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Figure 1. Example of our TeamTrack dataset. We provide (a) top-view and (b) side-view in soccer, (c) top-view and, (d)/(e) two side-view

videos in basketball, and (f) a single side-view video in handball.

Abstract

Multi-object tracking (MOT) is a critical and challeng-
ing task in computer vision, particularly in situations in-
volving objects with similar appearances but diverse move-
ments, as seen in team sports. Current methods, largely
reliant on object detection and appearance, often fail to
track targets in such complex scenarios accurately. This
limitation is further exacerbated by the lack of comprehen-
sive and diverse datasets covering the full view of sports
pitches. Addressing these issues, we introduce TeamTrack,
a pioneering benchmark dataset specifically designed for
MOT in sports. TeamTrack is an extensive collection of
full-pitch video data from various sports, including soccer,

basketball, and handball. Furthermore, we perform a com-
prehensive analysis and benchmarking effort to underscore
TeamTrack’s utility and potential impact. Our work signi-
fies a crucial step forward, promising to elevate the preci-
sion and effectiveness of MOT in complex, dynamic settings
such as team sports. The dataset, project code and compe-
tition is released at: https://atomscott.github.
io/TeamTrack/.

1. Introduction

Multi-object tracking (MOT) is a key task in computer vi-
sion, critical for many practical applications such as au-
tonomous driving and human movement analysis [24, 27,
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29, 35]. MOT involves localizing and associating objects
over time while dealing with unsolved challenges like oc-
clusion, mis-detections, and ID switches. Current meth-
ods typically employ detection followed by re-identification
(ReID), relying on appearance-based features for temporal
association [40, 45]. However, these methods falter when
confronted with objects of similar appearances performing
complex movements, which are common in team sports.

In sports analytics, the use of advanced metrics has in-
creased, and the need for fine-grained tracking data has be-
come increasingly evident [7, 31, 36]. Although sensor-
based systems, such as the global navigation satellite sys-
tem and local positioning systems, have emerged as alter-
natives, these systems have constraints related to availabil-
ity, budget, and feasibility [15, 26]. Additionally, gaining
information on opposing teams can be problematic. As a
result, MOT remains a desirable solution, providing a non-
intrusive and affordable method for acquiring data.

In light of these considerations, we introduce the Team-
Track Dataset, a specialized resource developed to address
the unique challenges posed by team sports tracking. Un-
like existing datasets, which predominantly feature pedes-
trian movements or are derived from broadcast footage with
limited field coverage, TeamTrack offers an expansive view
of the game by incorporating over 200,000 frames and 4
million bounding boxes across football, handball, and bas-
ketball, marking it as the largest dataset of its kind in terms
of volume and scope, as shown in Table 1. This extensive
compilation provides a panoramic view of game scenarios
to capture dense player formations, swift motion variations,
and frequent occlusions, thereby setting a new benchmark
for MOT research in sports.

The primary contributions of this paper are three-fold:
(1) We create a new dataset', comprising of an unprece-
dented volume of high-resolution, full-pitch video data
from diverse team sports, and multiple viewpoints. (2)
A detailed exploration of the dataset’s development pro-
cess, its strategic focus, and an analysis highlighting its
characteristics, which promise significant advancements in
sports analytics and broader MOT applications. (3) We per-
form comprehensive evaluations of object detection, trajec-
tory forecasting, and multiple object tracking tasks, setting
benchmarks for future research and development.

2. Related Work

Multi-Object Tracking. The typical approach to MOT al-
gorithms follows the tracking-by-detection paradigm. This
procedure starts with an object detection using models like
RetinaNet [19], CenterNet [9], or YOLO [28], followed by
association via feature extraction, typically achieved by us-
ing CNNs [13, 45] and recently ViT models [14, 30]. Deep-

I Available on Kaggle ( kaggle .com/datasets/atomscott/
teamtrack) or Google drive (https://bit.1ly/3CMN2hP).

