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Abstract

This study investigates the integration of vision language

models (VLM) to enhance the classification of situations

within rugby match broadcasts. The importance of accu-

rately identifying situations in sports videos is emphasized

for understanding game dynamics and facilitating down-

stream tasks like performance evaluation and injury pre-

vention. Utilizing a dataset comprising 18, 000 labeled im-

ages extracted at 0.2-second intervals from 100 minutes

of rugby match broadcasts, scene classification tasks in-

cluding contact plays (scrums, mauls, rucks, tackles, li-

neouts), rucks, tackles, lineouts, and multiclass classifica-

tion were performed. The study aims to validate the util-

ity of VLM outputs in improving classification performance

compared to using solely image data. Experimental results

demonstrate substantial performance improvements across

all tasks with the incorporation of VLM outputs. Our anal-

ysis of prompts suggests that, when provided with appropri-

ate contextual information through natural language, VLMs

can effectively capture the context of a given image. The

findings of our study indicate that leveraging VLMs in the

domain of sports analysis holds promise for developing im-

age processing models capable of incorpolating the tacit

knowledge encoded within language models, as well as in-

formation conveyed through natural language descriptions.

1. Introduction

Identifying situations in sports videos is fundamental for
understanding the dynamics of sports and is intricately
linked to various downstream tasks. Properly capturing
the context within the footage enables not only immediate
evaluations of specific game situations but also facilitates
longer-term assessments, such as performance over a sea-
son. For instance, in football 1, it becomes possible to quan-
titatively assess aspects like passing accuracy or ball pos-
sessions automatically [16, 44]. Furthermore, when con-
sidering injury prevention in sports, classifying situations

1Often reffered to as “soccer” in North America.

prone to injuries (such as contact in rugby [32, 34] or spe-
cific movements in baseball [36]) could be vital. Analyzing
sports footage in this manner contributes to a more objec-
tive understanding of sports, enhancing our ability to eval-
uate performances and potentially mitigate risks associated
with injuries.

Deep Neural Networks (DNNs) have significantly im-
proved performance in areas where manual feature design
is challenging by automatically acquiring the necessary fea-
tures from training data. For instance, tasks such as image
classification [8, 22, 47], object detection [11, 26, 42, 43],
and pose estimation [4, 37, 49, 59] have been successfully
tackled in the field of image processing. Beyond image
processing, applications like natural language processing
[2, 46, 58] and speech recognition [1, 12, 13] have also ben-
efited from DNNs. In sports-related research, studies pre-
dominantly utilize models from image processing, focusing
on tasks such as player localization and tracking [53, 62],
ball localization [50, 51] and pose analysis [17, 31, 34],
showcasing various applications. However, despite these
advances, DNN solely trained with image data faces chal-
lenges such as the difficulty of incorporating prior knowl-
edge into models.

In the field of natural language processing, it has been
demonstrated that using large language models (LLMs)
can achieve high performance on various downstream tasks
with fewer data than training DNNs from scratch [3, 7,
39, 40]. Particularly, autoregressive language models such
as GPT [3, 39, 40] offer versatility and generality, en-
abling a wide range of applications. For example, they
exhibit capabilities such as solving specific tasks follow-
ing pre-specified prompts or generating context-aware re-
sponses through in-context learning [28, 56, 57]. Ow-
ing to these capabilities, and the impressive performance
of LLMs on commonsense reasoning benchmarks, several
works leverage LLMs as a source of commonsense knowl-
edge assuming LLMs embed implicit knowledge of the
world [63]. Furthermore, models integrating language and
vision have shown utility in general-domain image classifi-
cation [27, 41, 65] or object detection [5, 25, 29, 64].

Building upon these achievements, this study aimed to
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validate the effectiveness of VLM (Vision Language Mod-
els) when classifying scenes within sports match broad-
casts. Specifically, we conducted scene classification us-
ing a dataset comprising 18, 000 labeled images extracted
at 0.2-second intervals from a total of 100 minutes of ran-
domly sampled rugby match broadcast footage. The scene
classification tasks included binary classifications of con-
tact plays (scrums, mauls, rucks, tackles, lineouts), rucks,
tackles, lineouts, as well as multiclass classification to pre-
dict one of the assigned labels. Experimental results re-
vealed that incorporating VLM outputs improved classifi-
cation performance across all tasks compared to using only
image data for classification.

