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Abstract

Action quality assessment (AQA) applies computer vi-
sion to quantitatively assess the performance or execution
of a human action. Current AQA approaches are end-to-
end neural models, which lack transparency and tend to be
biased because they are trained on subjective human judge-
ments as ground-truth. To address these issues, we intro-
duce a neuro-symbolic paradigm for AQA, which uses neu-
ral networks to abstract interpretable symbols from video
data and makes quality assessments by applying rules to
those symbols. We take diving as the case study. We found
that domain experts prefer our system and find it more in-
formative than purely neural approaches to AQA in diving.
Our system also achieves state-of-the-art action recognition
and temporal segmentation, and automatically generates a
detailed report that breaks the dive down into its elements
and provides objective scoring with visual evidence. As
verified by a group of domain experts, this report may be
used to assist judges in scoring, help train judges, and pro-
vide feedback to divers. Annotated training data and code:
https://github.com/laurenok24/NSAQA.

1. Introduction

Analyzing people’s movement and actions and providing
feedback has applications ranging from physical rehabilita-
tion [1, 19, 22] to sports coaching and scoring athletic per-
formance [11, 15, 28] to surgery skills assessment [5, 6, 14].
With the 2024 Paris Olympics just around the corner, there
is heightened interest in action quality assessment (AQA)
in the domain of sports such as diving, gymnastics, and fig-
ure skating. These automated systems are generally deep
learning-based systems. Such neural approaches analyze
videos of sports performance and output a score quantify-
ing how well the athlete performed. These neural models
are trained using scores given out by human judges during
past competitions.

The issue is that human judging itself is subjective and
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Figure 1. Neuro-Symbolic Action Quality Assessment (NS-
AQA) vs Neural AQA. Our NS-AQA approach (Left) employs
neural networks to extract crucial symbolic information, such as
platform location, framewise pose estimation, & splash detection.
These symbols furnish objective data utilized for rules-based fine-
grained action recognition, temporal segmentation, & detailed er-
ror analysis. The outcome is an objective score & a comprehen-
sive visio-linguistic report, complete with supporting visual evi-
dence, generated programmatically. This is much more valuable
than existing AQA approaches (Right) that can only predict a sin-
gle score (potentially biased) without any accompanying explana-
tion. Please zoom in; full-size version in supplementary.

prone to bias. The bias may take two forms: bias for/against
individual athletes; and bias in how different elements of a
performative action are weighted in the overall score. An
example of the latter in diving is bias towards the last phase
of a dive—entry into the water and the amount of splash
created. Because of this, the scores given out by the judges
may not take into account all the factors/elements of the
athletes’ performance. This problem is further aggravated
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by the fact that performance scores from human judges are
never supported by an actual breakdown of the score or
an analysis of what athletes did well or not. This ‘black
box’ kind of scoring cannot guarantee that: 1) all the fac-
tors/elements/efforts from athletes’ performance are taken
into account when scoring; & 2) the performance has been
objectively scored. This leads to a lack of trust, fairness, and
explainability in the scoring. These issues are compounded
when current AQA approaches, which are fully neural mod-
els [2, 4,9, 10, 12, 17, 22, 28, 32], are trained using scores
given by human judges.

To mitigate this set of problems, we propose a novel
neuro-symbolic approach to fine-grained analysis of hu-
man movements & actions. We consider the popular and
challenging sport of diving as the case study. Our neuro-
symbolic approach combines the strengths of deep neu-
ral models and rules-based Al. Our hierarchical neuro-
symbolic approach (see Figure 1) for fine-grained action
analysis first deconstructs the whole performance and its
surrounding environment/scene into interpretable “sym-
bols” such as the platform, athletes’ body poses, water
splash, etc. using neural models. Then, using a rules-
based approach constructs a hierarchy of representations—
starting from identifying dive type/class and temporal seg-
ments of the dive phases to finally, fine-grained and de-
tailed action quality assessment representation and score.
Our system programmatically generates detailed perfor-
mance analysis reports that not only check for all the per-
formance errors, but also precisely compute their magni-
tudes/severities, which is hard to do even for highly-trained
eyes, especially, when the actions/movements are high-
speed as in case of diving. What is more, our system can
sift through the entire performance and collect all the visual
evidence to support the error detection. With our transpar-
ent and objective approach, performers can see that all their
efforts have been rewarded, and bias in judging can be mini-
mized. This is in stark contrast to current AQA approaches,
or even human judges, which just give out a single score
without any explanation of its breakdown.