Dataset Frames BBoxes Domain
MOT16 [24] 11,235 292,733  Pedestrians
MOT20 [8] 13,410 2,102,385  Pedestrians
KITTL-T [12] 10870 65213 Autonomous
Driving
DanceTrack [35] 105,855 - Dance
SSET [10] 12,000 12,000 Soccer
SN-Tracking [5] 225,375 3,645,661 Soccer
Soccer
SportsMOT [6] 1879 62218  Basketball
Volleyball
SoccerTrack[29] 82,800 2,484,000 Soccer
Soccer
Te?:)‘l‘lf:;wk 279900 4,374,900 Basketball
Handball

Table 1. Comparative overview of MOT datasets, showcasing
TeamTrack with the highest number of frames and bounding
boxes.

SORT [40] exemplifies this approach, combining Kalman
motion states and deep appearance descriptors for robust
tracking. However, these methods often struggle to distin-
guish and track objects with similar appearances.

End-to-end tracking methodologies, on the other hand,
handle object detection and tracking concurrently, offering
potential improvements in performance. Models like Track-
tor [2] leverage frame redundancy to eliminate separate data
association, while Neural Solver [3] and DeepMOT [41]
deploy neural and Siamese networks, respectively, to ad-
dress tracking. Recent developments have seen the intro-
duction of Transformer architectures into tracking, such as
in DETR [4], formulating object detection as a set predic-
tion problem. This paradigm shift has been adopted by
models like Trackformer [23] and TransTrack [34]. More
advanced models, like MOTR [42] and its improved version
MOTRV2 [44], extend this framework by adding a query-
interaction module to enhance tracking performance.
Tracking in Sports. In sports tracking, a survey [22] sum-
marized various approaches using a combination of back-
ground subtraction, triangulation from multiple cameras,
and Kalman filters to track player movements on the pitch
[17]. Additionally, research exists which addresses this is-
sue by representing player positions as nodes on a graph,
and trajectories as edges between nodes [11, 32]. Sullivan
et al. proposed a Bayesian framework for linking player IDs
[33]. Furthermore, Lu et al. presented a learning approach
based on handcrafted visual features and a Kalman filter to
identify and track players within videos [43].

Recent methods have largely focused on using deep
learning techniques for player tracking. For instance, Hu-
rault et al. proposed a method of detecting and tracking
soccer players using a self-supervised learning method, by
transfer learning from an object detection model trained on
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generic objects [16]. Theagarajan et al. identified the player
holding the ball using a YOLOV2 network detector and a
DeepSORT tracker [37]. Maglo et al. utilized human anno-
tations collected in a semi-interactive system [21]. Wang et
al. proposed improving tracking in various sports scenes by
introducing a three-stage matching process to solve motion
blur and body overlap [38].

Multi-Object Tracking Datasets. Development of MOT
algorithms depends on the availability of annotated datasets.
Early examples are the MOT Challenge dataset [24] and the
KITTT Tracking Benchmark [12], focusing on a range of
scenarios from crowded urban environments to autonomous
driving. Later datasets like UA-DETRAC [39], PETS [25],
and DanceTrack [35] further contributed to the field, an-
notated with bounding boxes and tracking IDs to evaluate
algorithmic tracking accuracy.

Tracking in sports presents unique challenges, such
as difficulty in differentiating players on the same team
and handling occlusion scenarios. While datasets like
SoccerNet-Tracking [5] and SoccerTrack [29] provide valu-
able resources, their focus is often limited to specific sports
or partial field views. Furthermore, the use of broadcast
footage in datasets such as SportsMOT [6] complicates the
direct application of tracking algorithms, necessitating ad-
ditional processing for image registration, handling zoom,
and scene transitions.

The landscape of MOT datasets shows a notable lack
of resources tailored for the nuanced challenges of sports
tracking. Addressing this, TeamTrack introduces a high-
resolution, full-pitch dataset across soccer, basketball, and
handball, providing over 279,900 frames and 4,374,900
bounding boxes—the largest in its field. It supports the
development of algorithms for complex team sports dy-
namics. With sports diversity and two perspectives—side
and top views—TeamTrack offers comprehensive playfield
insights, fostering the development of more sophisticated
MOT methods. This dataset aims to drive research forward,
making high-quality tracking data accessible and encour-
aging the creation of robust algorithms to navigate sports
tracking’s unique challenges.

