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Abstract

The quest for personalized sports therapy has long been
a concern for practitioners and patients alike, aiming for
recovery protocols that transcend the one-size-fits-all ap-
proach. In this study, we introduce a novel framework for
personalized sports therapy through automated joint move-
ment analysis. By synthesizing the analytical capabilities of
a Random Forest Classifier (RFC) with a Vector Quantized
Variational AutoEncoder (VQ-VAE), we systematically dis-
cern the nuanced kinematic differences between healthy and
pathological exercise movements. The RFC prioritizes the
joints by their discriminative influence on movement health-
iness, which informs the VQ-VAE’s derivation of a distilled
list of pivotal joints. This dual-model approach not only
identifies a hierarchy of joint importance but also ascertains
the minimal subset of joints critical for distinguishing be-
tween healthy and unhealthy movement patterns. The resul-
tant data-driven insight into joint-specific dynamics under-
pins the development of targeted, individualized rehabilita-
tion programs. Our results exhibit promising directions in
sports therapy, showcasing the potential of machine learn-
ing in developing personalized therapeutic interventions.

1. Introduction
Personalized sports therapy represents a cutting-edge ad-
vancement in rehabilitative health care, promising person-
alised treatment plans that are tailored to meet the specific
requirements of each person. This approach is grounded
in the precise identification and strategic enhancement of
particular physiological aspects that constrain an individ-
ual’s athletic performance or recuperation process. In this
study, we introduce a novel technique that leverages the ca-
pabilities of a Random Forest Classifier (RFC) [2] and Vec-
tor Quantized Variational Autoencoder (VQ-VAE) [20] to
herald new prospects in personalised sports therapy. With
machine learning’s rise to prominence, its applicability in
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health-related fields has become increasingly evident, offer-
ing enhanced analytical proficiency to unravel complex bio-
logical data [10, 14, 15, 21]. Our investigation employs this
to dissect the subtleties of joint movements during phys-
ical activity. By employing RFC and VQ-VAE model as
our primary analytical tools, we distill high-dimensional
motion data into detailed embeddings that reveal the joint
movement disparities between healthy and unhealthy in-
dividuals. Our research involves the IntelliRehab Dataset
(IRDS) [16] in which participants, equipped with advanced
motion-capturing sensors, performed a variety of exercises.
Our framework is utilized to generate detailed embeddings
of these movements, which enabled us to pinpoint spe-
cific joints where movements in unhealthy subjects deviated
from those observed in healthy counterparts. From these in-
sights, we propose a tailored exercise program designed to
strengthen the identified problematic joints. The essence of
our approach is customized therapy to meet the biomechani-
cal needs of each patient, promoting a directed and effective
rehabilitation strategy.

Proper form and technique are essential for optimal per-
formance and injury prevention in sports and physical ther-
apy [19]. However, monitoring and evaluating exercise
form and body mechanics can be challenging, particularly
in remote or unsupervised settings. Traditional methods of-
ten rely on human experts or specialized equipment, which
can be time-consuming, costly, and limited in scalability.
Recent advancements in computer vision and deep learning
techniques have opened up new possibilities for automated
analysis of human motion and body mechanics [1]. The
proposed approach in our study utilizes a two-stage process.
First, RFC predicts the top priority joints based on the spe-
cific exercise or movement. Subsequently, a VQ-VAE based
representational technique takes key-point estimation and
depth maps data of individuals in images as input, focusing
on the top priority joints identified by the RFC. This tech-
nique aims to parse and assess (im)proper form for various
sports-specific movements and exercises used in physical
therapy, providing a valuable tool for performance enhance-
ment, injury prevention, and rehabilitation monitoring.
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Figure 1. Illustration of the integrated approach used to identify key joints in differentiating healthy from unhealthy subjects based on their
movement patterns. The process begins with the collection of depth map pixels and corresponding joint keypoints. This data is fed into
a VQ-VAE, which compresses the information into a quantized latent space representation through its encoder and decoder architecture.
Concurrently, a Random Forest Classifier (RFC) assesses the significance of each joint in classifying movements as healthy or unhealthy by
analyzing the keypoints and employing majority voting for class prediction. The outcome is a ranked list of joints by feature importance as
determined by RFC, with the VQVAE-based analysis further highlighting the joints with maximum centroid distance between healthy and
unhealthy clusters, depicted in the scatter plot. The resulting visualization provides a clear depiction of joint importance, with a gradient
scale reflecting the significance from low (purple) to high (yellow), and marks the joints with the highest discriminative power using blue
circles, bridging the gap between latent space embeddings and clinical interpretability.

