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Abstract

Image understanding is a foundational task in computer
vision, with recent applications emerging in soccer pos-
ture analysis. However, existing publicly available datasets
lack comprehensive information, notably in the form of pos-
ture sequences and 2D pose annotations. Moreover, cur-
rent analysis models often rely on interpretable linear mod-
els (e.g., PCA and regression), limiting their capacity to
capture non-linear spatiotemporal relationships in complex
and diverse scenarios. To address these gaps, we intro-
duce the 3D Shot Posture (3DSP) dataset in soccer broad-
cast videos, which represents the most extensive sports im-
age dataset with 2D pose annotations to our knowledge.
Additionally, we present the 3DSP-GRAE (Graph Recur-
rent AutoEncoder) model, a non-linear approach for em-
bedding pose sequences. Furthermore, we propose Au-
toSoccerPose, a pipeline aimed at semi-automating 2D and
3D pose estimation and posture analysis. While achieving
full automation proved challenging, we provide a founda-
tional baseline, extending its utility beyond the scope of
annotated data. We validate AutoSoccerPose on Soccer-
Net and 3DSP datasets, and present posture analysis results
based on 3DSP. The dataset, code, and models are available
at: https://github.com/calvinyeungck/3D-
Shot-Posture-Dataset.

1. Introduction
Refining the interpretation of images is a fundamental aim
in computer vision [26]. It encompasses tasks such as image
classification [26], object detection [38], and human pose
estimation [23]. In sports, image interpretation has signif-
icantly contributed to foul detection [43], player identifica-
tion [42], and tracking [39]. Recently, such computer vision
techniques have been applied to analyze soccer posture ef-
fectively [49].

In soccer posture analysis, a high-quality dataset and the
analysis method hold profound effects on the analysis re-
sult. Concerning the pose dataset, for soccer pose and other

Figure 1. Overview of AutoSoccerPose.

human movements, the pose sequence is often captured in
2D given the use of a standard RGB camera [30]. Cur-
rently, publicly available 2D pose datasets include MPII [2],
OCHuman [55], and COCO-WholeBody [23]. For soccer
and sports image datasets, options include LSP [24], Sports-
102 [4], LearningFromThePros [49], and Sport Image [48].
These datasets have been effectively utilized for their desig-
nated tasks. Regarding the analysis method, existing studies
have analyzed the goalkeeper [36, 49] and shooter [19, 33]
postures as they directly affect the match result. With a
simplified scenario and linear model, studies have provided
valuable insights into posture dynamics.

However, concerning the dataset, the large 2D pose
datasets often lack a sufficient number of soccer images,
and the soccer-specific datasets provide single images of
postures instead of sequences, failing to represent entire
movements. Regarding the analysis method, the simplified
scenarios may not fully capture the complexities of real-
world situations, limiting the applicability of results, espe-
cially at the highest competitive levels. Additionally, the
utilization of linear models may overlook more intricate re-
lationships in the data.

Therefore, in this study, we propose the 3D Shot Pos-
ture (3DSP) dataset, consisting of annotated 2D pose se-
quences of shooting instances from professional soccer
matches. We introduce the 3DSP-GRAE (Graph Recurrent
AutoEncoder) model, a non-linear model designed to en-
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code pose sequences into vectors, and AutoSoccerPose, a
semi-automated pipeline for extracting 2D and 3D pose se-
quences directly from professional soccer broadcast videos
for analysis, as illustrated in Fig. 1. The contributions of
this paper are as follows:
• 3DSP (3D Shot Posture) dataset, which comprises 2D

pose annotations, 3D pose estimations, and tracklet in-
formation extracted from professional broadcast videos.

• 3DSP-GRAE model, a novel nonlinear spatiotemporal
model designed to encode pose sequences into vector rep-
resentations effectively.

• AutoSoccerPose, a pipeline tailored for semi-automated
3D posture analysis in soccer, specifically focusing on
player shot movements.

• Extensive evaluations at each stage of AutoSoccerPose,
accompanied by an analysis of shooting postures utilizing
the 3DSP dataset.