3. TeamTrack Dataset

In this section, we present TeamTrack, a novel MOT dataset
comprising over 150 minutes of high-resolution video from
multiple team sports. The main characteristics of Team-
Track are the following:

Large-scale: TeamTrack introduces over 4 million anno-
tated bounding boxes across various tracklets, making it
one of the largest datasets of its kind, as compared to others
listed in Table 2.

Multiple Sports: TeamTrack includes matches from three
team sports; soccer, basketball, and handball.

Similar Appearance and Dynamic Movement: The

dataset features targets with similar appearance, dynamic
movements, and frequent occlusions, offering a robust chal-
lenge for tracking algorithms.

Full Pitch Multi Angle View: Videos are recorded from
two angles, top view via drones and side view with fisheye
lenses, both covering the entire playing field.

Beyond its significant size and the inherent challenges
it presents, TeamTrack’s unique value lies in its multi-view
and full-pitch capture settings. These features enable ex-
perimentation with multi-view tracking and the use of prior
information (e.g., player count, pitch dimensions) not feasi-
ble with traditional broadcast videos. Additionally, we hope
the adversarial-cooperative nature of team sports can also be
studied to further refine tracking techniques.

In the following subsections, we describe the data collec-
tion process, annotation and labeling, appearance similar-
ity, and motion patterns observed in the TeamTrack dataset,
following the methodology described in DanceTrack [35].
Our dataset was compared to DanceTrack, MOT17, and
MOT20—datasets characterized by limited camera move-
ments. We did not compare with broadcast video datasets,
such as SoccerNet-Tracking [5] and SportsMOT [6], due to
their extensive camera movements, which hinder fair com-
parison.

3.1. Data Collection

The data collection process captured video footage across
three team sports: soccer, basketball, and handball,
recorded at various university venues, encompassing both
indoor and outdoor environments. The side and top views
were recorded using fisheye and drone cameras, respec-
tively. To correct for the distortion caused by the fisheye
lens, we applied Zhang’s calibration method. Further infor-
mation on the devices used and their resolution specifica-
tions is detailed in Table 2.

3.2. Annotation and Labeling

The annotation process involved a series of strategic deci-
sions and tool evaluations to balance efficiency, accuracy,
and cost. Initially, we utilized the open-source tool CVAT
but later transitioned to Labelbox to alleviate the burdens
associated with working on a local server and to streamline
workflows more effectively. Although Labelbox did also
offer automated tracking, the practical gains in speed were
limited due to inference time not being fast enough.
Interpolation and Manual Annotation: Both CVAT and-
Labelbox support interpolation, significantly reducing the
need to annotate every frame. This feature enabled focused
manual annotation on approximately every 1 to 50 frames,
as depicted in the timeline of Fig. 2, especially in scenes
experiencing dynamic changes. While this method stream-
lined the workflow, it still required significant manual input
to ensure accuracy.
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Table 2. Camera and video details of the multi-object tracking dataset for various sports.

Sport Perspective Location Device Resolution Minutes Bounding Box Count
Soccer Side (Fisheye) University of Tsukuba, Outdoor 7 CAM E2-F8 8K 30 1,242,000
Soccer Top (Drone) University of Tsukuba, Outdoor DJI Mavic 3 4K 30 1,242,000
Basketball ~Side (Fisheye) Tokai University, Indoor Z CAM E2-F6 6K 17.5 346,500
Basketball Top (Drone) Wauhu Institute of Technology, Outdoor ~ DJI Mavic 3 4K 24 475,200
Basketball ~ Side (Drone) Wuhu Institute of Technology, Outdoor DJI Mavic 3 4K 24 475,200
Handball ~ Side (Fisheye) Nagoya University, Indoor ZCAME2-F6 6K 30 594,000
Total 155.5 4,374,900

Figure 2. Screenshot of Labelbox during the annotation process,
illustrating manual adjustments to automated tracking and interpo-
lation annotations.

