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Abstract

Accurate motion capture is useful for sports motion anal-
ysis, but requires higher acquisition costs. Monocular or
few camera multi-view pose estimation provides an acces-
sible but less accurate alternative, especially for sports mo-
tion, due to training on datasets of daily activities. In ad-
dition, multi-view estimation is still costly due to camera
calibration. Therefore, it is desirable to develop an accu-
rate and cost-effective motion capture system for the daily
training in sports. In this paper, we propose an accurate
and convenient sports motion capture system based on un-
supervised fine-tuning. The proposed system estimates 3D
joint positions by multi-view estimation based on automatic
calibration with the human body. These results are used
as pseudo-labels for fine-tuning of the recent higher per-
formance monocular 3D pose estimation model. Since the
fine-tuning improves the model accuracy for sports motion,
we can choose multi-view or monocular estimation depend-
ing on the situation. We evaluated the system using a run-
ning motion dataset and ASPset-510, and showed that fine-
tuning improved the performance of monocular estimation
to the same level as that of multi-view estimation for run-
ning motion. Our proposed system can be useful for the
daily motion analysis in sports.

1. Introduction
In many sports, it is important for athletes to capture motion
data to obtain useful information and objectively evaluate
movement. To accurately capture motion data, conventional
markerless motion capture techniques use a large number of
cameras to estimate 3D joint positions. However, it is dif-
ficult to prepare many cameras for daily use. In addition,
a camera calibration process that determines the camera’s
position in the world coordinate system is time-consuming.
To address the above problems, some monocular 2D or 3D
pose estimation [1–3, 13, 15, 19, 22, 23, 31, 33] includ-
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Figure 1. An overview of our proposed system. Conventional
motion capture requires many specialized cameras and calibra-
tion costs. Our system can directly estimate 3D keypoints with
few (smartphone) cameras based on automatic calibration, and
improve the estimation performance through unsupervised fine-
tuning. After fine-tuning, we can choose monocular or multi-view
estimation depending on the training situation.

ing mesh estimation [5, 11], multi-view pose estimation
with few cameras [6, 21, 29], and pose estimation using
IMUs [32] are proposed. Since these approaches allow low-
cost measurement, they are applied to some sports to detect
faults in race walking [24, 25] and edge errors in figure skat-
ing [27, 28], and motion analysis for martial arts [4, 18] and
gymnastics [10].

Monocular pose estimation is a highly developed tech-
nique in computer vision for estimating 2D / 3D joint posi-
tions (keypoints) from a single-view image or video. The
2D pose estimation models [1, 2, 23, 31] estimate two-
dimensional keypoints in the image pixel coordinate sys-
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tem, and the 3D pose estimation models [3, 13, 19, 22, 33]
estimates three-dimensional keypoints in the camera co-
ordinate system from the sequence of the 2D keypoints.
These are useful to get keypoints and calculate motion data
easily. However, most available pose estimation datasets
[8, 9, 14, 30] are for daily activity motion such as walk-
ing, standing, and cooking, which makes it difficult to apply
the pre-trained pose estimation models to sports. Therefore,
pre-trained models using such datasets need to be fine-tuned
using annotated sports motion data for application [24, 25],
but the annotation cost is expensive for athletes. More-
over, current monocular 3D pose estimation cannot accu-
rately estimate the scale of the target, and it is also difficult
to estimate the translation of the motion. For example, in
[3, 19, 22, 33], the scale of the person in the dataset is ig-
nored in the data pre-processing, and the models estimate
the depth relative to the root joint.

A different approach from the monocular pose estima-
tion is the attempt to estimate 3D keypoints and motion data
from multi-view videos [6, 21, 29]. Since multiple cameras
can solve the occlusion problem, the accuracy of multi-view
estimation is higher than that of monocular estimation. This
approach can also estimate the absolute depth of the person,
which is useful for sports motion analysis. On the other
hand, an accurate multi-view system such as Opencap [29]
requires a camera calibration similar to markerless motion
capture. Such a calibration process is desirable for automa-
tion to improve the convenience of daily motion analysis,
as it takes extra time for measurements. To avoid calibra-
tion, Ingwersen et al. [6] train the monocular 3D pose esti-
mation model using multi-view consistency loss, which has
constraints on camera positioning to take advantage of con-
sistency loss. As a result, the applicability and convenience
of measurements may be limited.