This paper is organized as follows. First, Sec. 2 describes
the related studies, and Sec. 3 and Sec. 4 describes details
of data and models used for our system. Then, in Sec. 5, we
explain the experimental setting and in Sec. 6 we explain
the obtained results. Finally, discussion are given in Sec. 7
and conclusions and limitions are given in Sec. 8.

2. Related Works

Large Language Models (LLMs) have become a corner-
stone in natural language processing research, with a grow-
ing trend towards even larger architectures, demonstrat-
ing exceptional performance across a range of downstream
tasks such as sentence classification, question answering,
sentiment analysis and commonsense reasoning [7, 40].
The LLMs have further demonstrated strong performance
in task with few data settings [39], and possess the capa-
bility of in-context learning, allowing tasks to be inputted
with minimal examples and no parameter updates [3, 56].
Furthermore, they exihit that the perfomance can be im-
proved by giving well designed prompts [21, 24, 28, 60].
The observed phenomena indicate that LLMs trained on
vast corpora of data acquire implicit knowledge, which can
be leveraged to generate outputs that integrate this tacit un-
derstanding through natural language prompting.

Based on the advances in natural language domain, some
studies have proposed models to incorpolate LLMs in vision
domain. Several works, such as CLIP [41], ALIGN [19] and
Florence [61] have successfully connected the vision and
natural language modalities. Additionally, studies such as
LLaVa [27] and MiniGPT4 [65], which combine LLM with
vision, enable linguistic interactions with images through
LLM. Moreover, incorplation of LLMs improved the per-
formance of open-world object detections [5, 25, 29, 64]
Such advancements in VLM suggest the potential to extract
information from images based on linguistically described
or LLM embedded knowledge.

On the other hand, in the field of sports data analysis, the
emergence of DNNs has led to significant advancements.
Studies utilizing DNNs for analysis span a wide range of
sports including football [15, 51], rugby [32, 35], basket-

ball [38, 50], ice hockey [52], skiing [9], baseball [36], table
tennis [23, 54], and canoeing [55]. These studies include ef-
forts to acquire positional information such as player or ball
location and tracking [51, 53], evaluations of game content
such as receiver decision-making and pass success/failure
determination [16, 48], as well as analyses of movements
using estimated pose information [17]. Moreover, there
are studies focused on injury prevention and improving the
safety of sports through analysis [34, 36]. These advance-
ments have been facilitated by the elimination of the need
for feature extraction with DNNs and the availability of pre-
trained models in the general image domain.

DNNs require a large amount of labeled data for train-
ing, and the quality of the model obtained is greatly in-
fluenced by the scale and quality of the dataset. In the
domain of football, where extensive manual annotation is
available through initiatives like SoccerNet [6, 10], com-
petitions have led to the development of high-performance
models. However, obtaining such data in the sports domain
is not always straightforward. Therefore, there are stud-
ies focused on constructing and providing sports-specific
datasets [18, 33, 45] and developing methods to efficiently
collect data [30]. While acquiring large-scale datasets rep-
resents a promising approach, the associated costs are of-
ten prohibitive. Thus, in this work, we investigate an al-
ternative direction by examining whether leveraging sports-
related knowledge encoded within LLMs can enhance the
performance of DNN models on rugby analysis tasks.

3. Data

To examine the efficacy of training rugby scene classifier
with VLM, we prepared labeled dataset of rugby image us-
ing rugby match videos of Japanese elite league. A total of
366 videos corresponding to matches from three seasons of
the Top League, an elite rugby league in Japan, from 2016
to 2018 seasons were used to prepare dataset. The original
videos obtained were edited for broadcast on TV, and we
resized all videos to height of 720 pixels and width of 1280
pixels. We randomly selected five matches and further ran-
domly extracted video clips corresponding to ten minutes
length from first and second halves of selected matches re-
spectively.