Challenges with Semi-Automatic Detection: We exper-
imented with semi-automatic detection using a pretrained
object detector for initial annotations. However, the time
saved was often offset by the need to correct false posi-
tives/negatives and manage ID switches. Labelbox’s lack
of track merging capabilities further complicated these ad-
justments, as illustrated by the comparative analysis of pre-
trained versus fine-tuned object detectors’ accuracy in Ta-
ble. 3, indicating the necessity for model fine-tuning.

Exploration of Other Tools: In search of more efficient
solutions, we considered advanced annotation tools like V7
and Encord, known for their sophisticated track merging
and smart interpolation capabilities. However, the high ini-
tial limited their adoption.

Annotation Effort: Ultimately, the annotation process re-
quired over 600 person-hours, translating to roughly 2 hours
for every 30 seconds of video. This significant investment
of time and resources highlighted a critical challenge: the
pressing need for more efficient annotation tools to facili-
tate dataset expansion and enhance the scalability of sports
analytics research. We hope these insights offer valuable
perspectives to the research community on balancing the ca-

Figure 3. Cosine distance of re-ID features: TeamTrack compared
to DanceTrack, MOT17, and MOT20.

Figure 4. Cosine distance of re-ID features within TeamTrack
datasets.

pabilities, efficiency, and costs of annotation tools.

Dataset Metadata: The TeamTrack dataset provides per-
sistent player IDs throughout the entirety of a match, al-
though it does not include jersey numbers. Annotations are
available in two formats: the SportsLabKit format?, which
encompasses team affiliations to enrich analyses of team dy-
namics and interactions, and the standard MOTChallenge
format®. The latter is especially useful for general tracking
studies and conforms to conventional evaluation method-
ologies.

3.3. Appearance Similarity

Quantitave analysis of appearance features: To quantita-
tively test our hypothesis that the targets in teamtrack have
similar appearances, we employ a pre-trained re-ID model
[35] to extract the appearance features and calculate a sim-
ilarity metric. The similarity metric is based on the cosine

2https://github.com/AtomScott/SportsLabKit.
3https://motchallenge.net/instructions/.
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(a) Basketball Sideview 1

(c) Basketball Topview

% @3 U

(d) Handball Sideview

(e) Soccer Sideview

(f) Soccer Topview

Figure 5. Visualization of re-ID features from various videos in our TeamTrack dataset using t-SNE. Objects are color-coded for consistent
identification. The bounding box from the first frame is superimposed on the corresponding re-ID feature for contextualization.

distances between these features across video frames:

1 T 1 Ny N
V:T;N_E;;(l—cos<F(Bm'),F(Btj) >),

where F'(By;) and F(By;) are appearance features, B and
T are an object and the number of frames in the video, NV, is
the number of objects on the frame ¢ and < - > is the angle
between two vectors. As depicted in Figure 3, TeamTrack
datasets generally demonstrated a higher appearance simi-
larity among players compared to the MOT datasets, with
lower mean cosine distances. Figure 4 shows the compari-
son within TeamTrack datasets, highlighting that the simi-
larity metric is somewhat consistent across sports.

Visualization of appearance features: To further under-
stand the visual characteristics of the TeamTrack dataset,
we present visualizations of appearance features extracted
from several videos. In Figure 5, we show t-SNE embed-
dings of image Re-ID features, extracted from the first 200

frames of each dataset. These visualizations reveal that,
although appearance features can be differentiated in cer-
tain sports—particularly under varying background condi-
tions and among players from opposing teams—features
of players within the same team tend to be highly entan-
gled. It should be noted that as the number of frames in-
creases, the bounding boxes for players are likely to over-
lap, adding another layer of complexity to the task. This
qualitatively demonstrates the high degree of appearance
similarity among within the proposed TeamTrack dataset.