For automatic calibration, some studies [12, 16, 20, 26]
use the moving human body as a calibration target. In par-
ticular, Lee et al. [12] combine the results of multi-view
monocular 3D pose estimation to automatically compute
extrinsic parameters of the cameras. After calibration, they
attempt unsupervised fine-tuning of the monocular 3D pose
estimation model using more accurate keypoint coordinates
obtained from the calibration result. This study evaluates
daily activities such as walking, and it is not obvious that
their method is effective for sports motion. If this tech-
nique could be applied to sports motion, it would be useful
to create pose estimation models optimized for sports mo-
tion, which is important for motion analysis.

In this paper, we propose an accurate and convenient mo-
tion capture (especially pose estimation) system for sports.
Our research aims to realize cost-effective 3D pose esti-
mation that can be easily measured with simple equipment
for daily sports training. An overview of our research is
shown in Figure 1. Compared to conventional motion cap-

ture, which requires many cameras, our proposed system
does not require many cameras and an explicit camera cali-
bration process, and is easier to measure. In addition, since
it can optimize the monocular 3D pose estimation model
for sports motion with unsupervised fine-tuning, we can
choose multi-view or monocular estimation depending on
the training situation. In the system, we first estimate 3D
keypoints using multi-view monocular pose estimation re-
sults from automatically calibrated camera videos. For the
automatic calibration, we use the previous approach [12].
The coordinates of the keypoints obtained from the multi-
view 3D pose estimation are then used as pseudo-labels to
fine-tune the monocular 3D pose estimation model. Many
pre-trained monocular 3D pose estimation models are not
optimized for sports motion, but in this study it is optimized
for sports by unsupervised fine-tuning without annotation
cost. Multi-view pose estimation is required for fine-tuning,
but does not require a large number of cameras, and there
are no strict constraints on placement. After unsupervised
fine-tuning, we can also use the fine-tuned monocular 3D
pose estimation model alone. This costless and accurate
pose estimation system has great advantages for daily train-
ing use, especially for amateurs. We evaluate the system
on the original running motion dataset and the Australian
Sports Pose Dataset (ASPset-510) [17], which contain more
intense motion than typical motion datasets, and show that
the proposed method is useful for convenience sports mo-
tion analysis. Our running motion dataset consists of videos
captured with a smartphone camera, showing that the pro-
posed system can also be used with simple video cameras.

To summarize, our contributions are:
1. We propose a cost-effective single or multi-view mo-

tion capture system optimized for sports motion with un-
supervised fine-tuning. It utilizes automatic calibration
with the human body and can support daily sports train-
ing analysis.

2. We demonstrate that our proposed system can improve
the accuracy of 3D pose estimation for sports motion
with no annotation cost.

3. We show that the monocular 3D pose estimation after
fine-tuning is comparable to multi-view, especially for a
running motion dataset.

2. Methods
Our goal is to realize a cost-effective motion capture sys-
tem optimized for sports motion with unsupervised fine-
tuning of the monocular 3D pose estimation model using
pseudo-labels. Pseudo-labels are 3D keypoint coordinates
obtained from automatically calibrated multi-view videos
using monocular 2D and 3D pose estimation models. Fig-
ure 2 shows the process of training the monocular 3D pose
estimation model using the unsupervised method. The pro-
cess can be divided into three steps. First, multi-view videos
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Figure 2. Our proposed system process. In Section 2.1, we describe monocular pose estimation for multi-view pose estimation based on
automatic calibration. In Section 2.2, we describe pseudo-label generation using automatic calibration results. In Section 2.3, we describe
the unsupervised fine-tuning of the monocular 3D pose estimation model to optimize it for target sports motion.

are separately input into the 2D pose estimation model, and
2D keypoints of persons in each video are estimated. We
use ViTPose [31] as the 2D pose estimation model as de-
scribed in Section 2.1. The 2D keypoints are input into the
monocular 3D pose estimation model, and 3D keypoints of
the person are estimated. We use MotionAGFormer [22] as
the 3D pose estimation model.