Subsequently, we manually annotated static images ex-
tracted at 0.2 second intervals from the ten video clips ran-
domly extracted from selected five matches. For all ex-
tracted static image, we gave the scene label corresponding
to the playing situation in the image. The play situations
were categorized into eleven labels: goal kick, normal kick,
restart kick, ruck, lineout, maul, scrum, tackle, general play,
out of play and replay mark for broadcasting 2. Resulting
number of labels from each video clip is shown in Tab. 1 and

2“Normal kick” indicates situations where ball was kicked during the
course of the match. “General play” indicates situations where no kicking
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Table 1. The number of scene labels assigned to manually annotated randomly extracted 10-minute segments from the first and second
halves of five randomly selected matches.

Match
ID Half Normal

kick
Goal
kick

Restart
kick Tackle Ruck Lineout Maul Scrum General

play
Out of
play

Replay
mark

1 First 275 0 146 230 476 203 59 188 607 769 47
Second 131 0 26 141 396 24 0 571 410 1292 9

2 First 168 91 50 171 289 218 0 269 486 1228 30
Second 52 0 17 198 408 18 0 611 589 1077 30

3 First 146 0 71 302 412 118 46 432 608 848 17
Second 71 263 189 239 287 110 0 0 667 1145 29

4 First 139 144 35 307 332 137 0 101 637 1131 37
Second 109 335 27 151 297 78 0 143 344 1497 19

5 First 91 153 95 142 183 60 0 235 391 1640 10
Second 184 0 114 242 298 127 43 125 499 1333 35

example images of contact related labels (tackle, ruck, line-
out, maul and scrum) are shown in Fig. 1. The total number
of labeled images amounted to 3, 000 per video clip, result-
ing in a total of 30, 000 labeled images.

4. Model

To examine whether the performance of scene classifica-
tion could be enhanced by employing a VLM, we utilized
a model shown in Fig. 2. The model comprises three fun-
damental components: the VLM, the Image Encoder, and
the Head module. This model takes both the image and text
prompt as inputs. The VLM processes both the image and
text inputs, while the Image Encoder specifically handles
the image input. The outputs from both the VLM and Im-
age Encoder are fed into the Head module, which in turn
generates predictions for scene labels. In this study, only
the parameters of the Image Encoder and the Head module
were updated. The parameters of VLM were kept fixed, uti-
lizing pretrained weights, and were not updated during the
training process of the scene classification model.

We employed the LLaVa-7B model [27] as the VLM
for our experiments. Regarding the Image Encoder compo-
nent, we conducted preliminary experiments across various
ResNet architectures, namely ResNet 18, 34, 50, 101, and
152 [14], to determine the most suitable structure for each
task. For the Head module, we concatenated the outputs
from the Image Encoder and VLM, followed by a linear
layer3, ReLU activation function, dropout regularization,
and an additional linear layer. This ensured that the final
output dimension corresponded to the number of target la-
bels.

or contact is happening, for example if ball carrier was carrying a ball
without being tackled the image is labeled as “general play”.

3The linear layer takes vector of Die +Dvlm as an input, where Dim

and Dvlm is a dimension of an output vector from the Image Encoder and
VLM.

5. Experiment

To verify the utility of VLM in rugby scene classification,
we conducted five image classification tasks. For each of
the five targeted tasks, we first determined the optimal base-
line conditions without using VLM. Subsequently, we com-
pared and evaluated suitable prompts for each task before
finally conducting a comparison based on the presence or
absence of VLM.

5.1. Data split

The manually labeled dataset comprised of five rugby match
videos was divided into three subsets for training and eval-
uation of the model. To split the dataset, we took follow-
ing two steps. First, one match was randomly selected
from the five matches, and the image-label pairs obtained
from the first and second halves of that match were des-
ignated as the test set. Second, from the remaining four
matches, one match was chosen for the validation set, and
the other three matches were used for the train set. This pro-
cess was repeated four times, ensuring that each of the four
matches served as the validation set once. One of the four
train/validation sets was used for the optimization of base-
line, prompt selection and hyperparameter tuning. Three re-
maining train/validation sets were used to train models for
the final comparison. For the final comparison, the train-
ing of the models was independently conducted three times
using the remaining train/validation sets. Each of the three
resulting models was then applied to a common test set, and
the average performance across these three runs was taken
as the final evaluation metric.