3.4. Motion Patterns

TeamTrack dataset includes complex group motion patterns
compared to popular pedestrian datasets. To quantitatively
confirm this, we computed IoU (Intersection-over-Union)
on adjacent frames and frequency of relative position switch
as motion patterns metrics in the TeamTrack dataset and
compare them with other MOT datasets, as described in
DanceTrack [35].
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Figure 6. Average IoU on adjacent frames: TeamTrack compared
with MOT17, MOT20, and DanceTrack.

Figure 7. Average IoU on adjacent frames: within TeamTrack
datasets.

IoU on adjacent frames: We calculate the average IoU of
bounding boxes on adjacent frames for each video. A low
IoU implies fast-moving objects or low video frame rates.
The averaged IoU on adjacent frames for a video with N
objects and T frames is defined as follows:

T—

—

U IOU(BtZ‘,Bt+1i).

=1 t=1

B 1
- N(T-1)

Figure 6 shows the IoU on adjacent frames in TeamTrack
and other datasets. The results indicate that TeamTrack had
a slightly lower average IoU on adjacent frames compared
to MOT17/MOT?20, and a similar average IoU on adjacent
frames to DanceTrack. The lower average IoU on adjacent
frames suggests that objects/regions move, change in shape
or size, or disappear to a greater extent in TeamTrack and
DanceTrack compared to MOT17/MOT20.

Figure 7 shows the results among the six TeamTrack
datasets. Soccer Top View and Handball Side View had
the lowest and highest average IoU on adjacent frames, re-
spectively, indicating that objects maintained their position,
size, and shape to a greater extent in handball.

Figure 8. Frequency of relative position switch: TeamTrack com-
pared with MOT17, MOT20, and DanceTrack

Figure 9. Frequency of relative position switch: within TeamTrack
datasets.

Frequency of relative position switch: To measure the
diversity of object motions, we compute the average fre-
quency of relative position switches for each video based on
[35]. Frequent position switches can be attributed to highly
non-linear motion patterns and result in frequent crossovers
and inter-object occlusions. The average frequency of rela-
tive position switch is defined as follows:

N N T-1
. Zizl Zj?gi Zt:l sw(Bi, Btj, Bit1is Bey1j)

S ON(T — 1)(N — 1) ’

where sw is an indicator function, where sw(-) = 1 if the
two objects swap their left-right relative position or top-
down relative position on the adjacent frames, sw(-) = 0
if there is no swap.

Figure 8 shows the results in TeamTrack and other
datasets, with DanceTrack showing significantly higher fre-
quencies and TeamTrack marginally exceeding those of
MOT datasets. This likely stems from the dynamics of team
sports, where intense activity often concentrates around the
vicinity of the ball or specific events such as corner kicks,
potentially leading to an underrepresentation in averaged
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data. Further analysis within TeamTrack, as illustrated in
Figure 9, reveals considerable differences among sports. In
the context of sports, we interpet the frequency of relative
position switch to indicate the activity/intensity level of the
match; therefore, in this case, Basketball had a higher level
of intensity than Soccer and Handball.

4. Experiments and Evaluation

Our evaluation showcases the utility of the TeamTrack
dataset and the distinct challenges it introduces for advanc-
ing research in MOT. We concentrate on three pivotal com-
ponents: object detection (Section 4.1), trajectory forecast-
ing (Section 4.2), and finally, multi-object tracking (Section
4.3). In each task we followed a conventional data splitting
ratio of 70:15:15 for training, validation, and testing sets.

4.1. Object Detection

Object detection is a crucial step for accurately tracking an
object. Detection accuracy typically correlates with track-
ing performance, particularly with methods that employ the
tracking-by-detection paradigm.

Setup: We fine-tuned the YOLOvVS model [18] on each
dataset. We adjusted the image size using YOLOv8m,
YOLOV8n, and YOLOv8x. The image sizes employed were
512, 1280, and 2560. The training utilized the AdamW
optimizer[20] with an initial learning rate of 0.001, along-
side data augmentation techniques (mosaic, flipping, scal-
ing, color jittering) to enhance model robustness. Test-Time
Augmentation (TTA) was also implemented.