Next, pseudo-labels are generated by triangulating the
2D keypoints with extrinsic camera parameters obtained
from automatic camera calibration, which is described in
Section 2.2. The extrinsic camera parameters are calibrated
using 3D keypoints from each video. In this step, we auto-
matically calibrate the extrinsic parameters (camera rotation
and translation) using the previous study method [12]. Af-
ter calibration, more accurate 3D keypoints are estimated by
triangulation using extrinsic parameters and 2D keypoints
from each camera view. Finally, the monocular 3D pose
estimation model is fine-tuned using triangulated 3D key-
points as pseudo-labels as described in Section 2.3. The
monocular 3D pose estimation model pre-trained by general
pose datasets cannot perform well for sports motion. Since
we do not use labeled data in the whole process, our pro-
posed method is effective to optimize the model for sports
motion with low cost. After fine-tuning, we can use the
monocular 3D pose estimation model alone or the more ac-
curate multi-view estimation, depending on the situation. In
our research, we use the original running motion dataset and
Australian Sports Pose Dataset (ASPset-510) [17] for the

experiments. We did not use other sports motion datasets,
such as SportsPose dataset [7] because it does not provide
multi-view data.

2.1. 2D & Monocular 3D Pose Estimation

To estimate 2D keypoints from videos, we use ViTPose
[31], which is pre-trained with the COCO keypoint dataset
[14]. ViTPose is the state-of-the-art model for this dataset.
Since ViTPose is the top-down pose estimation model, we
detect the bounding box of the persons and estimate 2D key-
points of each person.

For monocular 3D pose estimation, we use MotionAG-
Former [22], which is pre-trained with the Human3.6M
dataset [8]. In monocular 3D pose estimation, 2D keypoints
are input into the model and 3D keypoints are estimated by
exploiting spatial and temporal features. MotionAGFormer
achieves fast and accurate 3D pose estimation by capturing
global features of 2D keypoints with the Transformer and
local features with a graph convolutional network. How-
ever, in ASPset-510, the size of the person in the image
is much smaller than that in the Human3.6M dataset, and
the pre-trained model does not estimate well. Therefore,
for ASPset-510, we augment the Human3.6M dataset by
randomly scaling the input 2D keypoints to a smaller size,
creating a pre-trained model that is different from the one
pre-trained in the MotionAGFormer paper (see Section 3.2
for more details).
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2.2. Pseudo-Label Generation

When generating pseudo-labels, we first automatically cal-
ibrate the cameras using the previous study method [12] to
obtain extrinsic camera parameters. Before automatic cali-
bration, we manually calibrate intrinsic camera parameters
K. Since the intrinsic parameters are camera-specific, we
only need to calibrate them once.

The purpose of this calibration method is to estimate
the camera rotation R and translation t using monocular
3D pose estimation results. Following the previous method
[12], 3D keypoints from each monocular 3D pose estima-
tion are considered as “oriented points”, which are the set
of point coordinates x ∈ R3 and orientation v ∈ R3. The
oriented point ⟨xc

i ,v
c
i ⟩ in the coordinate system of camera

c is

xc
i = Rcxi + tc, (1)

vc
i = Rcvi, (2)

where i (i = 1, . . . , N ) is the keypoint index, Rc is the
rotation of camera c, and tc is the translation of camera c.
The point yc

i ∈ R2 projected on the image of camera c is

λc
i

[
yc
i

1

]
= Kcxc

i = Kc (Rcxi + tc) , (3)

where Kc is the intrinsic parameter and λc
i is the scaling

factor. For rotation estimation, when N orientations vc
i are

estimated at camera c, we obtain the following equation
from equation 2.[

vc
1 . . .v

c
N

]⊤
=

[
v1 . . .vN

]⊤
Rc⊤ ,

⇔ V c = V Rc⊤ . (4)

When vc
i are estimated over C cameras, we have[
V 1 · · ·V C

]
= V

[
R1⊤ · · ·RC⊤

]
,

⇔ V 1:C = V R1:C , (5)

where V 1:C is the N × 3C matrix and R1:C is the 3× 3C
rotation matrix. From the previous study [12], using the
SVD V 1:C = Y DZ⊤ (where Y ∈ RN×3, D ∈ R3×3,
and Z⊤ ∈ R3×3C), we can define M as the inverse matrix
of the 3× 3 submatrix on the left side of Z⊤ scaled by

√
C

(C is the number of cameras) and factorize V 1:C as follows.