The contributions of our work can be summarized as fol-
lows:

* We propose a Neuro-Symbolic paradigm for AQA that
brings remarkable accountability, transparency, and trust-
worthiness to AQA and Sports Performance Judging. We
validated our approach on competitive platform diving.

¢ Our system achieves state-of-the-art (SOTA) performance
on fine-grained action recognition and temporal segmen-
tation of dives.

¢ Qur system programmatically generates a highly detailed
report of the performance, including angular measure-
ments as precise as 1 degree, & retrieving relevant images
& video clips for the supporting visual evidence. This re-
port may be used for various purposes: (a) as a potential

aid to judges as they score the dive; (b) as a tool to teach
judges how to score; (c) to settle disagreements between
judges; (d) to encourage safety by penalizing dangerous
actions (such as getting too close to hitting the platform);
& (e) as a tool with an intuitive Ul for coaches & divers
to detect, quantify, & visualize performance errors.

* Our system generates statistically-grounded scores that
compare a diver’s performance relative to that of their
peers. Generated scores are equally useful to all levels
of diving competitions (from recreational to Olympics).

* We precisely annotate a large number of frames with
splash, platform/springboard, and diver segmentation
masks to be used for object detection training. We will
opensource all the training data and models to help re-
searchers.

Our neuro-symbolic approach to AQA can be extended
to not only other sports, such as figure skating and gym-
nastics, but also to other precise complex actions, such as
surgery. In each case, domain expertise is necessary to de-
termine what symbols need to be abstracted and to create
suitable rules for analysing and assessing of the action based
on those symbols. We hope that further applications of our
NS-AQA system can help reduce bias and objectively grade
all sorts of skilled human actions.

2. Related Work

Existing approaches treat AQA as a regression problem.
Thus far, efforts have focused on predicting action qual-
ity scores as closely as possible to those given by human
judges. This is achieved through the use of better fea-
tures [20], multitask learning [21], score distribution learn-
ing [25], more data [ 18], or improved regression techniques
[7, 31]. However, the scores given by human judges, which
serve as the ‘gold standard,” are inherently biased. For in-
stance, in diving, the last stage of the dive or the splash
appears to have the most impact on judges, potentially ne-
glecting other crucial factors of the athlete’s performance.
Therefore, at best, these neural approaches may assess in a
biased manner.

Moreover, existing approaches being purely neural are
"black box’ in nature—how they arrive at decisions & which
factors of the performance are considered, as well as how
each factor is scored, remain unknown. This lack of trans-
parency results in a dearth of explainability, fairness, &
trustworthiness, making it uncertain whether all the ef-
forts from performers are genuinely rewarded. Ideally, ath-
letes who have sacrificed a significant part of their lives
should receive recognition for all their efforts. In contrast,
we propose a new paradigm to AQA—a Neuro-Symbolic
approach. Our approach leverages modern deep neural
networks to extract useful information from performance
videos into symbols. It then applies logic to these symbols
to make decisions and evaluate performance without relying
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Platform. The location of the platform, especially the posi-
tion of its edge facing the pool, is crucial to determine when
the diver leaves the platform, thus starting their dive. The
platform location is also important to assess how close the
diver comes to its edge, which is relevant to scoring.

Splash at entry into the pool is a conspicuous visual feature
of a dive. The size of the splash is an important element in
traditional scoring of dives. A large splash mars the end of
a dive and also likely indicates a flaw in form at water entry.