Metrics: We evaluate the performance of the model using
the mean Average Precision (mAP) with intersection over
union (IoU) thresholds ranging from 0.5 to 0.95 (mAPs.95).
This metric measures the model’s accuracy in terms of both
position and size of the predicted bounding boxes.

Results: Table 3 showcases YOLOvVS8’s object detection
performance across various sports, separated by camera per-
spectives. The notably lower mAP scores for pre-trained
and fine-tuned models in top-view setup can be largely at-
tributed to the smaller appearance of players from high-
altitude drone footage. This results in smaller IoU values,
making it challenging to achieve high (mAPsg.95) scores.
Nevertheless, fine-tuning significantly improved the mAP
scores for all sports and views. The result underscores the
importance of fine-tuning for enhancing model performance
and highlight the influence of camera perspective on detec-
tion accuracy.

4.2. Trajectory Forecasting

Trajectory forecasting involves predicting future positions
of subjects and can enhance object tracking. For instance,
it facilitates the re-identification or continued tracking of
objects lost due to occlusions, This is particularly critical
in scenarios where appearance cues are unreliable, such as

Table 3. COCO mAPs.05s performance of the object detection
model on different sports, split by TV (Top-View) and SV (Side-
View) camera perspectives. For basketball, SV* denotes the side
view with drone camera.

Football Basketball Handball

YOLOVS8 V- Sv. TV SV SV* SV

Pre-trained 14 112 25 154 105 9.8
Fine-tuned 23.5 52.7 66.6 68.7 68.6 71.0

in team sports. We implement both Constant Velocity and
LSTM motion models to analyze the movement patterns of
individual players within the teamstrack dataset, aiming to
grasp the motion characteristics of the TeamTrack dataset.

Setup: We adopted the experiment settings from social-
LSTM [I], observing trajectories for 3.2 seconds and
predicting the trajectories for the next 4.8 seconds (144
frames). The data was centralized and normalized, and a
5% overlap sliding window was employed. Data augmen-
tation was carried out by horizontal and vertical flipping on
each sequence. Standard procedures, such as teacher forc-
ing and learning rate scheduling, were implemented.

Metrics: Our trajectory forecasting model is assessed based
on its Root Mean Square Error (RMSE) for one step ahead
prediction. RMSE is a standard metric used in trajectory
forecasting as it provides an aggregate measure of predic-
tion error. It quantifies how much, on average, our model’s
predictions deviate from the actual data. A lower RMSE in-
dicates a more accurate model, providing a reliable means
of comparing different models or setups.

Results: Table 4 showcases the RMSE of both motion mod-
els across different sports, measured immediately (1 frame)
and a few seconds (144 frames) post-observation. Errors
tend to accumalte over time. LSTM generally outperforms,
validating the hypothesis that TeamTrack dataset has di-
verse and non-linear movement. Incorporating team labels
and models that capture player interactions, such as graph
neural networks, could further improve accuracy, present-
ing an avenue for future research.

Table 4. RMSEs of the trajectory forecasting models on different
sports, which are averaged over all trajectories.

Video Football Basketball Handball
Model/Frames 1 144 1 144 1 144

004 799 006 768 0.04 6.08
0.02 6.50 0.04 519 0.02 4.07

Constant
LSTM
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4.3. Multiple Object Tracking

In this section, we present a direct evaluation our proposed
TeamTrack dataset by applying two state-of-the-art track-
ing algorithms, ByteTrack and BoT-SORT. Additionally, we
compare these results with earlier benchmarks performed
on the MOT17 and DanceTrack datasets to highlight the
challenges posed by our TeamTrack dataset.