V = Y DM−1, R1:C = MZ⊤. (6)

From equation 6, the rotation matrix R1:C is estimated us-
ing Z⊤ obtained from the SVD of the matrix V 1:C , which
is the set of known estimated orientations.

After rotation estimation, collinearity and coplanarity
constraints are used in [12] for translation estimation. From

equations 1 and 3, xc
i and nc

i =
[
nc
i,x, n

c
i,y, n

c
i,z

]⊤
=

(Kc)
−1

[yc
i , 1]

⊤ is are collinear and their cross product is
zero:

nc
i × xc

i = [nc
i ]× (Rcxi + tc)

=
[
[nc

i ]× Rc [nc
i ]×

]
[xit

c]

= 03×1, (7)

where [nc
i ]× is the skew-symmetric matrix of nc

i . In addi-
tion to the collinear, since back projection through the cor-
responding point of cameras c and c′ (nc

i and nc′

i ) and the
vector pointing from camera c to c′ (tc − tc

′
) are coplanar,

their scalar triple product is zero:((
Rc⊤nc

i

)
×

(
Rc′⊤nc′

i

))⊤ (
Rc⊤tc −Rc′⊤tc

′
)

=
(
mc,c′

i

)⊤ (
Rc⊤tc −Rc′⊤tc

′
)
= 0

, (8)

where mc,c′

i denotes
(
Rc⊤nc

i

)
×

(
Rc′⊤nc′

i

)
. For N cor-

responding points, equation 8 is
(
mc,c′

1

)⊤
Rc⊤ −

(
mc,c′

1

)⊤
Rc′⊤

...
...(

mc,c′

N

)⊤
Rc⊤ −

(
mc,c′

N

)⊤
Rc′⊤


[
tc

tc
′

]
= 0N×1. (9)

When N correspondence points are estimated
from C cameras, equations 7 and 9 are the fol-
lowing linear equations with 3N + 3C unknowns[
x1 . . . xN t1 . . . tC

]⊤
:

A
[
x1 . . . xN t1 . . . tC

]⊤
= 0. (10)

A is the sparse matrix of the left side of equations 7 and 9
([nc

i ]× Rc, [nc
i ]×, mc,c′

i Rc⊤, and −mc,c′

i Rc′⊤), vertically
arranged. We can estimate the translation t and the key-
points x in the world coordinate at the same time from equa-
tion 10. The above method also allows robust calibration
against outliers using RANSAC, since extrinsic parameters
can be estimated by estimating three or more correspond-
ing key points from each camera. Lee et al. also introduce
bandle adjustment for more accurate calibration [12]. How-
ever, in our research, we do not use RANSAC and bandle
adjustment to avoid the high computational cost. Instead,
the monocular pose estimation model is replaced with a
higher performance model to maintain calibration perfor-
mance (HRNet [23] and VideoPose3D [19] are replaced by
ViTPose [31] and MotionAGFormer [22]).

Since camera rotation and translation can be estimated
by automatic calibration, these parameters can be used to
obtain 3D keypoints in the world coordinate system by tri-
angulating from 2D keypoints. The triangulated 3D key-
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points are more accurate than monocular 3D pose estima-
tion results. Therefore, we can use the triangulated key-
points as the pseudo-labels to fine-tune the monocular 3D
pose estimation model for sports motion.

2.3. Unsupervised Fine-tuning

In the fine-tuning step, we use the generated pseudo-labels
and train the MotionAGFormer pre-trained with the Hu-
man3.6M dataset. Since the Human3.6M dataset does not
contain the intense sports movements such as running, the
pre-trained model performance is not sufficient. Therefore,
there is room to improve the performance of the model, even
if the pre-trained model is fine-tuned with pseudo-labels
that are not accurate label data. Fine-tuning improves the
performance of monocular 3D pose estimation, which in
turn improves the performance of multi-view pose estima-
tion based on automatic camera calibration. Depending on
the purpose of the motion analysis and the environment, we
can use either convenient monocular 3D pose estimation or
multi-view pose estimation with increased accuracy.