Pose of the diver in video frames is crucial for dive assess-
ment. We gather 2D pose data, detailing body part locations
like the head, thorax, pelvis, etc. Analyzing this data frame
by frame allows identification of sub-actions (e.g., somer-
saults, twists) and quality assessment. Detailed pose data
enables objective metrics like water entry angle.

Table 1. Symbols, their descriptions and visualizations.

on biased ground-truths, but rather utilizes domain knowl-
edge for objective scoring. Our system conducts a much
more comprehensive and in-depth evaluation, programmat-
ically generating an extremely detailed performance evalu-
ation report. This makes the evaluation process transparent,
fair, explainable, and trustworthy.

Neurosymbolic Al which combines the power of neural
models and symbolic systems has been gaining increasing
interest [3, 13, 23, 30], but has not been explored in AQA
setting. In this work, we develop a hierarchical neurosym-
bolic approach to AQA.

3. Hierarchical Neuro-Symbolic Approach

Our neuro-symbolic action analyzer consists of two parts:
1) Neural Action-Context Parser; 2) Rules-based Action
Analyzer. The Neural Action-Context Parser deconstructs
or decomposes the action or the performance video, extract-
ing meaningful information such as the pose of the diver in
terms of position of joints, diving platform segmentation,
and the splash created when the diver enters the water. This
extracted information forms our symbols, which are then
passed to the Rules-based Action Analyzer. The Rules-
based Action Analyzer scrutinizes actions through struc-
tured and interpretable symbolic reasoning. Note that, our
contribution does not lie in proposing merely a two-stage
approach, but in integrating neural models, which excel at
feature extraction; and symbolic systems, which provide
transparent and objective analytics. We will now explain
each of these parts in detail.

3.1. Neural Action-Context Parser g:»

We implement the Neural Action-Context Parser as a col-
lection of a dedicated: 1) splash detector; 2) platform de-
tector, and 3) human pose estimator. These object detectors
[27] and pose estimators [24] first extract relevant informa-
tion from each frame individually. For instance, we run a

splash detector on all frames; whenever a splash is detected,
it is segmented out. Object segmentation provides access
to its properties, such as 1) size, 2) shape, and 3) position
within the scene. In cases where no splash is detected, all
properties are filled with null values. Similarly, pose esti-
mators record 2D positions of all major joints of the diver.
Direct information from these detectors forms the primary
set of symbols. We further derive relations between the pri-
mary symbols, such as: 1) the angles made by the bones at
joints, and 2) the distance between the diver and the plat-
form. These form a secondary set of symbols. Additional
information is provided in Table 1.

3.2. Rules-based Action Analyzer g

This module takes in the symbols from the Neural Action-
Context Parser and analytically processes them using the
rules formed by a domain expert'. The rules are in ac-
cord with what is taught in the official USA Diving Judge’s
Course [8], and were further verified by 7 other domain ex-
perts. In practice, these rules are implemented in Python
language [26] and termed as ‘microprograms.’ Further-
more, action analysis is done in a hierarchical manner.
Specifically, the action analyzer: 1) first detects various
class details of a dive; 2) using these details, it then fempo-
rally segments the dive into its phases; and 3) lastly, using
the dive and its phase details, the quality of the dive is an-
alyzed at a much finer granularity. We discuss each level
of this hierarchy and how they aid in the processing of the
subsequent level in detail in the following.

3.2.1 Detailed Dive Recognition

Preliminary. In competitive diving, dives are identified
on the basis of their: 1) dive group (forward, backward,
reverse, inward, twisting, armstand); 2) number of somer-
saults (number of somersaults are chosen in half-rotation
increments); 3) number of twists (chosen in half-rotation
increments); 4) body position (straight, pike, tuck, free).

Rules-based dive recognizer. Dive recognition with our
neuro-symbolic approach’ is accomplished analytically
from framewise pose data. Based on the abstracted sym-
bols, the dive group is identified from: 1) the direction
the diver is facing and 2) the body movement (clockwise or
counterclockwise rotation) at the start of the dive. The body
position (straight, tuck, pike, or free) is detected by the de-
gree of hip and knee bends. Somersault counts are deter-
mined by tracking the rotation of the vector that points from
the diver’s pelvis to thorax. Twists are counted by tracking

'In our case, one of the authors is a diving expert with more than 10
years of experience.