2. Related work
2.1. 2D pose image datasets

For images consisting of humans, 2D human pose estima-
tion has emerged as a well-established research topic. This
task aims to accurately define human body part segments or
joint keypoints in the image. Commonly used benchmarks
for this task include OCHuman [55], COCO-WholeBody
[23], both derived from COCO [26], and MPII [2] dataset,
covering various scenarios such as daily activities, human
interactions, and sports events.

In the realm of sports, image frequently revolves around
the posture of athletes. While traditional computer vision
tasks such as image classification [4], 2D/3D pose estima-
tion [20, 24], and its extension, human parsing [48], can be
undertaken, the intricate anatomy involved, coupled with
challenging image conditions like motion blur [4, 24], am-
plify the difficulty of these tasks. In addition, advancements
in computer vision techniques and soccer analytics, partic-
ularly those concerning player action value [11, 53, 54],
have opened avenues for leveraging soccer player posture
in computer vision-based player evaluation [49].

Nonetheless, while multiple datasets consist of pose im-
ages of professional soccer athletes, there are a few limita-
tions when applying them for posture analysis:
1. General-purpose dataset: Despite the potential abun-

dance of images in conventional datasets, the proportion
of professional soccer images is low due to the multi-
tude of classes they encompass. Furthermore, these im-
ages do not specifically cater to distinct soccer actions,
posing challenges for comparison.

2. Partial information: Often, a complete soccer action,
such as shooting, is captured through multiple sequen-
tial images (poses) [19, 33]. However, current datasets
only offer a single pose image for each discrete action.

Moreover, 2D pose data relies on computer vision-based
model estimation, introducing errors given the unique
characteristics of sports images.
To mitigate these issues, we have collected the 3DSP

dataset (see Sec. 4), currently the largest repository of pro-
fessional soccer human pose data with 2D posture annota-
tions. This dataset focuses on the shooting action, provid-
ing sequential images of the shooting movement. In Tab. 1,
we summarize the existing datasets containing professional
soccer pose images along with the 3DPS dataset.

2.2. Posture analysis in soccer

Posture analysis holds profound importance in soccer, given
its direct impact on player performance and strategic opti-
mization. Previous studies have predominantly focused on
shooting and goalkeeping postures, recognizing their piv-
otal roles in influencing match outcomes.

In shooting analysis, researchers have delved into unrav-
eling the intricate differences between various kicking tech-
niques. For instance, [33] examined disparities between
non-rotational shots and instep kicks, while [19] investi-
gated distinctions among straight shots, knuckling shots,
and curve shots. Both studies utilized advanced camera se-
tups and reflective markers to capture 2D poses of college
soccer players’ shooting postures. The differentiation was
based on 2D pose data, kinematic parameters, and principal
component analysis techniques.

On the other hand, studies on goalkeeping posture, such
as [49], have focused on analyzing goalkeeper saving tech-
niques in penalty and 1-vs-1 situations. Utilizing techniques
like estimated 3D pose extracted with PoseHG3D [58], en-
gineered features, and K-means clustering, researchers ex-
amined the various postures used by goalkeepers. Similarly,
[35, 36] examined the strategies employed by goalkeepers
in penalty kicks. They employed logistic regression to infer
the relationship between orientation and strategies, where
the orientation was engineered from the 2D pose of goal-
keepers and penalty takers, utilizing OpenPose [6] for pose
estimation.

While previous studies provide valuable insight into the
posture of soccer players, several drawbacks could limit the
development of posture analysis:
1. Simplified scenario: Previous datasets are mainly col-

lected under simplified scenarios, such as competitive
settings with few players or controlled experimental en-
vironments. However, soccer actions often occur in
occluded and crowded situations captured in broadcast
videos.