3. Experiments
3.1. Dataset

We used the original running motion dataset and ASPset-
510 [17] for experimental evaluation. Note that in both
datasets, the head and nose keypoints were excluded from
the evaluation because the format of the keypoints in the
ground truth and in the monocular pose estimation model
(Human3.6M 17 keypoints format) are slightly different.

To create the original dataset, we captured running
videos from three directions in the indoor lab. Figure 3
shows the video capture environment for our dataset. The
videos were captured at 4K 60fps using iPhone 11 and 13.
The three runners were captured for five minutes each. Each

：iPhone
：Running route
：Capture area

Camera 3

Camera 1

Camera 2

Figure 3. The video capture environment. We use smartphones to
capture video. The capture area is 4 meters × 2 meters. We also
capture running motion using a markerless motion capture system.

runner ran forward and backward over a distance of approx-
imately 8 meters. The effective capture area for all cameras
to capture the runners was a rectangular area of 4 meters ×
2 meters. A markerless motion capture system (Theia3D,
Theia Inc.) with nine high-speed cameras (Miqus Video,
Qualisys Inc.) was also used to capture the runners, and the
resulting data was used as ground truth to evaluate the pose
estimation.

After video capture, the time of the iPhone videos was
synchronized with the ground truth motion capture data,
and only the time when the runner was present in all videos
was trimmed. As a result, a set of videos from three direc-
tions of a runner passing through the capture area and the
3D joint position coordinates (ground truth) of the runner
in the world coordinate system were obtained. In the end,
a total of 233 sets, about 20,000 frames of data, were ob-
tained. We used this dataset for unsupervised fine-tuning
and to evaluate the pose estimation performance. Note that
since the camera that captured the ground truth data is dif-
ferent from the camera that captured the video data, and
there are no joint position coordinates in the camera coor-
dinate system, the joint position coordinates in the world
coordinate system are used for the evaluation.

ASPset-510 contains 17 different amateur subjects per-
forming 30 sports-related actions each, for a total of 510
action clips. Training and validation data also contains 3
videos at 4K 50fps from different directions for each action
clip. Note that the test data only has video from one direc-
tion for each action clip. For the fine-tuning, we need to
generate pseudo-labels using multi-view videos. Further-
more, the previous study [12] deals with a small dataset
for evaluation. For example, only the S11 Walking 1 se-
quence from Human3.6M was used for evaluation. There-
fore, we used more data, the validation split from ASPset-
510, which contains 60 action clips (about 45,000 frames),
for fine-tuning and evaluation.

3.2. Implementation and Evaluation

We evaluated the performance of the monocular 3D pose es-
timation and multi-view 3D pose estimation based on auto-
matic calibration before and after unsupervised fine-tuning.
Our proposed system was implemented in Python 3 with
Pytorch. Our code and dataset are available at https://
github.com/SZucchini/unsupervised-fine-
tuning-pose3d-for-sports.

For the experiment of ASPset-510, to pre-train the Mo-
tionAGFormer model using the Human3.6M dataset with
scale augmentation, we prepared the same pre-processed
training data as in [22, 33] and randomly rescaled the input
and label from 0.1 to 0.5. We used the same parameters and
loss functions for pre-training and unsupervised fine-tuning
as in [22].

To evaluate monocular 3D pose estimation, we used the
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: prediction,              : ground truth

input Multi-view Camera 1 Camera 2 Camera 3

Figure 4. Comparison of multi-view and monocular estimation results after procrustes analysis using specific examples from the running
motion dataset. The red dots and line are the estimation results and the black dots and line are the ground truth pose. Camera 1 was placed
in front of the runner, with large errors in both the upper and lower body. Camera 2 was placed to the right side of the runner, with large
errors in the hip and elbow joints. Camera 3 was placed to the left rear side of the runner, with an error in the right knee.

Procrustes Analysis Mean Per Joint Position Error (PA-
MPJPE). This metric has also been used in many previous
studies [6, 19, 22, 33]. PA-MPJPE calculates the average
Euclidean distance between joint positions after aligning
the pose of each frame by rotation, translation, and scal-
ing. Thus, even if the coordinate system of the predicted
pose and the ground truth pose are different, the pose error
can still be evaluated. In this research, since our running
motion dataset has no camera coordinate ground truth data
(only world coordinate), PA-MPJPE is appropriate for the
evaluation metric.