2. Related work

A growing area of research within sports therapy has been
the personalized rehabilitation for individuals with move-
ment impairments, including those suffering from chronic
diseases. Nonnekes et al. [17] emphasized the necessity
for individualized non-pharmacological interventions in the
management of gait impairments in Parkinson’s patients,
calling for a tailored approach that accounts for patient-
specific characteristics to predict the efficacy of various
training modes. Similarly, Zeng et al. [22] explored the in-
tersection of artificial intelligence (AI) and health manage-
ment, specifically in the context of long-term sports reha-
bilitation. Their study, which applied AI to assess sports re-
habilitation outcomes, supports the integration of machine
learning for personalized health services, highlighting the
potential benefits of AI in promoting national fitness and
health. Kempitiya et al. [8] focused on leveraging AI and
Virtual Reality (VR) to deliver personalized physiotherapy
rehabilitation. Their work is pioneering the integration of
AI with single-player VR gaming to customize physiother-
apy for patients with diverse needs, potentially revolutioniz-
ing patient-centered care in physiotherapy. Moreover, Lid-

strömer et al. [11] presented an overview of how AI can be
incorporated into physiotherapy and rehabilitation. Their
work discusses various AI applications that could enhance
the supportive frameworks of physiotherapy, such as real-
time video instructions and pose detection for optimal feed-
back, thus making physiotherapy more personalized and
accessible. Furthermore, datasets like NTU RGB+D 120,
have become benchmarks for 3D human activity under-
standing. It includes RGB and depth videos capturing di-
verse activities. The dataset facilitates algorithm evaluation
and advances research in human activity recognition [13].
Recent advancements by Deyzel and Theart [5] in one-
shot skeleton-based action recognition further the poten-
tial for intelligent virtual coaching in sports rehabilitation,
demonstrating the efficacy of graph convolutional networks
in classifying strength and conditioning exercises from lim-
ited samples.

These studies lay the foundation for the present research,
which builds upon the premise of using advanced machine
learning techniques to facilitate personalized sports therapy
regimens based on the analysis of kinematic joint movement
data. Unlike prior approaches that often require extensive
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labeled datasets, our method capitalizes on the RFC’s fea-
ture importance to determine key joints and utilizes VQ-
VAE’s robust embedding capabilities to identify the mini-
mal essential joints that differentiate healthy from patholog-
ical movement patterns. This approach embodies the nov-
elty of our work, as it enables the distillation of complex
biomechanical data into actionable insights, resulting in re-
habilitation strategies that are both personalized and auto-
mated.

3. Methods
In the study, we employed a two-step analysis to investigate
the significance of specific joints in differentiating between
healthy and unhealthy subjects during exercise. Initially,
we trained a VQ-VAE on 4D skeleton keypoint data, allow-
ing the model to learn a latent representation of the dataset.
Subsequent to this, RFC was utilized to ascertain the impor-
tance of each joint. Leveraging the joint importance rank-
ings provided by the RFC, we conducted a systematic eval-
uation by progressively reducing the number of joints con-
sidered, starting with the top 25 and decrementing down to
a single joint. For each subset, we computed the quantized
embeddings using the VQ-VAE and calculated the centroid
distance between the healthy and unhealthy clusters. Fig-
ure 1 illustrates our methodology.

3.1. VQ-VAE

The VQ-VAE model training involves mapping the input
data x into a latent embedding space ze through an encoder
function, followed by quantizing ze to obtain a discrete la-
tent representation zq . The quantized vector zq is then uti-
lized to reconstruct the input data through a decoder. This
process introduces a vector quantization operation that en-
ables learning discrete latent representations.