2. Labor-intensive: Collecting data for posture analysis
involves labor-intensive processes including image pre-
processing, pose estimation or annotation, and quality
control. Even for the datasets used in this study, the col-
lection process had taken months to complete.
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Dataset
2D Pose

Annotation
Sequential

Images
Images in

Soccer
Number of

Images
Soccer
Action Purpose

LSP [24] ✓ ✗ 2k 2D Pose Estimation
Sport Image [48] ✓ ✗ 1.3k Human Parsing
MPII [2] ✓ ✗ 0.2k 41k 2D Pose Estimation
OCHuman [55] ✓ ✗ 4.7K 2D pose estimation
COCO-WholeBody [23] ✓ ✗ 200K 2D pose estimation
LearningFromThePros [49] ✗ ✗ 1k 1k GoalKeeping Posture Analysis
Sports-102 [4] ✗ ✗ 0.2k 14k Image Classification

3DSP (Ours) ✓ ✓ 4k 4k Shooting Posture Analysis

Table 1. Overview of human pose in sports (professional soccer included) dataset. The datasets are arranged in order of their publication
years. Due to the challenges associated with collecting 3D pose annotations during professional football matches, there currently exists no
publicly available dataset providing 3D pose annotations for professional football.

3. Linear model: Previous methods like principal compo-
nent analysis and logistic regression offer valuable in-
sights but may fail to capture non-linear spatiotemporal
relationships present in posture data.
Given these limitations, this study proposes the Au-

toSoccerPose for semi-automated 3D posture estimation
from professional soccer broadcast video (see Sec. 3) and a
non-linear graph-based sequential model 3DSP-GRAE for
posture analysis (see Sec. 3.5).

3. Proposed method
AutoSoccerPose1 aims to extract 3D poses from broadcast
videos and analyze the extracted posture. Each stage of Au-
toSoccerPose corresponds to an existing computer vision
task in soccer. Fig. 1 provides an overview of the stages
involved in AutoSoccerPose, and each stage is elaborated
upon in the subsequent sections.

3.1. Broadcast video

Similar to all posture analyses, Clips that capture the
player’s posture are fundamental to AutoSoccerPose. For
broadcast video, there exist publicly available professional
matches videos that could be collected, as in [36], or exist-
ing publicly available datasets like SoccerNet [12, 17] that
provide a large number of videos (nearly 800 hours of pro-
fessional soccer matches). Nonetheless, while the posture
of professional players in broadcast videos is the most in-
formative and commonly available data, other less complex
video footage like those in previous studies (see Sec. 2.2)
could be utilized in AutoSoccerPose.

Besides, accurate timestamp annotation of the action,
shooting in this case, is critical to cutting clips from the
broadcast video and the performance of AutoSoccerPose

1For detailed specifications of the AutoSoccerPose, please refer to
https://github.com/calvinyeungck/3D-Shot-Posture-
Dataset.

(see Sec. 5.2). The timestamp of important events like
shooting could easily be retrieved in the post-match re-
port, manually annotated, or publicly available datasets
[12, 17, 34] as it was a fundamental type of soccer data an-
notation. Furthermore, accurate timestamp annotation has
been a growing soccer computer vision task in recent times,
in SoccerNet Challenge 2023 [10] to facilitate broadcast
video understanding, the task action spotting (locate when
and what type of event happened in the broadcast video) has
been proposed. We reserve the integration of action spotting
for future research.

To be more specific, the AutoSoccerPose was currently
developed with the videos and timestamp annotation in Soc-
cerNet [12, 17], with frames resolution of 1280×720 and 25
fps. The retrieved clips used for AutoSoccerPose cover 0.5
seconds before and after the annotated timestamps. How-
ever via observation, the first 20 frames cover the entire shot
movement for most of the shots, therefore only the first 20
were utilized for each shot.

3.2. Tracking

Tracking in AutoSoccerPose aims to identify soccer players
in video clips and create tracklets: pixel coordinates of each
respective player within each frame of the clips. Conven-
tionally, two main tracking methods are utilized: tracking-
by-detection [5, 13, 50], where objects are initially identi-
fied with bounding boxes in each frame and then associ-
ated (tracked) based on various conditions; and end-to-end
tracking [32, 51, 57], where tracklets (bounding boxes of an
object) are generated directly from the model.

State-of-the-art soccer player tracking models, achiev-
ing the best performance in the SoccerNet Challenge 2023,
predominantly follow the tracking-by-detection approach.
However, these tracking models are often not open-sourced.
Here, we adopt the tracking by detection method using
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widely used models: fintuned YOLOv82 as the detector and
BoTSort [1] as the tracking algorithm. For performance
evaluation and discussion of YOLOv8-BoTSort, refer to
Sec. 5.1.