2In contrast, recognizing a specific dive using a purely neural approach
involves labeling a large number of dives to train a deep learning model.
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Figure 2. Somersault and Twist Counters Visualized. A) :
Visualization of We count twists by
counting the “petals” formed by this vector. B): Visualiza-
tion of pelvis-to-thorax vector. We count somersaults by count-
ing the rotations of this vector over the course of the dive.
Graphical Solutions (C&D) : We then show how the somersault
and twist counters are applied to two different dives in C&D. The
blue trace represents the vector we track, and the black circles
in the twist plots represent the boundaries of when “petals” are
counted. The petal must surpass the inner black circle while stay-
ing inside the outer black circle to count as a petal. Each petal is
0.5 twists. C) : A forward dive with 2.5 somersaults (2.5 revo-
lutions from the initial vector vertically up (1) to final vector ver-
tically down ({) in the somersault plot) and 3 twists (6 “petals”
in the twist plot). D) : A forward dive with 3.5 somersaults (3.5
revolutions from initial vector vertically up () to final vector ver-
tically down ({) in the somersault plot) in pike position and no
twists (zero “petals” in the twist plot).

the magnitude and direction of the vector that points from
the diver’s right to left hip joint. For more details on how
these rules are derived, see twisting and somersault vec-
tor plots of example dives in Figure 2. In there, we have
shown how we first obtain graphical solutions to, for exam-
ple, somersault and twist counting. These graphical solu-
tions are then implemented in Python language. The pseu-
docode for the somersault counting microprogram is pro-
vided in Algorithm 1 for reference. Further details on the
microprograms that execute dive recognition and additional
implementation details are provided in the supplementary
material.

3.2.2 Temporal Segmentation

In this stage, the primary symbolic information, along with
dive class details from the action recognition stage, is lever-
aged to perform the temporal segmentation of the dive.
Each dive may be segmented into start/takeoff, twist, som-
ersault, and entry phases (refer to Figure 3). Similar to
detailed dive recognition, temporal segmentation is also ac-
complished analytically using microprograms that oper-
ate on symbols and dive class details—without the need to
train a deep learning model with labeled video data for
this purpose. For example, to detect if a diver is in the

Algorithm 1 Somersault Counter Microprogram

hal f _som_count < 0
armstand < is_armstand(dive_frames)
curr_pose <— None
vertical _up_vector < [0, 1]
vertical _down_vector + [0, —1]
for each frame in dive_frames do
curr_pose < get_pose(frame)
if curr_pose is not None and frame not in takeoff phase
then
thorax < curr_pose[thorax)
pelvis < curr_pose[pelvis]
vectorl < thorax — pelvis
if (armstand and half_som_count is odd) or (not
armstand and hal f _som_count is even) then
vector?2 < vertical_down_vector
angle < get_angle_degrees(vectorl, vector2)
else
vector2 < vertical _up_vector
angle < get_angle_degrees(vectorl, vector2)
end if
if angle < 75 then
hal f _som_count < hal f _som_count + 1
end if
end if
end for
return hal f_som_count

[start/takeoff T

Figure 3. Temporal Segmentation Visualization. A dive is seg-
mented into 4 phases: start/takeoff, twist, somersault, and entry.

start/takeoff phase, we track the diver in relation to the
end of the platform. If the diver is beyond a threshold dis-
tance away from the platform, this signifies the end of the
start/takeoff phase in that the diver has jumped and started
their dive. The other phases are detected using similar
logic-based algorithms. Refer to the supplementary materi-
als for specific implementation details.