5.2. Classification tasks for the evaluation

Rugby is a contact-intensive sport, and player collisions are
closely associated with the occurrence of injuries. There-
fore, this study set up a scene classification task focusing on
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(a) Tackle

(b) Ruck

(c) Lineout

(d) Maul

(e) Scrum

Figure 1. Examples of image for each contact related class labels.

contact scenes. Specifically, among the five labels related
to contact—tackle, scrum, lineout, maul, and ruck—we for-
mulated a binary classification task where tackles, lineouts,
and rucks observed in all ten videos were considered posi-
tive instances, while other labels were considered negative
instances. Additionally, we conducted a binary classifica-
tion task where any instances labeled with one of the five
contact-related labels were considered positive, and the re-
maining instances were treated as negative (referred to as
“contact”). Furthermore, a multi-class classification target-
ing the ten labels excluding replay marks was carried out
(referred to as “multi-class”). For the evaluation of the
multi-class classification task, we employed the weighted

F1 metric, while the remaining four binary classification
tasks were evaluated using the F1 score of the positive class.
We used softmax function to calculate the loss during the
training.

5.3. Optimization of the baseline

To determine the optimal conditions for the model trained
without the outputs from the VLM, we conducted three
experiments. First, since the similarity between adjacent
frames may have a negative impact on the classification per-
formance, we explored the suitable interval for extracting
data from the training set. Second, to determine the optimal
model size and efficacy of the use of pretrained weights, we
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Figure 2. Rugby scene classification with VLM. Our model have three main component; 1) VLM: This component takes natural language
prompt and image data as an input and outputs vector representations corresponding to a given input. For this component, we use pretrained
model and do not update the parameters during training. 2) Image encoder: This component takes image data as an input and extract image
features. We use standard ResNet model and update parameters during training. 3) Head module: This component takes output vectors of
the VLM and image encoder as an input and outputs vectors corresponding to a number of classes for the task.

compared various ResNet architectures [14] with and with-
out pretrained weights for each task. Third, based on the
determined frame interval and model architecture, we ex-
amined the optimal combination of batch size and learning
rate for each task. For each experiment, we utilized one
set of training and evaluation pairs, and conducted perfor-
mance comparison based on the F1 score computed on the
validation set.

The original labeled data were extracted from videos at
intervals of 0.2 seconds, resulting in high similarity between
adjacent frames, which could potentially have a negative
impact during training. Therefore, for each task, we con-
ducted experiments using frames at intervals of 0.2 sec-
onds, 1 second, 2 seconds, and 3 seconds during training.
In this experiment, we used a ResNet-50 pretrained with
the Imagenet-1K dataset, with a learning rate of 0.001 and
a batch size of 256.

Subsequently, we investigated optimal model architec-
tures and use of pretrained weight for each task, and
then searched for learning rate and batchsize. As for the
model architecture, we considered five types of model struc-
tures: ResNet-18, ResNet-34, ResNet-50, ResNet-101, and
ResNet-152. For each model, we compared two scenar-
ios: one without pretraining and one pre-trained on the
Imagenet-1K dataset, resulting in a total of ten configura-
tions. After examining optimal model architecture and the
use of pretrained weight, we conducted a grid search to find
the optimal combination of batch size and learning rate for
each task respectively. The obtained optimal settings for
each task were used throughout following experiments (fur-
ther details are in Appendix 9.3).