3.3. Tracklet selection

Tracklet selection aims to pinpoint the tracklet associated
with the shooter. This task can be viewed as a facet of image
comprehension, where the objective is to classify whether a
sequence of images pertains to the shooter. Analogous im-
age comprehension tasks in soccer encompass sport type
classification [4], foul detection [14, 18], and action spot-
ting [10]. Nonetheless, many existing studies propose intri-
cate deep-learning architectures that necessitate substantial
and diverse datasets for training or finetuning.

To avoid the need for an extensive dataset, we opt for a
simpler approach employing a Convolutional Neural Net-
work (CNN) model1. Our model processes the sequence of
images through three standard convolutional blocks, each
comprising a convolutional layer, ReLU activation func-
tion, max pooling layer, batch normalization, and dropout
layer. Subsequently, the feature maps of the images within
the sequence are concatenated. Finally, the concatenated
feature maps are passed through a three-layer Multi-Layer
Perceptron (MLP) with ReLU activation to predict whether
the tracklet contains the shooter.

For each tracklet, we extract a sequence of images span-
ning frames 10 to 15. From each frame, we crop a tracklet
image of size 96 × 96 pixels, with the center of the bound-
ing box of the detected player (as described in Sec. 3.2)
serving as the center of the tracklet image. The shooter
tracklet for each clip is determined by selecting the tracklet
with the highest estimated probability from the CNN model.
Definitions of clips and frames can be found in Sec. 3.1,
while details regarding the selection of necessary frames are
outlined in Sec. 5.2.

3.4. 2D & 3D pose estimation

The objective of 2D and 3D pose estimation is to derive
posture details from video clips, with a specific emphasis on
capturing the movements of the shooter. 3D pose estimation
methods can be categorized into direct 3D pose estimation
[8, 21, 37] and 2D-3D lifting [30, 41, 52], which involves
converting 2D pose coordinates into 3D space. The MPI-
INF-3DHP dataset [31] is a widely used benchmark for in-
the-wild 3D human pose estimation, resembling scenarios
found in soccer broadcasts. Among the best-performing
models, those employing the 2D-3D lifting approach, such
as MotionAGFormer [30], are prevalent and thus adopted
for 3D pose estimation in AutoSoccerPose.

For 2D pose estimation, methodologies are typically
classified into bottom-up approaches [6, 7, 16], which de-

2YOLOv8: https://docs.ultralytics.com/.

tect points in the image and then associate keypoints to form
2D poses, and top-down approaches [22, 41, 52], which first
detect individuals using object detection models and then
perform pose estimation within cropped bounding boxes.
Top-down approaches, often more efficient, are favored,
with RTMPose [22] selected for AutoSoccerPose due to its
superior performance on datasets like COCO-whole body
[23] and our dataset, 3DSP.

In implementation, for shooter tracklets, we extract se-
quences of 20 images, each sized 100 × 100 pixels, cov-
ering the detected players’ bounding boxes and entire bod-
ies, akin to Sec. 3.3. However, cropping images larger than
the bounding box might include other players besides the
shooter. To mitigate this, as the shooter is always centered
in the cropped image, we select the shooter’s 2D pose as the
one with the center of body (torso) joint closest to the image
center. The 2D pose from RTMPose [22] is then lifted to 3D
using MotionAGFormer [30]. The performance of both 2D
and 3D pose estimation is further discussed in Sec. 5.3.

3.5. Posture analysis

Posture analysis seeks to distinguish various shooting styles
among soccer players. Given that shot movements are typ-
ically unlabeled, unsupervised learning represents the most
suitable approach for this task. Furthermore, as outlined
in Sec. 2.2, prior research [19, 36] predominantly employs
linear models such as Principal Component Analysis (PCA)
and logistic regression to infer 3D posture, potentially lim-
iting their ability to capture non-linear spatiotemporal re-
lationships. Hence, to conduct unsupervised learning on
posture data with a model capable of capturing the non-
linear spatiotemporal properties, we propose the 3DSP-
GRAE (Graph Recurrent AutoEncoder) model1 to encode
the latent (representation) vector, illustrated in Fig. 2. This
model draws inspiration from the Graph Convolutional Net-
work (GCN) [25] and LSTM AutoEncoder (LSTM-AE)
[40]. While several graph and sequential-based models ex-
ist [9, 30, 47], none are explicitly designed for 3D pose en-
coding. Thus, leveraging the relatively simple structure of
3DSP-GRAE offers the advantage of requiring less data for
training compared to fine-tuning existing models.

