events in IWE gradually concentrates around the edges of

the ball, leading to an increase in variance.

Figure 7. Dataset synthesis. The frame rendered in Blender is

input to ESIM to generate events.

5. Experiment

In this paper, we conducted experiments using three

datasets, Synthetic Dataset, Lab Dataset, and Real-world

Dataset, to verify the effectiveness of the proposed method.

5.1. Implementation Details

In our experiments, we utilized Ne = 50000 events for

a single spin estimation, with the Contrast Maximization

framework running for 1500 iterations. For optimization,

we employed Adam.

5.2. Experiment on Synthetic Dataset

Synthetic Dataset. Synthetic Dataset comprises frames

and events synthesized through simulation, facilitating

the quantitative evaluation of method performance as the

ground truth, including spin axis vectors and angular veloc-

ities, is known.

The dataset features a series of balls rotating around spe-

cific axis without translational motion, encompassing two
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Figure 8. Overview of the image-based baseline method. It warps

the pixels on the ball and optimize to minimize the MSE between

the warped pixels and pixels on the adjacent frame.

Figure 9. Angular velocity errors on synthetic volleyball dataset.

Unlike image-based baselines, our method shows little change in

error rate as angular velocity increases.

types: volleyball and soccer ball. The volleyball dataset en-

compasses data for eight angular velocities: 10, 20, 30, 50,

100, 200, 300, and 500 rps, each comprising 500 sequences

with randomly determined spin axis vectors. The soccer

ball dataset comprises 500 sequences with an angular ve-

locity of 100 rps. Both events and images have a resolution

of 640 pixels × 480 pixels.

The dataset synthesis procedure is illustrated in Figure

7, employing Blender and ESIM [11]. Blender is a software

designed for 3D computer graphics, utilized to render the

spinning ball. ESIM, an event camera simulator, was em-

ployed to generate events from the sequence of frames syn-

thesized in Blender. ESIM is adept at synthesizing events

from video sequences. The threshold of event occurrence in

ESIM (contrast threshold pos and contrast threshold neg)

is set to 0.15.

Baselines. In this experiment, we implemented an image-

Figure 10. Axis errors on synthetic volleyball dataset. Our method

can accurately estimate the spin axis independent of angular veloc-

ity.

based baseline method to evaluate the effectiveness of us-

ing an event camera in spin estimation and compared its

performance. Figure 8 provides an overview of the base-

line method, which is based on the approach proposed by

Tamaki et al. [15]. This method takes two adjacent frames,

IN and IN+1, from the video as input and estimates the spin

axis vector n, angular velocity ω, and translational velocity

v. The baseline method warps the ball surface pixels in IN
with the estimated parameters and optimizes these param-

eters to minimize the Mean Squared Loss when compared

with the pixel values in IN+1. The input to the baseline

method comprised images generated at four different shut-

ter speeds: 60, 120, 240, and 480 fps. For optimization, we

utilized Adam with 1500 iterations.

Evaluation metrics. Two evaluation metrics, axis error and

angular velocity error, were utilized. The axis error mea-

sures the error in the orientation of the spin axis vector and

is calculated as the angle between the estimated spin axis

vector and the spin axis vector of the ground truth. The an-

gular velocity error quantifies the error rate of the estimated

angular velocity.

Results. Figures 9 and 10 evaluate the performance of both

the proposed method and the baseline method using vol-

leyball data from Synthetic Dataset. The proposed method

consistently exhibits small errors regardless of the magni-

tude of the angular velocity. Conversely, the error of the

baseline method increases rapidly as the angular velocity

of the input data rises. This is because the motion of the

ball between adjacent frames increases as the angular veloc-

ity increases, making optimization difficult, and the motion

blur in the frames is so severe that the texture on the ball

becomes blurred. Given the event camera’s exceptionally

high temporal resolution, motion blur is effectively elimi-

nated, circumventing this issue.
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Figure 11. Device setup. On the left is the GoPro HERO 10 and

on the right is Prophesee’s Evaluation Kit.

Table 1 shows the results of evaluating the performance

of the proposed method on 500 sequences of two types of

balls (volleyball and soccer ball) spinning at 100 rps. Re-

markably, the proposed method accurately estimates ball

spin even when the ball type changes. Unlike many exist-

ing methods, the proposed approach can estimate spin inde-

pendently of the ball’s texture, making it applicable across

various sports.