5.4. VLM prompt selection

Since the output of VLM are affected by the given prompts,
we explored suitable prompts for each task. We tested
baseline prompt (#1), which simply asks to explain the
given image, seven prompts (#2 - #8) which asks to explain
the image with focus to rugby with simple instruction,
and four prompts (#9 -#12) with relatively detailed in-
formation of specific situation of rugby, as shown in
Tab. 2. We inserted each prompt into <PROMPT> part of
“<image>\nUSER: <PROMPT>\nASSISTANT:” as
recommended and input it into VLM along with the images.
For the image encoder part, we adopted the conditions
obtained from the exploration of the baseline, and for the
VLM model, we used LLaVa-7B model [27]. Among the
outputs of VLM, the output of the last hidden layer was
passed into the head module along with the output of the
image encoder to obtain predictions. Similar to the baseline
investigation, we conducted training for each prompt using
one set of the four training/evaluation sets and compared
the results based on the F1 score on the validation set.

5.5. Evaluation of VLM efficacy

To evaluate the effectiveness of VLM outputs on rugby
scene classification task, we compared the model with VLM
output to the baseline model without VLM output for each
of the five tasks. In conditions using VLM outputs, we used
the output of the last hidden layer of VLM, as in the prompt
comparison. Additionally, we examined the performance
of the model when using the vectors converted using CLIP
[41] from generated sentence of VLM. Model evaluation
was conducted by training three independent models using
the three sets of training/validation pairs which were not
used for the baseline exploration and prompt comparisons.
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Table 2. List of prompts tested in this work.

Prompt

#1 Explain the image.
#2 Explain if contact happening in the image.
#3 Explain if tackle happening in the image.
#4 Explain if lineout happening in the image.
#5 Explain if ruck happening in the image.
#6 Explain the image briefly as an expert of rugby.
#7 Write a short, caption for this rugby image that captures its essence.
#8 You are looking at an image of rugby. Explain the situation in the image.

#9
You are looking at an image of rugby.
Firstly, focus on the location of rugby ball, and then explain the situation in the image.

#10
You are looking at an image of rugby.
Firstly, focus on the location of players, and then explain if contact is happening in the image.

#11
You are looking at an image of rugby.
Is players coming together, pushing to restart play and contest possession?

#12
Are there any specific cues in this image that point towards a tackle (e.g., open arms, bent legs)
or a scrum (e.g., three rows of players, bound together)?

We then applied each model to a common evaluation set and
calculated the average F1 score based on the results.

Other training conditions were kept consistent across the
baseline investigation, prompt comparison, and evaluation
of VLM effectiveness. Specifically, we set the maximum
number of epochs to 500 and applied early stopping if the
metrics on the evaluation set did not improve for five con-
secutive evaluations. We used the Adam [20] as an opti-
mizer. The data for the validation and test sets consisted
of all labeled data, i.e., data extracted at 0.2-second inter-
vals. To mitigate the class imbalance problem, we applied
the inverse of the ratio of positive to negative samples in the
training set as weights for the positive samples.

6. Result

Table 3. Scene classification with different sampling intervals.
The bold number indicate the best setting for each task.

Interval [seconds] 0.2 1.0 2.0 3.0

Multi-class 0.508 0.539 0.558 0.402
Lineout 0.242 0.468 0.351 0.133
Ruck 0.507 0.068 0.000 0.010
Tackle 0.369 0.468 0.429 0.297
Contact 0.704 0.711 0.637 0.643

First, we conducted experiments to find the optimal base-
line settings for each task. The optimal frame intervals for

training were determined to be every 2 seconds for multi-
class classification, every 1 second for lineout, tackle and
contact classification, and every 0.2 seconds for ruck classi-
fication as shown in Tab. 3. Upon comparing model archi-
tectures, ResNet-18 exhibited the highest performance for
multi-class classification, ResNet-152 for lineout and ruck
classification, and ResNet-101 for tackle and contact scene
classification, with consistently better performance when
pretrained on Imagenet-1k dataset (see Appendix 9.2 for
detailed results). Furthermore, upon examining the learn-
ing rate and batch size of the models, the optimal batch
size was 512 for contact scenes, 128 for multi-class clas-
sification, 64 for lineout and tackle, and 32 for ruck, while
the optimal learning rate was 0.0001 for multi-class classi-
fication, 0.00025 for ruck, tackle, and overall contact, and
0.00005 for lineout (see Appendix 9.3 for detailed results).
Based on these experimental results, we selected the base-
line conditions for following experiments.