3.2.3 Fine-grained Dive (Action) Quality Assessment

Now, we utilize the primary symbols and output from the
dive recognition and segmentation to analyze them in ex-
treme detail, as if “under a microscope.” Similar to previous
stages, action quality assessment is done analytically using
our AQA-micro-programs. Output from previous stages
enables our AQA-meta-program to select the correct mi-
croprogram to execute to assess the quality of an element.
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Distance-from-platform of a diver is crucial for safety and
aesthetic reasons. Divers risk injury or even death by hit-
ting the concrete platform by being too close to it, leading
to penalties. Conversely, being too far from the platform re-
sults in an unaesthetic trajectory and is also penalized.

Feet-apart. A streamlined and graceful form throughout
a dive is considered ideal. Taking a cue from gymnastics,
one aspect of an ideal diving form is maintaining one’s feet
together. A diver is penalized for having their feet apart.

Somersault tightness. During a somersault, it is desirable
for a diver to have as tight a tuck or pike position as possible.
A very tight somersault position allows a diver to spin faster
and is considered ideal.

Over/under-rotation. Each particular dive has a specified
number of rotations of somersaults to be performed. The
number of rotations is in half-rotation increments. A diver
preferably performs the exact number of rotations (to the
degree) that are specified for the dive—no more and no less.
Over rotation and under rotation are penalized.

Splash size. Ideally, a diver has little or no splash upon
entry into the water. Little or no splash after a dive from 10
meters high is difficult to achieve and is indicative of very
good form upon entry.

Table 2. Examples of elements of dive quality, their descrip-
tions and visualizations. Image annotations shown in Red. See
all of the element descriptions/visualizations in supplementary.

For example, if the diver is detected to be in twisting phase,
then feet apart AQA microprogram is executed to assess the
performance w.r.t. feet apart aspect. As another example,
meta-program will not execute Knee Straightness micropro-
gram if the diver is performing fuck dive, because tuck po-
sition does not have Knee Straightness criteria—an exam-
ple is illustrated in last row of Table 9. We have discussed
various elements of action/dive quality in Table 2. Further
implementation details are provided in supplementary.

Quantification of quality of each element. We then
quantify each of nine aspects of a dive as percentage scores,
where 100% is best (no error), and 0% is worst (largest er-
ror). In other words, each error is given a score equal to
its percentile ranking relative to all platform dives in the
dataset. For example, for feet apart, if the average angle
is smaller than 80% of the dives, then the feet apart er-
ror would be scored 80%. Advantageously, the percentile
rankings inform the diver of their performance relative to
their peers which is the most relevant statistical informa-
tion to have for a competitor trying to improve their re-
sults. Furthermore, the scoring automatically adjusts to dif-
ferent levels of competition. For example, scoring for high
school divers would give percentiles relative to a dataset of
high school divers. Note that, instead of percentiles, scores
could be given on an absolute basis. For example, a fixed
scale could convert the angle of feet apart to a score based

on thresholds or a formula. Advantageously, such a fixed
scale would allow direct comparison across different lev-
els of competition. However, such a fixed scale would be
somewhat arbitrary and likely require value judgements to
be made which are beyond the scope of this paper. Hence,
an absolute scoring system is not presented here.

Opverall Score. An overall score is obtained by aggregat-
ing the percentiles of all the various aspects of the dive. We
use uniform weighted averaging as the aggregation func-
tion®. Other suitable functions may be used. By using per-
centiles, we see how good the dive was compared to the
level of dives in the semifinals and finals of Olympic and
World Championship competitions. Using our system, it is
also possible to use a weighted average instead of a uni-
formed average to emphasize certain aspects over others.
While each phase is supposed to be weighted equally, er-
rors that can occur within each phase have differing levels
of importance depending on the personal preferences of the
judges themselves. For example, some judges will weigh
splash size more than verticalness, and some will do the ex-
act opposite. Our system potentially allows for the person-
alization of weights for each error of the dive, giving each
judge more flexibility in their scoring. Unlike conventional
human judging, this personalization would be transparently
presented, rather than hidden within a single overall score.