3.1.1 VQ-VAE architecture

The VQ-VAE architecture comprises three primary compo-
nents: the encoder, the vector quantization layer, and the
decoder.
• Encoder: The encoder maps the input data x to a con-

tinuous latent embedding space ze, formulated as ze =
fencoder(x; θenc), where θenc denotes the encoder parame-
ters.

• Vector Quantization Layer: The continuous latent em-
beddings ze are quantized to zq by finding the nearest
vector ei from a predefined set of embeddings E = {ei}:

zq = Quantize(ze) = ek, where k = argmin
i

∥ze−ei∥2

• Decoder: The quantized embeddings zq are used to re-
construct the input data x̂ = fdecoder(zq; θdec), where θdec
represents the decoder parameters.

3.1.2 Loss function

The VQ-VAE model’s training objective combines the re-
construction loss with a quantization loss to ensure effective
learning of the discrete latent representations:
• The reconstruction loss, typically the mean squared error

(MSE) for continuous data, is given by:

Lrecon = ∥x− x̂∥2

• The quantization loss penalizes the distance between ze
and zq , encouraging accurate quantization:

Lquant = ∥sg[ze]− zq∥2 + β∥ze − sg[zq]∥2

where sg denotes the stop-gradient operator, and β is a
hyperparameter.

The overall loss function combines these two losses:

L = Lrecon + Lquant

Optimizing this objective function allows the VQ-VAE to
encode input data into discrete latent representations, cap-
turing the key features of the data and enabling various ap-
plications such as data generation and manipulation in the
latent space.

3.1.3 VQ-VAE training details

The model is trained using the Adam optimizer [9] with a
learning rate of 1 × 10−3 for 1000 epochs, adjusting for
convergence.

3.2. Random Forest Classifier (RFC)

The RFC, an ensemble learning method, functions by con-
structing numerous decision trees during training and out-
putting the class that is the mode of the classes (classifica-
tion) of the individual trees. Mathematically, for a decision
tree h(x,Θk), with x representing the input features and Θk

the randomness in the kth tree, it is defined as:

H(x) =
1

K

K∑
k=1

h(x,Θk) (1)

where K denotes the total number of trees.
RFC is employed to analyze the joint data, treating each

joint as a feature in differentiating between healthy and un-
healthy movement patterns.

3.2.1 RFC training and hyperparameter details

The configuration of the RFC is set with n estimators =
250 and random state = 42, where n estimators indi-
cates the number of trees in the forest, and random state
ensures the reproducibility of the results. This con-
figuration is selected based on a parameter sweep that
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Figure 2. Left) Visualization of skeletal motion during Exercise
3, captured at three distinct time frames. The colored skeletons
represent the joint positions at each frame, with the average skele-
ton plotted in red for reference. The difference between skele-
tal motion and the colored skeleton represents the displacement
fields. Mid) Comparative accuracies of different classifiers with
RFC outperforming SVM, AdaBoost, XGBoost, and Logistic Re-
gression. Right) Spearman correlation comparison, depicting the
strong alignment of our framework’s joint importance ranking
with the ground truth displacement fields, substantiating the ef-
ficacy of our method in distinguishing between healthy and un-
healthy movement patterns.

assessed the model’s performance for n estimators in
{75, 100, 250, 500, 1000}. The choice of 250 trees was de-
termined as optimal, balancing model complexity, compu-
tational efficiency, and classification accuracy.

3.3. Sports therapy dataset

The dataset for this study is derived from the IntelliRe-
habDS (IRDS) [16], a rich repository of kinematic data de-
signed to support the analysis of physical rehabilitation ex-
ercises. Captured through the Kinect motion sensor cam-
era, the IRDS dataset encompasses a detailed record of var-
ious rehabilitation movements, meticulously performed by
a cohort of 29 individuals, inclusive of both patients (un-
healthy subjects) and healthy controls. A notable feature of
this dataset is its detailed capture of the 3D coordinates of
25 body joints for each participant, coupled with the corre-
sponding depth maps for every recorded frame. Moreover,
it furnishes essential annotations such as the type of gesture
or exercise performed, the subject’s position (either stand-
ing or sitting), and a correctness label to gauge the accuracy
of the movements.