In general, the 3DSP-GRAE model utilizes an encoder-
decoder architecture. For the encoder, 3D poses pass
through a GCN to extract spatial relationships. Subse-
quently, the processed 3D poses are sequentially fed into
an LSTM to extract nonlinear and temporal relationships.
The output of the LSTM at the last layer and the last hid-
den state serve as the latent variables (vector representa-
tion) of the respective shot movement. In the decoder, an-
other LSTM takes the latent variables and the processed 3D
poses with GCN as input, but in reverse order. The LSTM
output is then converted back to coordinates using another
GCN. Consequently, the decoder output comprises the pre-
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Figure 2. Overview of the 3DSP-GRAE model. The variables X , H , C, and t in the LSTM layer denote the input features, hidden state,
cell state, and time step, respectively.

dicted 3D poses. Lastly, by employing the mean square er-
ror between the predicted 3D pose and the original input,
the 3DSP-GRAE model can be trained.

In detail, each pose comprises 17 joints, as outlined in
[30], with each joint represented by XYZ coordinates. The
GCN consists of 2 simplified graph convolutional layers
with ReLU activation, and the adjacency matrix represents
connections between the joints with self-connections. Com-
pared to the original graph convolutional layer [25], the pa-
rameter for the adjacency matrix is ignored, considering it
to be the identity matrix. Furthermore, the encoder LSTM
takes the pose input from pose 1 to 20 in temporal order.
Meanwhile, in the decoder LSTM, the first input is zero-
padded, followed by poses 20 to 2.

4. 3DSP dataset

In this section, we introduce the 3D Shot Posture (3DSP)
dataset3, a crucial resource for developing AutoSoccerPose,
serving as a benchmark for 2D pose estimation in profes-
sional soccer match broadcast videos. Furthermore, as ev-
idenced by the comparative study outlined in Tab. 1, 3DSP
comprises sequential images capturing soccer movements
previously unavailable, with a specific focus on distinct soc-
cer actions such as shooting. 3DSP also represents the
largest collection of soccer images annotated with 2D pose
information. Additionally, the 3DSP dataset facilitates ad-
vancements in soccer posture analysis and offers direct ap-
plicability for future studies in this domain. Moreover, the

33DSP dataset available at https : / / github . com /
calvinyeungck/3D-Shot-Posture-Dataset.

3DSP dataset could be extended easily with AutoSoccer-
Pose.

Data collection process: 3DSP mirrors the process of
AutoSoccerPose (with more details and code provided on
GitHub 1), albeit with manual refinement and annotation to
ensure the highest quality of 2D poses. Initially, broadcast
videos were sourced from SoccerNet [12, 17], and utilizing
SoccerNet annotations on actions, the videos were trimmed
(0.5 seconds before and after the annotated timestamp, to-
taling 25 frames). Subsequently, tracklets for these clips
were generated employing a fine-tuned YOLO v82 in con-
junction with BoT-Sort [1]. Furthermore, the tracklet corre-
sponding to the shooter was manually selected and refined,
and a cropped image was produced using the bounding box.
The 2D poses of the first 20 frames (determined empiri-
cally) were then manually annotated and lifted to 3D uti-
lizing the MotionAGFormer [30].