Subsequently, to examine the impacts of varying
prompts given to the VLM, we compared 12 prompts and
evaluated the classification performance. The results are
shown in Tab. 4. For multi-class classification and tackle
classification, the prompt “Write a short, caption for this
rugby image that captures its essence.” (#7) showed the best
performance. For lineout classification, the prompt “Are
there any specific cues in this image that point towards a
tackle (e.g., open arms, bent legs) or a scrum (e.g., three
rows of players, bound together)?” (#12) performed best.
The best prompt for ruck classification was “You are look-
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Table 4. Results of prompt comparison for each task, showing F1 scores on the validation set. Bold indicates the best setting.

Prompt #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12

Multi-class 0.592 0.631 0.622 0.590 0.604 0.622 0.631 0.620 0.569 0.570 0.627 0.578
Lineout 0.393 0.643 0.571 0.429 0.618 0.377 0.438 0.437 0.548 0.668 0.365 0.692
Ruck 0.464 0.599 0.575 0.493 0.606 0.632 0.536 0.582 0.504 0.687 0.527 0.418
Tackle 0.375 0.449 0.449 0.484 0.499 0.424 0.531 0.470 0.409 0.465 0.471 0.463
Contact 0.665 0.657 0.728 0.652 0.761 0.705 0.763 0.682 0.686 0.646 0.768 0.716

ing at an image of rugby. Firstly, focus on the location of
rugby ball, and then explain if contact is happening in the
image.” (#10) and for contact “You are looking at an im-
age of rugby. Is players coming together, pushing to restart
play and contest possession?” (#11). In terms of the aver-
age ranking prompt #7 showed the best performance. For
each task, the prompt with the best results was used in a
comparison experiment with the baseline.

After selecting the prompt for each task, we compared
the classfication performance with and without VLM. The
results are shown in Tab. 5. For all five tasks, the classifica-
tion performance was improved when output from the last
hidden layer was used compared to the baseline, with line-
out classification showing largest gain of 95.1% and median
improvement of 3.8%. When the model was trained with
vectors converted from VLM generated text, the classifica-
tion performance improved with four tasks. Comparing the
results of the model using output of the last hidden layer of
VLM and the model using VLM generated text, the former
showed better performance on multi-class classification, li-
neout and ruck classification, while the latter was better on
tackle and contact classification.

7. Discussion

The evaluation of frame intervals during training suggested
that increasing the interval yielded improved performance,
with the exception of ruck classification. Owing to the in-
herent nature of rugby gameplay, events such as the mo-
ments preceding lineouts or scrums involve minimal player
movement as the game momentarily pauses, resulting in
smaller interframe differences. Therefore, maintaining a
small frame interval during training could negatively impact
performance due to data similarity resulting from minimal
interframe differences.

Subsequently, we examined optimal settings for the
model size, learning rate, and batch size of the baseline.
The result of architecture comparison exhibited a propen-
sity to select larger models such as ResNet-101 and ResNet-
152 for all tasks, except for multi-class classification where
smaller models were preferred. Notably, the best perfor-
mance was consistently achieved using models pre-trained
on ImageNet-1k, regardless of the task. This finding sug-

gests that the parameters acquired through pre-training on
the ImageNet-1k dataset are beneficial even when dealing
exclusively with domain-specific rugby images.

After exploring the baseline settings, we compared
prompts given to the VLM. Comparing the simplest prompt
(#1) with prompts containing the word “rugby” or rugby
related terms (#2-8), performance improved in many cases
when using prompts #2-8, suggesting that explicitly stat-
ing the image’s subject matter as rugby may yield higher-
quality results. However, when comparing prompts #2-5,
the best-performing prompt for each task did not always
match the rugby-specific terminology mentioned, indicating
that the VLM or underlying LLM may not consistently pro-
cess the nuances of rugby gameplay accurately. For the five
tasks tested in this study, prompt #7 exhibited the highest
average performance. It is worth noting that providing con-
textual information in the prompt regarding the image’s re-
lation to rugby, without explicitly specifying the play type,
may have been advantageous.