However, PA-MPJPE cannot correctly evaluate the ac-
curacy of the trajectory and distance of the pose because it
aligns each frame pose by rotation and translation. There-
fore, we used “Sequencial” PA-MPJPE (SPA-MPJPE) to
evaluate multi-view pose estimation in addition to PA-
MPJPE. In contrast to PA-MPJPE, SPA-MPJPE calculates
common rotation, translation, and scaling parameters for all
frames and aligns the entire pose sequence instead of align-
ing each frame individually. This metric also evaluates how
well the trajectory matches the ground truth in the multi-
view estimation results. The same idea as SPA-MPJPE was
introduced as loss functions to evaluate pose consistency in
another multi-view pose estimation study [6]. The units for
both evaluation metrics are millimeters.

3.3. Results

In this subsection, we first present the results of the
pre-training of the MotionAGFormer on the Human3.6M
dataset with scale augmentation. Next, we present the re-
sults of monocular and automatic calibration-based multi-
view 3D pose estimation using the MotionAGFormer pre-
trained on the Human3.6M dataset. Then, we present the
results of both pose estimation methods using the unsuper-
vised fine-tuned MotionAGFormer.

Pre-training with Human3.6M with scale augmentation
improved the PA-MPJPE of monocular 3D pose estimation

Table 1. Comparison of monocular and multi-view estimation us-
ing a pre-trained model. Both metric units are in millimeters.

PA-MPJPE SPA-MPJPE

Running w/ Monocular 73.83 -
Running w/ Multi-view 55.91 123.19
ASPset w/ Monocular 74.90 -
ASPset w/ Multi-view 45.21 98.99

for ASPset-510 from 207.98 (pre-training w/o scale aug-
mentation) to 74.89. Without this pre-training, the auto-
matic calibration using monocular 3D pose estimation re-
sults did not work well for ASPset-510. Note that we did
not use ASPset-510 data for pre-training. This result indi-
cates that the current monocular pose estimation models are
affected by the scale of the training data.

Table 1 shows the pose estimation results using the pre-
trained model for each dataset. Compared to monocular
pose estimation, the multi-view pose estimation based on
automatic calibration performed well for both datasets. The
results indicate that the automatic calibration in the previous
study is also effective for sports motion. On the other hand,
SPA-MPJPE was worse than PA-MPJPE, indicating that it
is difficult for the results of the pre-trained model to evalu-
ate the motion trajectory and distance moved. We also show
the example pose result of the multi-view and pre-trained
monocular pose estimation methods for the running motion
dataset in Figure 4. In monocular estimation, the estima-
tion error between the predicted pose and the ground truth
pose was larger than in multi-view estimation. Especially
for Camera 1, the error was the largest of all monocular
estimation results. We assume that it is difficult for the pre-
trained model to estimate a person moving in the direction
of the optical axis of the camera. The above results sug-
gest that the performance of the monocular pose estimation
model could be improved by using the more accurate multi-
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Figure 5. Comparison of PA-MPJPE of each pose estimation
method before and after unsupervised fine-tuning. The fine-tuned
model is the model after two iterations of fine-tuning.

view estimation results as pseudo-labels for fine-tuning.
For the fine-tuning result, we show the comparison of

PA-MPJPE of each estimation method using the pre-trained
and fine-tuned model in Figure 5. The fine-tuned model
is the best model for PA-MPJPE during four fine-tuning
iterations. The relationship between fine-tuning iterations
and PA-MPJPE will be discussed later. Figure 5 shows
that unsupervised fine-tuning with pseudo-labels reduces
PA-MPJPE for both monocular and multi-view estimation.
In particular, in a running motion dataset, the performance
of monocular pose estimation was nearly equal to that
of multi-view pose estimation after fine-tuning. This re-
sult indicates that we can use fine-tuned monocular 3D
pose estimation alone to analyze motion that is unaffected
by rotation or translation error, such as joint angles. In
ASPset-510, fine-tuning also improved the performance of
the monocular pose estimation model, although not as much
as in the running motion dataset. The performance of the
multi-view pose estimation was also improved to the same
level as the running motion dataset. We also show the com-
parison of SPA-MPJPE in Figure 6 to evaluate the accuracy
of the pose sequences. Fine-tuning also improved SPA-
MPJPE, but the error was larger compared to PA-MPJPE.
This suggests that the proposed method may be less effec-
tive for analyzing motion affected by rotation or translation
errors, such as vertical motion or distance moved.