Table 1. Quantitative results for different types of balls.

volleyball soccer

axis error [degrees] 2.00 1.47

angular velocity error [%] 3.95 4.12

5.3. Experiment on Lab Dataset

Lab Dataset. Lab Dataset comprises sequences captured

in the laboratory using real event cameras. It was assem-

bled to qualitatively evaluate the proposed method’s perfor-

mance in a relatively noisy environment. Both volleyball

and basketball sequences were recorded as they rotated and

fell using the Prophesee Evaluation Kit 3 and GoPro HERO

10 in a stereo configuration, as illustrated in Figure 11. The

initial position of the ball is provided through annotation.

Results. Figure 12 illustrates the visualization results of the

estimated spins on Lab Dataset. Upon comparing the tex-

tured motion of the ball in the video frames with the esti-

mated spin visualization results for both volleyball and bas-

ketball, the motions closely align, suggesting that the pro-

posed method offers a reasonable estimation. Consequently,

it appears that the proposed method is capable of accurately

estimating the spin of various types of ball sequences cap-

tured by real event cameras.

Figure 12. Qualitative evaluation on Lab Dataset. Estimated Spin

images are rendered based on the estimated spin axis and angular

velocity. The green line represents the spin axis.

5.4. Experiment on Real­world Dataset

Real-world Dataset. Real-world Dataset comprises se-

quences captured during a live volleyball match, serving

to qualitatively verify the effectiveness of the proposed

method in a practical setting. Images were captured from

the spectator’s seats using Prophesee Evaluation Kit 4 and

a GoPro HERO 10 in a stereo configuration, as depicted

in Figure 11. The initial position of the ball is provided

through annotation.

Results. Figure 13 presents the visualization results of input

events and estimated spins in Real-world Dataset. Estimat-

ing spin using image-based methods would be challenging

due to severe motion blur when the ball is spiked, rendering

the ball’s texture indistinguishable. Conversely, the event

camera captures the ball’s texture clearly, without motion

blur. Comparing the motion of the ball’s texture captured

by the event camera with the visualization results of the es-

timated spin, the directions of the spin axis appear to align

closely. This consistency suggests that the proposed method

is qualitatively effective in estimating spin.

6. Limitation and Future work

The proposed method necessitates not only events but also

a bounding box of a ball. While, in our current experiment,

the bounding box was manually provided, automating this

annotation process is desirable due to its cost. Moreover,

if translational motion is estimated simultaneously with ro-
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Figure 13. Qualitative evaluation on Real-world Dataset. Unlike frames with intense motion blur, the event clearly captures the texture of

the ball.

tation, the number of parameters to be estimated increases

and optimization becomes difficult. Hence, separating the

process of ball position estimation from that of spin estima-

tion and automating it would be beneficial. Several event-

based ball position recognition methods [5, 9] have been

proposed. Integrating these methods in future iterations

could lead to the development of a more practical system.

Furthermore, due to the absence of ground truth data in

Lab Dataset and Real-world Dataset experiments, we could

only evaluate the performance of the proposed method qual-

itatively, rather than quantitatively. Moving forward, we

aim to conduct similar experiments using, for instance, a

ball embedded with a sensor. This will enable us to quan-

titatively evaluate the performance of the proposed method

on real-world data while obtaining ground truth data.

7. Conclusion

This paper presents a novel method for ball spin estimation

utilizing an event camera. Leveraging an event camera al-

lows our method to effectively handle various lighting con-

ditions and estimate fast ball spin. Moreover, unlike many

existing methods, the proposed method does not depend on

the type of ball and can be applied to balls used in various

sports. The proposed approach estimates the normalized

spin axis vector and angular velocity using events and the

bounding box of the ball as inputs. Optimization with the

Contrast Maximization framework is employed to estimate

parameters from the events.

We conducted experiments to evaluate the performance

of the proposed method using Synthetic Dataset, Lab

Dataset, and Real-world Dataset. Quantitative experiments

on Synthetic Dataset demonstrate that our method can es-

timate very fast spins more accurately than image-based

methods. Also, experiments on Lab Dataset and Real-world

Dataset qualitatively show that the proposed method is ap-

plicable to data captured by actual event cameras. These

results exemplify the utility of event cameras in sports anal-

ysis.
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