The experimental result of comparing the classification
performance with and without VLM output exhibited pos-
itive impact of using VLM output for all five tasks exam-
ined. In all cases, performance was enhanced when uti-
lizing the VLM output, with the improvement being par-
ticularly pronounced for the lineout classification. A line-
out is a distinctive situation in rugby where players from
both teams form a perpendicular line along the touchline
and contest for possession. While the characteristics of a li-
neout can be relatively easily described linguistically, learn-
ing solely from visual data requires capturing the spatial re-
lationship with the touchline and player positioning. Con-
sequently, the baseline lineout classification model, trained
exclusively on images, exhibited poor performance, which
was significantly improved by leveraging the VLM output.
Conversely, rucks and tackles are situations where players
are in physical contact, irrespective of location, suggesting
that classification performance for this event is compara-
tively robust even when trained solely from image data.

Finally, we evaluated the sentence outputs when provid-
ing the simplest prompt (#1) and the prompt with the high-
est average performance (#7), along with the image. A rep-
resentative example is shown in Fig. 3. The lack of contex-
tual information in Prompt #1 regarding the given image be-
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Table 5. The mean and standard deviation of F1 scores on the test set. “VLM-hidden”: the model trained with output of last hidden layer.
“VLM-text”: the model trained with vectors obtained by converting output of generated text from VLM using CLIP.

VLM-hidden X
VLM-text X
Multi-class 0.615± 0.019 0.631± 0.022 (2.60%) 0.622± 0.049 (1.14%)
Lineout 0.263± 0.067 0.513± 0.150 (95.06%) 0.369± 0.291 (40.30%)
Ruck 0.526± 0.055 0.542± 0.010 (3.04%) 0.469± 0.050 (�10.84%)
Tackle 0.409± 0.062 0.428± 0.047 (4.65%) 0.441± 0.048 (7.82%)
Contact 0.602± 0.084 0.625± 0.118 (3.82%) 0.679± 0.026 (12.79%)

(a) Tackle (b) Lineout

(c) Ruck (d) Scrum

Figure 3. Examples of VLM outputs. We show the results of the simplest prompt (#1) and the best performing prompt (#7). While Prompt
#1 frequently misidentified the sport depicted in the image as American or European football, Prompt #7 correctly recognized it as an
image of rugby.

ing about rugby often results in the image being incorrectly
explained as depicting American or European football. In
contrast, prompt #7, which explicitly mentions rugby, accu-
rately recognizes the sport, highlighting the beneficial effect
of contextual information regarding the subject matter dur-
ing the prompting process.

8. Conclusion and limitation

In this study, we evaluated the efficacy of utilizing the vector
representations generated as output from the VLM for the
task of rugby scene classification. A comparison of prompts
showed that the optimal prompt for each task differed; how-
ever, when the prompt included the word “rugby” or related
terminology, it outperformed prompts that did not contain
such rugby specific words. Comparing the results with and
without the VLM output revealed improved classification
performance across all five tasks tested in this study when
the VLM output was utilized. Additionally, the sentences
generated from the VLM were coherent, suggesting that
providing contextual information about the image depict-
ing a rugby game may enable a correct understanding of the

context. Overall, the results obtained in this study indicate
that the performance of DNNs on the task of rugby scene
classification can be enhanced by leveraging the knowledge
encoded within LLMs, a component of LVMs, through the
use of carefully designed prompts.

One notable limitation of this study is that the explo-
ration of prompts tailored for classifying each distinct play
type was not comprehensive. Moreover, the primary focus
of verification in this study was the utility of the knowledge
encoded within the LLMs, while the verification of whether
linguistically representing insights through prompts can ef-
fectively facilitate task completion remained inadequately
explored. For instance, although the significance of proper
head positioning in mitigating the concussion risk from
dangerous tackles is well-established, the potential bene-
fits of incorporating such domain-specific knowledge into
prompts have not been sufficiently investigated. These lim-
itations underscore potential avenues for future research en-
deavors aimed at deepening our comprehension of the prac-
tical utility of leveraging VLMs in the domain of sports data
analysis.
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