To evaluate the relationship between the unsupervised
fine-tuning iteration and the improvement in the pose es-
timation results, Figure 7 shows the relationship between
the fine-tuning iteration and PA-MPJPE for monocular and
multi-view pose estimation. In the case of the running mo-
tion dataset, PA-MPJPE changed slightly after the second
iteration for multi-view pose estimation. On the other hand,
for monocular pose estimation, PA-MPJPE approached the
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Figure 6. Comparison of SPA-MPJPE of each pose estimation
method before and after unsupervised fine-tuning. SPA-MPJPE
was still larger than PA-MPJPE.

limit of improvement after two iterations. This is because
the pseudo-labels are also improved after the first itera-
tion and contribute to the improvement of the monocu-
lar pose estimation in the second iteration. In the case of
ASPset-510, PA-MPJPE approached the improvement limit
for monocular and multi-view estimation after one iteration.
For monocular pose estimation, the best performance of PA-
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Figure 7. The relationship between the fine-tuning iteration and
PA-MPJPE for monocular and multi-view pose estimation.
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MPJPE in supervised learning on some datasets is around
30 millimeters [22, 33]. Although the datasets are differ-
ent and cannot be strictly compared, we consider that the
performance of the monocular estimation for the running
motion dataset and that of the multi-view estimation for
ASPset-510 after unsupervised fine-tuning was improved
close to some supervised monocular models [19, 22]. In
the study by Ingwersen et al. [6], although they achieve
higher performance results on the sports motion dataset [7],
it is based on supervised learning with constraints on cam-
era placement and thus cannot be compared to our method.

Finally, we show the example monocular pose estimation
results before and after fine-tuning for the running motion
dataset in Figure 8. The pre-trained result is the same as
Camera 1 result in Figure 4, and the fine-tuned result is also
Camera 1. The pre-trained model had the largest estimation
error for the video captured by Camera 1. However, the es-
timation error of Camera 1 was significantly reduced, and
the result for the other cameras was the same. For the run-
ning motion dataset, fine-tuning allows for accurate monoc-
ular estimation comparable to multi-view, although it is a
monocular pose estimation.

: prediction,              : ground truth

pre-trained fine-tuned

Figure 8. Comparison of monocular 3D pose estimation results
of Camera 1 before and after fine-tuning using specific examples
from the running motion dataset.

4. Conclusion
In this paper, we proposed a cost-effective motion capture
system based on the unsupervised fine-tuned pose estima-
tion model. For the unsupervised fine-tuning, to gener-
ate pseudo-labels, we use the automatic camera calibration
method proposed in the previous study and show that it is
also effective for sports motion. To evaluate our proposed
system, we used the original running motion dataset and
ASPset-510, which contains many kinds of sports motion
videos. The evaluation results show that our method can
improve the performance of the monocular 3D pose esti-
mation model for sports motion. We also showed that the
fine-tuned monocular estimation model is comparable to the
multi-view estimation for the running motion. Since our
method does not require special equipment, preparation for

measurement, and annotation costs for model tuning, it can
be useful for the daily sports training motion analysis.

While our method performed well on the data used for
unsupervised fine-tuning, we could not evaluate MPJPE,
which is a general metric for evaluating pose estimation,
due to the limitations of our dataset. The results of the
PA-MPJPE evaluation show that our method is useful for
analyzing motions that are not affected by rotation or trans-
lation errors, such as joint angles. However, for more useful
motion analysis, we need to evaluate MPJPE in future work.
In addition, the versatility of our method for other motion
data is unclear. The performance also differed between
datasets for the running motion and ASPset-510. To im-
prove our method, defining the confidence score of pseudo-
labels by spatio-temporal constraints on motion and weight-
ing labels during training could be effective.
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