The focused subset of the IRDS dataset, pertinent to our
analysis, consists of 2577 gesture sequences, all of which
were tagged with correctness labels of 1 (healthy) or 2 (un-

Idx. Exercise Name Description
1 Elbow Flexion Left Flexion and extension movement of the left elbow

joint
2 Elbow Flexion Right Flexion and extension movement of the right el-

bow joint
3 Shoulder Flexion Left Flexion and extension movement of left shoulder

while keeping the arm straight in front of the body
4 Shoulder Flexion Right Flexion and extension movement of right shoul-

der while keeping the arm straight in front of the
body

5 Shoulder Abduction Left The left arm is raised away from the side of the
body while keeping the arm straight

6 Shoulder Abduction Right The right arm is raised away from the side of the
body while keeping the arm straight

7 Shoulder Forward Elevation With hands clapped together, the arms are kept
straight and raised above the head, keeping the
elbows straight

8 Side Tap Left The left leg is moved to the left side and back
while keeping the balance

9 Side Tap Right The right leg is moved to the right side and back
while maintaining balance

Table 1. Exercises’ description in the IntelliRehabDS dataset [16].

healthy), indicating a binary assessment of the exercise per-
formance (correct or incorrect) rather than a discrete mea-
surement of correctness levels. Among these, 1215 gestures
were executed in a standing position, 952 in a seated posi-
tion on a chair, 359 while seated on a wheelchair, and 51
with the support of a stand frame. Table 1 provides the de-
scription of each exercise performed by the subjects in the
dataset.

For the purpose of this study, the dataset is segmented
based on the subject’s position during the exercise, effec-
tively bifurcating it into two distinct groups: exercises per-
formed while standing and those conducted while seated.
This demarcation was motivated by the premise that the
biomechanical dynamics and the muscular engagement dif-
fer significantly between standing and sitting postures [12,
18], which, in turn, could influence the efficacy of the reha-
bilitation exercises and their analysis.

3.3.1 4D key-points and depth features

The dataset is organized into a 4-dimensional format, where
the input channels corresponded to the x, y, z coordinates
and the pixel value of the depth at each joint location. This
4D data encapsulation augments the traditional 3D repre-
sentation with the additional context of environmental inter-
action, providing a comprehensive portrayal of the subject’s
movements within their spatial milieu. The depth dimen-
sion presents several analytical advantages. Primarily, it en-
hances spatial awareness, contributing to a precise estima-
tion of the joint positions. It addresses ambiguities inherent
in 2D projections and 3D models, especially in scenarios
of joint occlusion or overlap. Moreover, the depth infor-
mation is robust to changes in camera perspective, ensuring
consistent spatial relationship comprehension. This fourth
dimension also offers contextual clues pivotal for the classi-
fication of movements, aiding in the discrimination between
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healthy and pathological motion patterns. In essence, the in-
tegration of depth as a fourth dimension is instrumental in
fortifying the model’s capacity to discern subtle kinematic
discrepancies, which is paramount for the nuanced evalua-
tion of physical rehabilitation exercises.

4. Results
4.1. RFC-based keypoints’ priority

Our exploration into the significance of individual joints
via RFC unveiled compelling insights. The RFC’s findings
highlight the key joints involved in an exercise that are in-
strumental in discriminating between healthy and patholog-
ical movement patterns. For instance, in Exercise 1, which
primarily engages the left elbow joint, it is precisely the left
arm’s keypoints that emerge as crucial discriminators be-
tween the healthy and unhealthy cohorts. This pattern holds
true across exercises; in Exercise 9, for example, the right
leg and spine joints are critical for classification. These
nuances of joint importance for each exercise are visually
encapsulated in the second panel of the plots in Figure 3.
Moreover, Figure 4 provides a comprehensive portrayal of
the range of movements for each exercise, along with an
enumeration of joints based on their RFC-determined im-
portance. Notably, this figure also delineates the most sig-
nificant joints for each exercise in the lower right corner, of-
fering a succinct reference for the joints that bear the highest
discriminative power. Complementing our findings, the dis-
placement field illustrations in Figure 2 graphically repre-
sent the dynamic involvement of joints throughout the tem-
poral sequence of Exercise 3. It is evident from the displace-
ment fields that the left arm’s joints are actively engaged —
a conclusion that aligns with our RFC analysis, reaffirming
its validity.