Setup: Similar our prior experiments, we split the dataset
and proceeded to train YOLOVS detectors on the training
set, followed by hyperparameter optimization using the val-
idation set. For our evaluations, we employed the Ultralyt-
ics versions of ByteTrack and BoT-SORT. When comparing
to the DanceTrack and MOT17 datasets, we concentrated on
ByteTrack alone due to the public availability of results for
both datasets, allowing for a direct comparison of perfor-
mance across all sports within the TeamTrack dataset.
Metrics: To evaluate the different aspects of tracking, we
report results using several commonly used metrics: HOTA,
MOTA, IDF1, DetA, and AssA. Each metric uniquely em-
phasizes aspects of detection (DetA), association perfor-
mance (AssA, IDF1), or both (HOTA, MOTA), providing
a comprehensive evaluation of tracking capabilities.
Results: The results across different sports and view per-
spectives, detailed in Table 5. Both methods showed sim-
ilar trends. In the Handball SideView, models achieved
the highest HOTA, indicating effective tracking capabilities
in this setting. The Basketball scenarios, SideView, Side-
View2 and TopView, revealed contrasting outcomes: the
SideView?2 posed significant challenges, while the TopView
showed better performance metrics, suggesting variations
in model efficacy based on the angle of view. In the Soccer
datasets, the SideView perspective generally yielded bet-
ter performance compared to the TopView. Table 6 shows
a comparison of these scores compared to those of other
datasets. Although TeamTrack’s average scores across all
sports do not position it as the most challenging dataset,
the variability within specific sports and perspectives under-
scores its diversity and complexity. This variability marks
TeamTrack as a uniquely challenging dataset for developing
and evaluating tracking algorithms.

5. Conclusion

In this study, we introduced TeamTrack, a dataset for multi-
object tracking (MOT). The TeamTrack dataset captures ob-
ject appearances and movements across football, basket-
ball, and handball games using full-pitch, high-resolution
videos. Our work included experiments in object detection,
trajectory forecasting, and MOT. Our findings reveal oppor-
tunities for further research. Specifically, the TeamTrack
dataset has limitations regarding team and venue diversity.
Expanding the dataset to include a wider range of teams and
locations could improve the model generalization. We hope

Table 5. Performance of the various MOT models.

(a) Soccer SideView
Method HOTA DetA AssA MOTA IDF1

BoT-SORT 584 62.8 545 84.2 73.8
ByteTrack 59.3 64.4 547 86.4 74.2

(b) Soccer TopView
Method HOTA DetA AssA MOTA IDF1

BoT-SORT  51.9 51.1 533 42.7 65.7
ByteTrack 53.7 514 565 43.3 69.2

(c) Basketball SideView
Method HOTA DetA AssA MOTA IDFl1

BoT-SORT  75.2 792 714 94.3 85.9
ByteTrack 76.2 755 769 89.3 88.6

(d) Basketball SideView2
Methods HOTA DetA AssA MOTA IDF1

BoT-SORT  47.3 67.6  33.1 80.2 50.8
ByteTrack 42.9 54.7  33.7 65.0 53.6

(e) Basketball TopView
Method HOTA DetA AssA MOTA IDF1

BoT-SORT  66.3 62.7 703 89.0 93.9
ByteTrack 65.7 65.1 66.4 89.6 92.0

(f) Handball SideView
Methods HOTA DetA AssA MOTA IDFl1

BoT-SORT  75.1 75.5 747 91.6 89.7
ByteTrack 73.5 73.8 732 89.4 87.6

Table 6. ByteTrack tracking metrics compared across various
datasets, including average scores from TeamTrack and individ-
ual scores from sports with the highest (Basketball-SV) and lowest
(Basketball-SV2) HOTA scores.

Dataset HOTA DetA AssA MOTA IDF1

TeamTrack Ave. 61.9 64.2 60.2 77.2 77.5
Basketball-SV 76.2 75.5 76.9 89.3 88.6
Basketball-SV2 42.9 54.7 33.7 65 53.6
MOT17 63.1 64.5 62 80.3 77.3
DanceTrack 47.1 70.5 31.5 88.2 51.9

the TeamTrack dataset will contribute to the development of
more effective tracking models.
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