Visio-Linguistic Report generation. Our NS-AQA
system programmatically generates detailed performance
reports in natural language, based on the outputs discussed
above. To do so, we take a simple approach without
needing any large language models or deep learning
models for language generation. We create a small library
of template-sentences with blanks to be filled in. Again,
using a Rules-based approach, a microprogram fetches
an appropriate template-sentence from the library. For
example, for feet apart error, it would select to use the
following template-sentence:  We found that your
leg separation angle was on average <insert
average feet apart angle> degrees for your

dive. The <insert average feet apart angle>is
replaced with the average feet separation determined from
the process discussed above. This process is repeated for
all the errors. These errors and description sentences are
compiled in the form of HTML page as shown in Table 6.
Furthermore, our NS-AQA system also maintains a lookup-
table of error types with corresponding frame numbers
and values of error severities. Using this lookup-table, it

3 According to the USA Diving Judge’s Course [8], each phase of the
dive is supposed to be weighted equally. In particular, a judge can deduct
up to 2 out of 10 points for each phase of the dive. Thus, we choose to
average each aspect uniformly in order to give fairly equal importance to
all of the aspects and phases of a dive.
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Action Nibali MSCADC C3D-MTL Ours
Element etal.[10] [21] [21] NS-AQA
Armstand 98.30 97.45 99.72 99.79
Rotation Type 78.75 84.70 97.45 99.37
Position 74.79 78.47 96.32 97.28
No. of SS 77.34 76.20 96.88 97.31
No. of TW 79.89 82.72 93.20 93.27

Table 3. Performance evaluation on the task of fine-grained ac-
tion recognition. Accuracy (%) is used as the performance metric.
Higher is better. SS: Somersaults; TW: Twists.

Model AloU@0.5 AloU@0.75
TSA [29] 82.51 34.31
Ours NS-AQA 93.92 7717

Table 4. Performance evaluation on the task of temporal seg-
mentation. Average Intersection over Union (AloU) is used as the
performance metric. Higher is better.

can retrieve the frames contributing to a particular type of
error and include them in the report as supporting visual
feedback. This detailed report is helpful for a number of
reasons including as a support to human judges and as an
educational tool to teach coaches, athletes, and judges how
to score. More specific implementation details are provided
in the supplementary.

4. Results

We evaluate our system’s performance on dive action recog-
nition, temporal segmentation, and AQA. We compare tem-
poral segmentation and action recognition performance to
that of SOTA neural models. We evaluate AQA perfor-
mance by surveying domain experts (Expert Survey) and
comparing its output to a high performing purely neural
model, C3D-MTL [21].

4.1. NS Action Recognition

We first evaluate the performance of our NS approach on
detailed dive (action) recognition on MTL-AQA dataset
[21]; & compare its performance with SOTA methods [21],
which are purely neural in nature. Table 3 shows that
our NS action recognition approach outperforms C3D-MTL
[21] on all categories. Note that, unlike neural approaches,
our system also has the advantage of not requiring extra
training specific to action recognition or temporal segmen-
tation.

4.2. NS Action Temporal Segmentation

Next, we evaluate the performance of our NS approach
on temporal segmentation on FineDiving dataset [29], and
compare it with SOTA Temporal Segmentation Attention

Element Agreement (%)
Overall Score 92.5
Feet Apart 96.0
Height off Board 97.3
Distance from Board 92.1
Somersault Tightness 94.5
Knee Straightness 100.0
Twist Tightness 97.6
Verticalness (over/under-rotation) 90.5
Body Straightness During Entry 94.5
Splash Size 98.0

Table 5. Expert Survey Results Higher is better.

(TSA) model [29] in Table 4. We observe that Our NS
temporal segmentation model outperforms TSA model [29].
Furthermore, the performance gap widens as the segmenta-
tion precision is increased from Average Intersection over
Union (AloU)@0.5 to 0.75.

4.3. NS Action Quality Assessment

Unlike temporal action segmentation & recognition, we do
not evaluate our AQA scores on “ground-truth” labels be-
cause our system proposes a new objective, and compre-
hensive way of scoring dives. Thus, our predicted scores are
expected to be different than the subjective scores given by
human judges of the current scoring system (as mentioned
in Sec. 1). To evaluate model’s performance in the absence
of groundtruth labels, we ask a group of domain experts to
evaluate the accuracy of our model & give their feedback.