In our comparative analysis, RFC was selected due to
its superior classification accuracy over alternative models
such as Support Vector Machines (SVM) [4], AdaBoost [6],
XGBoost [3], and Logistic Regression [7], as indicated by
the results in Figure 2. These findings showcase RFC’s ef-
fectiveness in handling complex datasets with multiple fea-
tures and high dimensionality [2].

4.2. VQVAE-based muscle joints’ prediction

The VQ-VAE analysis elucidated that only two joints, iden-
tified as paramount by the RFC, were indispensable for
achieving the maximal centroid separation in the latent
space between healthy and unhealthy movement patterns.
This discernment accentuates the salience of specific joints
in characterizing movement quality, which bears substan-
tial implications for the formulation of targeted rehabilita-
tion regimens. Concentrating on these pivotal joints within
therapeutic exercises may potentiate rehabilitation efficacy
and expedite convalescence. In our methodical exploration,

we computed the centroid distances between the clusters of
healthy and unhealthy joint movements, progressively de-
creasing the count of joints from twenty-five to a singular
one. The Euclidean distance was employed as the distance
metric, formalized as:

d(h,u) =

√√√√ n∑
i=1

(hi − ui)2

where h and u represent the centroids of the quantized em-
beddings for the healthy and unhealthy configurations, re-
spectively, within the n-dimensional latent space. The anal-
ysis incontrovertibly revealed that for each exercise, a duo
of joints sufficed to unambiguously demarcate between the
healthy and unhealthy classes. Figure 3 visually encapsu-
lates this phenomenon, delineating the quantized embed-
dings that exhibit the largest centroid distances. This visu-
alization not only reaffirms the empirical findings but also
enhances comprehension of the spatial dichotomy between
divergent movement qualities. The precise delineation of
these critical joints through RFC and VQ-VAE analyses sig-
nificantly augments our understanding of human movement
biomechanics, offering pivotal insights into the substratum
of healthy versus compensatory motion patterns.

The final section of Figure 2 illustrates the robustness of
our model, revealing a high correlation with ground truth
displacement fields derived from kinematic data. These
fields were computed by assessing the deviation of each
movement frame from the mean skeletal structure across
a motion sequence. By ranking these displacements from
highest to lowest and correlating them with our model’s
joint importance hierarchy through Spearman’s method, we
obtain values exceeding 0.7 for healthy and 0.5 for un-
healthy subject movements. This suggests our model’s pro-
ficiency in differentiating between varying movement qual-
ities, a critical factor for customizing therapeutic measures
in sports medicine. The congruence between high displace-
ment joints in raw data and the joints our framework identi-
fies confirms the potential for more nuanced, targeted reha-
bilitation strategies.

4.3. Automated sports therapy

Our results demonstrate the effectiveness of the proposed
two-stage approach in parsing proper and improper form for
sports-specific movements and physical therapy exercises.
By first identifying the top priority joints using the RFC
and then leveraging the VQ-VAE representational technique
on key-point estimation data and depth maps, the model
can effectively capture and encode the most relevant in-
formation required for accurate analysis of body mechan-
ics. The model’s ability to differentiate between proper and
improper form is illustrated in Figure 3, representing nine
different postures or exercise positions, labeled from 1 to
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Figure 3. Comparative analysis of healthy and unhealthy subjects’ movements across nine different exercises, performed in standing
and sitting positions. The upper panel illustrates depth sensor images of a subject executing the exercises, with the exercise number
superimposed. The lower panel presents the VQ-VAE-derived quantized latent space embeddings, where each scatter plot corresponds to
the exercise above. Red and green dots represent unhealthy and healthy movements, respectively. Keypoints are colored according to their
importance as determined by the RFC, following the inferno heatmap color scheme from low (dark purple) to high (bright yellow). The
blue circles denote joints with the maximum distance between centroids of healthy and unhealthy clusters, highlighting their significant
role in distinguishing movement quality. This visualization underscores the importance of specific joints in the assessment of movement
patterns for rehabilitation purposes.