To summarize the dataset structure, we collected data
on shot movements from 22 unique matches in the 2015-
2016 English Premier League. The training set comprises
20 cropped images (100 × 100 pixels) per shot movement,
with a total of 200 shot movements, resulting in 4000 im-
ages. Annotations encompass tracklets, 2D poses, and esti-
mated 3D poses. In the test set, there are also 20 cropped
images per shot movement, with a total of 10 shot move-
ments; however, only tracklet information is available. For
both sets of data, references to SoccerNet [12, 17] are pro-
vided, along with the code utilized for extending 3DSP with
SoccerNet [12, 17].
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Model Precision Recall AP0.5

YOLOv82 95.24% 46.02% 80.33%
RT DETR [28] 92.01% 50.83% 80.41%
RT DETR [28] (finetuned) 85.00% 94.30% 85.10%
YOLOv82 (finetuned) 95.70% 93.80% 97.30%

Table 2. Soccer player detection models performance. Ranked by
AP, with the top-performing result highlighted in bold. Precision
quantifies the proportion of correctly detected bounding boxes out
of all detected ones, recall measures the proportion of correctly
detected bounding boxes out of all ground truth boxes, and AP
calculates the area under the precision-recall curve.

5. Experiments
In this section, we verify each step of the AutoSoccerPose
(see Sec. 3). More details is available at GitHub1.

5.1. Tracking performance on SoccerNet [12]

In this subsection, we assess the performance of AutoSoc-
cerPose tracking using the test set provided in the Soccer-
Net Player Tracking Challenge 2023 [10]. This dataset
comprises ground truth tracking annotations derived from
broadcast videos in SoccerNet [12, 17]. We conduct evalu-
ations for both player detection and tracking.

For player detection, we employ evaluation metrics in-
cluding precision, recall, and average precision (AP) (see
Tab. 2 caption). The evaluated models encompass state-of-
the-art object detection models introduced subsequent to the
SoccerNet Player Tracking Challenge 2023 [10], including
YOLOv8 2 and RT DETR [28], alongside their finetuned
variants trained on the SoccerNet Player Tracking Chal-
lenge 2023 data [10], utilizing the Python package Ultra-
lytics. The outcomes are delineated in Tab. 2. The result
signified that YOLOv8 with finetuning yielded the most fa-
vorable player detection results. The relatively diminished
recall rate before finetuning was attributed to player occlu-
sion. However, with finetuning, YOLOv8 achieved a 97%
AP, in contrast to RT DETR [28], which exhibited an in-
crease in AP but a decrease in precision.

Concerning tracking evaluation, the compared method-
ologies encompass the baseline and the top-performing ap-
proach (Kalisteo [29]) from the SoccerNet Player Tracking
Challenge 2023 [10], in addition to two prevalent tracking
techniques integrated with the finetuned YOLOv8. The out-
comes are depicted in Tab. 3. It was evident that the Kalis-
teo method [29] continued to outperform popular methods.
However, the absence of publicly available code for the
Kalisteo method [29] posed a limitation. Furthermore, the
test set of the SoccerNet Player Tracking Challenge 2023
[10] comprised numerous clips featuring substantial player
occlusion, whereas in most shooting scenarios, player oc-
clusion was less pronounced. Hence, we ascertain that BoT-

Method DetA AssA HOTA

SoccerNet Baseline [10] 38.38% 49.81% 43.67%
YOLOv82-ByteTrack [56] 63.75% 42.31% 51.85%
YOLOv82-BoTSort [1] 68.80% 53.40% 60.54%
YOLOX [15]-Kalisteo [29] 73.64% 73.76% 73.65%

Table 3. Tracking performance on SoccerNet player tracking chal-
lenge 2023 [10] test set. The evluation metrics include DetA
(Detection Accuracy), AssA (Association Accuracy), and HOTA
(Higher Order Tracking Accuracy) [27]. Ranked by HOTA, with
the top-performing result highlighted in bold.

Required
Frames Precision Recall ACC

CLIP
ACC

Frame 12-13 20.81% 77.50% 76.52% 52.50%
Frame 11-14 38.33% 57.50% 90.02% 65.00%
Frame 10-15 57.78% 65.00% 93.90% 75.00%
Frame 9-16 41.82% 57.50% 90.94% 65.00%

Table 4. Tracklet selection model performance utilizing different
numbers of frames. Ranked by the number of required frames,
with the top-performing result highlighted in bold.

Sort suffices for AutoSoccerPose.