4.3.1 Expert Survey

We surveyed 6 domain experts to verify the accuracy of
our system’s outputted scores & reports. These domain ex-
perts include trained judges, divers, & coaches who have
judged/competed/coached on the international & national
level. We showed each expert 50 randomly chosen dives
from MTL-AQA dataset [21] & asked whether they agreed
or disagreed with each dive’s overall score & individual er-
ror scores. The results are shown in Table 5. Each error
(feet apart, distance from board, etc.) was approved by all
experts as objective criteria that should be used to score the
dive. Experts agreed with our system on all categories at
least 90% of the time.

4.3.2 Expert Feedback

To validate the practical usefulness of our system in rela-
tion to diving competitions & training, we presented our
system & its automatically generated reports (explained in
Approach) to an Olympic diving coach (referred to as Coach
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A for anonymity), & a a certified judge on the USA Diving
Judges Commission (referred to as Judge B). Both of them
have generously offered valuable feedback for our system.

Expert Opinion 1: Coach A. According to Coach A, hu-
man judges emphasize overall impression when scoring a
dive. This is because they cannot always see all of the
diver’s mistakes in the short amount of time watching the
dive so as to come up with a score based on specific errors.
Even if judges try to be fair to all aspects and phases of
a dive, as humans, it is almost impossible to see the dive
perfectly at all times. Moreover, judging based on overall
impression is inherently subjective and vulnerable to bias.
Coach A believes that with the support of our NS-AQA sys-
tem, scoring in diving can be “more precise and have less
errors.” Coach A believes that this system, with its gener-
ated detailed report, would be helpful in a number of ways.
In particular, it would be useful as a tool to (1) teach judges
how to score, (2) catch any errors that a human judge may
miss, (3) settle disagreements between judges, and (4) en-
courage safety by penalizing dangerous actions (e.g. get-
ting too close to hitting the board) that lots of human judges
overlook. See full opinion in supplementary.

Expert Opinion 2: Judge B. Judge B envisioned our sys-
tem as an educational tool for teaching judges, coaches, and
divers how to break down the dive into all of its compo-
nents. “We’re humans, we can’t get it all right,” Judge B
says, especially since judges only get 3 seconds to score a
dive. Judge B particularly emphasized our system’s poten-
tial to improve diving safety due to its automated “distance
from board” measurement. In diving, hitting the platform
can be the difference between life and death, so it is very
important to prioritize the diver’s safety. Judge B is “very
excited for this system to be able to make that call for us,’
as it moves the villain-role from the human judges to the Al

Model Output Expert Preference (%)
Fully Neural Score 3.9
Our Neuro-Symbolic Report 96.1

Table 7. Comparison of experts’ preference for Our NS model
vs. fully neural models. Higher is better.

Failures

o |

Successes ‘

i

Table 8. Pose estimation qualitative results.

to make those difficult decisions. See full opinion in sup-
plementary.

4.3.3 Comparison to Neural Approach C3D-MTL

We additionally surveyed domain experts to compare the
predicted scores outputted by our system and neural models.
We particularly compare our output to that of C3D-MTL.
Experts were each shown 50 randomly chosen dives from
MTL-AQA dataset [21], and were asked to indicate which
model output they agreed with more (either our NS model
or the C3D-MTL model). We found that experts chose our
system 96.1% of the time* (Table 7). A qualitative compar-
ison of C3D-MTL and our system can be seen in Table 9.

“4For most of the dives when experts chose the neural output over ours,
our system had failed pose estimation on some of the dive’s frames. This
affected the final score that was outputted.
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Key Frames of Dive ‘ Our Output (Summarized, not full)

Neural Model Score

Comparison

Overall Score: 5.7

Feet Apart: 2.2

Height off Platform: 2.7

Distance from Platform: Too Far
Somersault Tightness: 4.1

Knee Straightness: 7.8

Twist Straightness: 5.5
Verticalness: 6.3

Body Straightness during Entry: 8.2
Splash: 9.5

Overall Score: 9.7
Note that, existing neu-
ral models only output
a final score, unlike our
model, which outputs
a detailed report along
with the final score.