9. Each position is accompanied by a visual representation
and a classification of whether it is a sitting (SIT) or stand-
ing (STAND) position. Additionally, the figure highlights
the importance of specific joint positions by indicating their
relative importance levels. Joints labeled as ”High Joint
Importance” are considered crucial for maintaining proper
form and body mechanics, as determined by RFC for the
specific exercise or movement. Joints labeled as ”Low Joint

Importance” have a lesser impact on the overall assessment.

Through the combination of RFC for joint prioritiza-
tion and the VQ-VAE representational technique on key-
point estimation and depth maps, the proposed approach
can effectively parse and assess the various sports-specific
movements and physical therapy exercises. This capability
holds significant potential for applications in remote train-
ing and rehabilitation monitoring, injury prevention, and
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performance optimization, enabling athletes, coaches, and
physical therapists to receive real-time feedback and cor-
rections on form and body mechanics, with a focus on the
most critical joint positions/exercise or movement.

4.4. Discussion

Our combination of RFC-based keypoint importance and
VQVAE-based joint analysis highlights the significance of
tailoring rehabilitation exercises to the individual’s specific
needs, especially within the context of sports-related recov-
eries. This personalization is particularly crucial in address-
ing the precise biomechanical deficits and compensatory
strategies that are often unique to each individual’s pathol-
ogy. For Exercise 1, involving the left elbow, the RFC iden-
tified the left arm’s keypoints—HandLeft, WristLeft, Shoul-
derLeft, and ElbowLeft—as the most critical for discrimi-
nating healthy from unhealthy movements. In concordance,
the VQVAE pinpointed HandLeft and ShoulderLeft as the
two joints whose embeddings exhibited the greatest cen-
troid distances, reaffirming their crucial role in the assess-
ment and correction of elbow flexion exercises. This syn-
ergy in findings suggests a focus on these joints could en-
hance the efficacy of rehabilitation for conditions affecting
elbow mobility. Similarly, in Exercise 2, the RFC high-
lighted the importance of the WristRight and associated
joints, which was validated by the VQVAE’s identification
of the WristRight and ShoulderRight as key discriminators
of movement quality. This insight is indicative of the neces-
sity to concentrate on wrist dynamics in this particular ex-
ercise during rehabilitation, which may often be overlooked
in favor of larger muscle groups.

The alignment between RFC and VQVAE findings was
not limited to upper-body exercises. In Exercise 8, focus-
ing on lower-body coordination, the AnkleLeft and FootLeft
emerged as significant from both analyses, suggesting that
attention to ankle-foot mechanics could be paramount in
rehabilitation programs targeting balance and gait stabil-
ity. The convergence of results from two distinct analyti-
cal approaches—RFC and VQVAE—provides compelling
evidence for the pivotal role of specific joints in the classi-
fication and correction of movement patterns. These results
are harmonious with ground truth observations, validating
the approach and underscoring its potential for implemen-
tation in clinical settings. This alignment also advocates for
the integration of multimodal data in the evaluation process,
leveraging both the depth and complexity of kinematic data
alongside sophisticated machine learning models to distill
the essence of healthy movement. Such integration can lead
to more nuanced therapy protocols that target the underpin-
nings of unhealthy motion, propelling the efficacy of sports
rehabilitation into a new era. The methodical discernment
of key joints through our dual-analysis not only augments
our understanding of human movement biomechanics but

also offers actionable insights into the substratum of mo-
tion patterns characteristic of sports injuries. By focusing
on these critical joints within therapeutic exercises, practi-
tioners can tailor rehabilitation programs that are not only
efficacious but also efficient, potentially reducing recovery
times and improving outcomes.