5.2. Tracklet selection required features

After verifying the tracking, the next crucial step is tracklet
selection, performed using a CNN model in AutoSoccer-
Pose (see Sec. 3.3). Given the absence of existing models
tailored for this specific task, we focus on validating essen-
tial features, namely the frames containing pivotal informa-
tion. Our evaluation criteria encompass precision and re-
call metrics, alongside accuracy (ACC) and clip accuracy
(CLIP ACC). The ACC metric assesses the CNN model’s
accuracy in classifying a tracklet as the shooter’s tracklet.
Additionally, CLIP ACC evaluates the accuracy of tracklet
selection, specifically in identifying the shooter’s tracklet
from all tracklets within a clip (see Sec. 3.3). 200 clips are
sourced from SoccerNet [12, 17], complemented by tracklet
information from the 3DSP train set (see Sec. 4).

The feature set is based on tracklet images spanning
frames 12 and 13, bounding the timestep of the shot move-
ment (see Sec. 3). We iteratively enrich the feature set by
progressively incorporating the frames preceding and suc-
ceeding the aforementioned frames. For each feature set,
the CNN model is trained using PyTorch with an 80/20
train-validation split. Grid searching is employed to opti-
mize the number of convolutional layers, MLP layers, and
the hidden size of the MLP layer. The results are summa-
rized in Table Tab. 4. Notably, employing tracklet images
from frames 10 to 15 yields the best performance. While
the tracklet selection model demonstrates reasonable per-
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Model Head Sho El Wri Body Hip Knee Ank PDJ AUC

HRNet [41] 94.56% 63.38% 21.14% 17.29% 96.35% 78.68% 47.46% 34.94% 56.08% 47.38%
DWPose [52] 86.69% 85.80% 72.75% 58.88% 89.88% 71.41% 45.41% 32.98% 67.94% 55.80%
RTMPose [22] 96.81% 95.08% 86.22% 76.01% 96.98% 95.62% 88.30% 79.00% 89.51% 73.56%

Table 5. 2D pose estimation performance on 3DSP. Ranked by PDJ, with the top-performing result highlighted in bold. Sho, El, Wri, and
Ank represent Shoulder, Elbow, Wrist, and Ankle respectively. Each column for body parts indicates the average PDJ for the specified
body part, while the PDJ column denotes the mean PDJ across all 17 keypoints.

Figure 3. AutoSoccerPose qualitative results. Each row depicts the AutoSoccerPose 2D and 3D pose estimation from a broadcast video,
and the columns denote which frame of the video. The top photo represents the broadcast video frame for each cell, while the bottom-left
and bottom-right images correspond to the 2D and 3D pose estimations, respectively.

formance, there remains potential for further enhancement.

5.3. 2D pose estimation performance on 3DSP

This subsection aims to evaluate the performance of 2D
pose estimation models under zero-shot conditions. We uti-
lized the image and 2D annotations from the 3DSP dataset
train set (see Sec. 4). The dataset provides annotations for
17 keypoints representing various body joints. To assess the
performance, we employed the Percent of Detected Joints
(PDJ) evaluation metric [45]. In this metric, a keypoint is
considered detected if the normalized distance between the
predicted and ground truth keypoints is under 0.5. Addition-
ally, the area under the PDJ curve (AUC) was calculated to
report the performance across different thresholds.

Given the dynamic nature of the shooting movements,
especially significant rotation of the shoulders and hips dur-
ing shots, the distance between the contralateral shoulder
and hip keypoints may not accurately represent the torso’s

largest distance consistently. Therefore, we normalized the
distance between detected keypoints and ground truth key-
points by the distance between the center of the shoulder
and the center of the hip, as suggested in [44].

The evaluated models include DWPose [52] and RTM-
Pose [22], which are the top-performing models in the
COCO-WholeBody dataset [23] for 2D pose estimation
tasks. Additionally, we included HRNet [41], which is the
2D pose estimation model integrated into MotionAGFormer
[30]. The results were summarized in Tab. 5, indicating
that RTMPose [22] exhibited the best performance across
all joint detections. The detection errors predominantly oc-
curred in limb detection. Through observation, two primary
reasons were identified: when the shooter faced backward,
the left and right limbs could be misidentified, and when the
shooter faced sideways, one side of the limbs was covered
by the torso.
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Figure 4. K-means clustering visualization.

