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Supplementary Material

The supplementary material is organized into the follow-
ing sections:
1. Section A: Architecture of D2A-HMR 3D human mod-

eling technique.
2. Section B: Comparison of the proposed pitcher identifi-

cation network with jersey number techniques.
3. Section C: Qualitative comparison of the PitcherNet sys-

tem and various components including the depth en-
coders and D2A-HMR 2.0.

4. Section D: Limitations of the proposed system.

A. D2A-HMR Architecture
In this section, we explain the D2A-HMR architecture pro-
posed in [11] in detail. D2A-HMR leverages a transformer-
based architecture by incorporating scene-depth informa-
tion, which is crucial to resolving the ambiguities inherent
in single-image data. By jointly learning the distribution of
human body shapes and scene-depth, D2A-HMR aims to
produce robust 3D human mesh reconstructions, especially
for scenarios with unseen data variations.

Algorithm 1 Distribution and Depth Aware Human Mesh
Recovery

1: Input: Image (I)
2: Initialization:
3: E(I) → D
4: F(I, D)
5: Positional Embedding:
6: Pe(= ω1Pl + ω2Ps) → zimg, zdepth
7: Self-Attention (MHSA):
8: MHSA(zimg) → z′img
9: MHSA(zdepth) → z′depth

10: Cross-Attention (MHCA):
11: MHCA(z′img, z′depth) → zc
12: Learnable Fusion Gates:
13: z = ω3z

′
img + ω4z

′
depth + (1− ω3 − ω4)zc

14: Masked Modeling:
15: qmask = Mask(z)
16: Distribution Matching:
17: R(z) → σ, µ
18: µ̄ = (µ− µgt)/σ → NF → LRLE

19: Silhouette Decoder:
20: Isilh = D(z, k, s, p)
21: Output: 3D mesh vertices, P = R(z), P ∈ ℜ6890×3

Algorithm 1 outlines the core steps of the D2A-HMR
model. Initially, a depth encoder E(I) takes an input im-
age (I) and generates a depth map (D). Concurrently, both

I and D are fed as input to the feature extractor (F ), fol-
lowed by hybrid positional encoding Pe, yielding tokens
zimg and zdepth. These tokens subsequently undergo pro-
cessing by self-attention and cross-attention modules, re-
sulting in z′img , z′depth and zc respectively. Fusion gates
then merge these outputs into a singular token, z.

To enhance model performance, three refinement mod-
ules are employed: masked modeling, distribution model-
ing, and a silhouette decoder. A log-likelihood residual ap-
proach facilitates distribution modeling, enabling the model
to learn deviations in the underlying distribution, and con-
sequently generalize more effectively to unseen data. Ad-
ditionally, masked modeling and a dedicated silhouette de-
coder refine the mesh shape and feature representation.

B. Pitcher Identification

The impact of the pitcher identification task is compared
with the classical techniques that use jersey number cues
are presented in Table 6. The classification labels include
pitcher, batter, catcher, and player (which includes the field-
ers and referee). The inputs for the classification task are all
the tracklets obtained from the player detection and track-
ing algorithm, with outputs representing the class for the
tracklet detections.

Table 6. Comparison of our model with state-of-the-art jersey
number identification techniques on MLBPitchDB dataset [11].

Test Accuracy ↑
Gerke et al. [21] 64.47
Li et al. [30] 88.29
Vats et al. [48] 89.46
Balaji et al. [2] 93.68
Balaji et al. [3] 94.70

Ours 96.82

Table 6 shows that methods that only rely on jersey num-
bers for player identification underperform on this dataset
due to the frequent absence of visible jersey numbers in
many video frames. This highlights the importance of
decoupling player actions within individual tracklets (se-
quences of detections associated with a single player) for
improved identification accuracy. Therefore, our proposed
approach, which incorporates a TCN block to decouple the
underlying actions in each tracklet, achieves a significant
performance increase of 2.12% compared to methods solely
dependent on jersey numbers.



Figure 7. Qualitative results. Performance of the PitcherNet system in capturing various pitch statistics from the player tracklets. Here, P
red. denotes the prediction from the 3D pose information and GT denotes the ground truth game data.
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Figure 8. Qualitative results. Qualitative comparison of the vari-
ous depth estimation techniques in MLBPitchDB baseball dataset.

C. Qualitative Results

PitcherNet System. The provided results in Figure 7
highlight the qualitative performance of the PitcherNet sys-
tem in the MLBPitchDB dataset [11]. These visualizations
underscore the effectiveness and robustness of our system
in achieving accurate alignment with input pitch tracklets.

Depth Encoder. Our approach utilizes a monocular depth
estimation model as the initial step in the 3D human model
generation process. Figure 8 qualitatively compares the
performance of various techniques, including AdaBin [7],
ZoeDepth [8], DINOv2 [41], and Depth Anything [54]. As
evident from the figure, Depth Anything [54] exhibits con-
sistently superior depth estimation accuracy compared to
the other methods. Consequently, we leverage [54] as the
depth encoder within our 3D human model framework.

D2A-HMR 2.0. Figure 9 presents qualitative results ob-
tained by D2A-HMR 2.0 on various outdoor activities.
These visualizations demonstrate the model’s capability to
achieve accurate alignment with input images, even in com-
plex real-world scenarios. This highlights the effectiveness
and robustness of D2A-HMR 2.0 for handling diverse out-
door environments.



Figure 9. Qualitative results. Qualitative comparison of D2A-HMR 2.0 on COCO and sports datasets with unusual poses.

D. Limitations
PitcherNet, like many video analysis systems, is suscepti-
ble to error accumulation due to its reliance on a chain of
interconnected components. Each step, from player identi-
fication to pitch analysis, introduces a degree of error. These
errors can propagate throughout the processing pipeline, po-
tentially leading to inaccuracies in the final extracted statis-
tics. For instance, as shown in Figure 10, motion blur during
fast pitching can hinder the ability of the 3D human model
(e.g., D2A-HMR 2.0) to accurately estimate joint positions,
particularly in the pitching hand. This, in turn, significantly
affects the performance of the extracted pitch statistics.

Figure 10. Limitations of the work. The 3D human model falters
to estimate the mesh vertices with severe motion blur.

To address the issue of severe motion blur and self-
occlusion, we propose investigating strategies such as part-
based regression (inspired by works such as [27]). This en-
hancement aims to better equip the model to effectively han-
dle challenging conditions characterized by occlusion and
motion blur.
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