The score outputted by C3D-MTL was signifi-
cantly higher than our system. We see by look-
ing at the dive’s key frames that the start/takeoff
and flight was loose and sloppy, but the entry
was extremely good. This suggests that the neu-
ral model was only factoring the entry into the
overall score instead of also accounting for the
beginning parts of the dive.

Overall Score: 5.4

Feet Apart: 3.9

Height off Platform: 0.1

Distance from Platform: Good
Somersault Tightness: 0.9

Knee Straightness: 7.8

Twist Straightness: 6.0
Verticalness: 4.8

Body Straightness during Entry: 9.5
Splash: 5.9

Overall Score: 7.8

The score outputted by C3D-MTL was much
higher than our system. We see by looking at the
dive’s key frames that the height off the platform
was very low and the pike in the somersault
was not tight. However, the entry was with lit-
tle splash. This suggests that the neural model
was mostly factoring the splash into the overall
score instead of also accounting for factors like
height and position tightness.

Overall Score: 6.4

Feet Apart: 8.8

Height off Platform: 8.5

Distance from Platform: Good
Somersault Tightness: 6.0

Knee Straightness: N/A

Twist Straightness: N/A
Verticalness: 1.3

Body Straightness during Entry: 9.8
Splash: 0.0

Overall Score: 3.4

The score outputted by C3D-MTL was much
lower than our system. Every aspect of the dive
including the height and position tightness was
very good except for a slight mistiming when
the diver came out of the dive, resulting in over-
rotation. The diver should be rewarded for the
other components of the dive they did well, in-
stead of only penalized for their poor entry.

Table 9. Qualitative Comparison of Our Neural-Symbolic System to the Neural Model C3D-MTL. As taught in the official USA
Diving Judge’s Course, “Dives should be judged as a whole, not emphasizing any single element. This approach in diving is especially true
when it comes to the entry. It is easy to forgive earlier flaws if the dive has a good entry.” [8] In all three examples, we see that the neural
model emphasizes the entry of the dive far more than any other aspect, while our system more fairly accounts for each aspect.

4.3.4 Failure Modes of Our System

While our results are promising, our system occasionally
fails to output a score that experts agree with. A main con-
tributing factor to this is when the pose estimation on the
diver is inaccurate. Particularly, pose estimation struggles
when the diver is halfway underwater, and when the motion
blur on the image is very strong. Examples of failed pose
estimation compared with good pose are shown in Table 8.
We believe that as pose estimation technology progresses,
so will the accuracy of our system.

5. Discussion

We propose a neuro-symbolic (NS) paradigm for AQA,
& implement an NS-AQA system specifically for scoring
competitive diving. Our NS system achieves SOTA results
for fine-grained action recognition & temporal segmenta-
tion, & automatically generates a detailed & comprehen-
sive report scoring the performance of the dive. Our system
was validated by domain experts including an Olympic div-

ing coach & a certified judge on the Judges Commission.
Our approach ensures fairness and transparency, minimiz-
ing biases that often plague traditional assessment methods.
Unlike traditional computer vision-based systems & human
judges that offer single scores without explanation, our NS
approach provides a breakdown of assessments, empower-
ing athletes & coaches with actionable insights.

Extension to other actions and skills assessment. Al-
though this paper is geared towards diving, our NS approach
is general in nature, readily extensible to other sports like
the vault in gymnastics & figure skating. Domain exper-
tise would be required to formulate rules. Our approach can
be extended to other critical domains like surgery skills as-
sessment as well. In surgery skills assessment, for example,
microprograms to detect bleeding (analogous to splash in
our case), respect for tissue, etc. could be developed. Final
rating would be an aggregation of all such factors. We hope
to inspire this work’s application across diverse domains.
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