5.4. 3D pose estimation on non-annotated data

Here, we validate the results obtained by AutoSoccerPose
for estimating 3D poses from broadcast videos, instead of
relying on 2D annotations from 3DSP. This approach di-
rectly showcases what AutoSoccerPose users can retrieve
without annotated data. Qualitative results are depicted in
Fig. 3, comprising the outcomes of three clips: a) a shot
towards the goal on the right from outside the box, b) a
shot towards the goal on the left from outside the box, and
c) a shot towards the goal on the left from inside the box.
While the majority of 2D and 3D pose estimations were sat-
isfactory, two limitations of AutoSoccerPose were identi-
fied: motion blur, as in Clip (a) Frame 15, which impeded
the accurate detection of limb keypoints, and occlusion be-
tween the shooter and other players, as in Clip (b) Frame
20, hindered the detection of limb positions.

5.5. Soccer shots posture analysis

This subsection is dedicated to analyzing the 3D posture of
professional soccer players. We leverage the 3D pose data
available in the 3DSP dataset (see Sec. 4) to ensure high
data fidelity for insightful analysis. Our goal is to identify
various shooting techniques. To achieve this, we employ
the 3DSP-GRAE model (see Sec. 3.5) to extract represen-
tative vectors from sequential shot movements (comprising
3D postures from 20 frames). Subsequently, we apply K-
means clustering [3] to categorize these vectors. The result-
ing clusters are visualized in a 2-dimensional space using t-
distributed stochastic neighbor embedding (t-SNE) [46] and
illustrated in Fig. 4. Furthermore, we showcase the shot
movements closest to each cluster centroid by displaying
frames 11 to 15 in Fig. 5. Based on observation, Cluster
1 and Cluster 2 represent inside shots, whereas Cluster 3
denotes instep shots. The definitions are as follows:
• Inside shot: Precise technique where the ball is struck

with the inside of the foot, allowing for accurate place-
ment into goal corners. Involves swinging the foot inward
toward the opposite foot for finesse shots.

• Instep shot: Powerful technique involving striking the
ball with the area of the foot containing the laces. Com-

Figure 5. Shot movement closest to the cluster centroid. The row
and column denote the cluster and frame, respectively.

monly used for long-range or forceful shots. Players ap-
proach the ball straight on and use the laces to generate
significant power.

Comparing Cluster 1 and 2 with statistics, Cluster 1 exhib-
ited a 16% greater shooting feet ankle average travel dis-
tance. Moreover, the maximum vertical coordinate in Clus-
ter 1 surpassed that of Cluster 2 by 33%, while the minimum
knee angle was 17% lower. Statistics revealed that shots
in Cluster 1 generated a larger swing motion compared to
those in Cluster 2, likely attributable to deeper knee bending
and a more pronounced vertical trajectory. This enabled en-
hanced momentum transfer and force generation during the
shot. The identified shooting style holds promise for fur-
ther utilization in player evaluation for optimizing posture
and style, as demonstrated in [49]. Meanwhile, when the
aforementioned analysis was performed with linear model
PCA and K-means [3], the clustering result could only re-
flect shots to the left, center, and right, demonstrating the
need for a non-linear spatiotemporal model (see GitHub1).

6. Conclusion
In this paper, we introduce AutoSoccerPose, a framework
designed for estimating both 2D and 3D shooting postures
of soccer players and conducting comprehensive posture
analysis. Additionally, we present the 3DSP dataset, which
stands as the largest annotated 2D pose dataset for profes-
sional soccer images. Through experimental validation, we
showcase the performance of AutoSoccerPose across each
stage of the framework, culminating in an assessment of its
overall efficacy. Given that each component of AutoSoccer-
Pose corresponds to a well-established task in computer vi-
sion, the seamless integration of future state-of-the-art mod-
els into AutoSoccerPose would readily enhance its capabil-
ities. We envision that our research will inspire automated
posture analysis in soccer and various other sports.
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