This novel approach of correlating RFC-based joint im-
portance with VQVAE-derived embedding distances consti-
tutes a stride towards individualized therapeutic regimens.
It emphasizes the necessity for rehabilitation programs to
be flexible and adaptable, accommodating the specificities
of an individual’s biomechanical profile. As such, it is a step
forward in the advancement of personalized medicine, par-
ticularly within the domain of sports rehabilitation, where
such tailored approaches are not a luxury, but a necessity
for optimal recovery and return to peak performance.

5. Conclusion & Future work
This study represents a significant step forward in person-
alized rehabilitation, particularly in the context of sports
medicine. By leveraging the strengths of RFC and VQ-
VAE, we have distilled crucial insights into the biomechan-
ics of movement, especially as they relate to distinguish-
ing between (un)healthy and compensatory motion patterns.
The RFC has provided a fine-grained analysis of the im-
portance of individual joints in various exercises, revealing
that not all joints contribute equally to the differentiation
between healthy and unhealthy movements. This is invalu-
able for designing targeted rehabilitation protocols that fo-
cus on correcting specific biomechanical deficiencies. Our
VQ-VAE analysis further hones this approach by identify-
ing the minimum number of critical joints required to max-
imize the separation between healthy and unhealthy move-
ment patterns in the latent space. This finding indicates that
rehabilitation efforts can be efficiently concentrated on the
most impactful areas, potentially leading to improved re-
covery rates and outcomes.

The synthesis of findings from the RFC and VQ-VAE
models has highlighted the utility of a multimodal data anal-
ysis approach, incorporating both the rich depth data pro-
vided by modern motion capture technology and the sophis-
ticated pattern recognition capabilities of machine learning.
Our research emphasizes the potential of such advanced
techniques to not only enhance our understanding of com-
plex biomechanical processes but also to translate these in-
sights into practical applications within therapeutic settings.
Our study, while pioneering, recognizes the inherent limita-
tions of the approach and the need for further research. The
binary classification of movement quality, reliance on spe-
cific sensor technology, and the absence of clinical outcome
integration all point to areas for future development. Never-
theless, our research has laid the groundwork for subsequent
studies that can build on our findings, refine the methodolo-
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1: [HandLeft, WristLeft, ShoulderLeft, ElbowLeft], 2: [WristRight, ElbowRight, HandRight, ShoulderRight],
3: [WristLeft, ElbowLeft, ShoulderLeft, HandLeft], 4: [WristRight, HandRight, ShoulderRight, ElbowRight],
5: [ElbowLeft, HandLeft, WristLeft, ShoulderLeft], 6: [ElbowRight, WristRight, ShoulderRight, HandRight],
7: [HandLeft, ElbowLeft, WristLeft, WristRight, ElbowRight, HandRight, ShoulderRight, ShoulderLeft],
8: [AnkleLeft, SpineBase, KneeLeft, SpineMid, FootLeft, HipLeft],
9: [KneeRight, FootRight, SpineMid, AnkleRight, HipRight, SpineBase]

List of important joints for each exercise (in descending order):

Figure 4. Qualitative analysis across a temporal sequence of frames for each exercises in standing position, with keypoints superimposed
on each frame to capture the full range of motion. The heatmap gradient indicates joint importance based on RFC findings, ranging from
low (yellow) to high (black), aiding in the visual comparison of execution quality. The bottom-right corner lists the most significant joints
in descending order of importance for each exercise, providing a comprehensive understanding of movement dynamics.

gies, and expand the scope to include more dynamic and
spontaneous movements for diverse subjects.

In conclusion, our exploration into the key joints that un-
derpin healthy and pathological movements is a step for-
ward in the generation of personalized, data-driven reha-
bilitation strategies. By focusing therapeutic interventions

on the most significant biomechanical elements identified
through our analysis, we can look forward to more effec-
tive, efficient, and patient-specific rehabilitation programs
that hold the promise of better quality of life for those re-
covering from sports injuries.
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