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Figure 1. The structure of the three-layer CNN encoder in our
method. This CNN encoder accepts player movement data as input
and predicts one of the 19 types of action labels.

1. Labels and CNN Model in Behavior Cloning

In the behavior cloning model, action labels were used to
define the types of movements or actions of athletes, pri-
marily classified based on speed and direction. Details of
these action labels are shown in Tab. 1.

Additionally, the labels for passing actions were classi-
fied based on the distance of the pass and its characteris-
tics. Details of the labels are shown in Tab. 2. In the be-
havior cloning model, the CNN encoder used for predicting
the next step action of a player making a pass is shown in
Fig. 1. Considering the extensive use of simulators, this en-
coder modifies the CNN model used in GRF to enhance its
efficiency and speed. It is a three-layer CNN encoder model
with an added fully connected layer to predict 19 types of
actions.

2. Scheduling Methods

In this experiment, we evaluated the impact of schedul-
ing methods used when simultaneously training on real and
synthetic data. Utilizing the number of epochs e and the
epoch duration parameter EM , we experimented with four
methods to integrate the losses into L from real data Lr and
synthetic data Lv . α and β are hyperparameters.

Fixed approach The loss function for the fixed approach
can be represented as shown in Eq. (1).

L = αLr + βLv (1)

In the fixed approach, the weight for the loss of real data Lr

and the weight for the loss of synthetic data Lv were kept
constant throughout the entire training period, irrespective
of the number of epochs E. The aim of this method is to
maintain the balance between real and synthetic data un-
changed from the beginning to the end of the training.

Linear approach The loss function for the linear ap-
proach can be represented as shown in Eq. (2).
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In the linear approach, the weight for real data was in-
creased linearly with the number of epochs, while the
weight for synthetic data was decreased. The aim of this
method is to avoid abrupt changes in weights during the ini-
tial stages and gradually reflect more of the real data as the
training progresses.

Sinusoid approach The loss function for the sinusoid ap-
proach can be represented as shown in Eq. (3).
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In the sinusoid approach, the weight for real data was in-
creased and the weight for synthetic data was decreased in
the shape of a sinusoid as the number of epochs increased.
The aim of this method is to introduce larger changes in
weights early on compared to the linear approach, allowing
real data to be reflected earlier in the training process.

Sigmoid approach The loss function for the sigmoid ap-
proach can be represented as shown in Eq. (4).
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In the sigmoid approach, the weight for real data was in-
creased and the weight for synthetic data was decreased in
the shape of a sigmoid curve as the number of epochs in-
creased. The aim of this method is to smoothly transition
the weights over a longer period of epochs, compared to the
linear and sinusoid approaches.

3. Ablation Study on Data Generation Strate-
gies

To demonstrate the effectiveness of strategy generation
through imitation learning in our method, we generated syn-
thetic data using two approaches: a strategy that performs



Table 1. List of behavior cloning label definitions

No. Action name Action definition

0 action_idle vt ≤ 1.0m/s
1 action_left 1.0m/s < vt ≤ 6.0m/s,−180 ≤ θt < −157.5, 135 ≤ θt < 180
2 action_top_left 1.0m/s < vt ≤ 6.0m/s, 112.5 ≤ θt < 157.5
3 action_top 1.0m/s < vt ≤ 6.0m/s, 67.5 ≤ θt < 112.5
4 action_top_right 1.0m/s < vt ≤ 6.0m/s, 22.5 ≤ θt < 67.5
5 action_right 1.0m/s < vt ≤ 6.0m/s,−22.5 ≤ θt < 22.5
6 action_bottom_right 1.0m/s < vt ≤ 6.0m/s,−67.5 ≤ θt < −22.5
7 action_bottom 1.0m/s < vt ≤ 6.0m/s,−112.5 ≤ θt < −67.5
8 action_bottom 1.0m/s < vt ≤ 6.0m/s,−157.5 ≤ θt < −112.5
9 action_long_pass long pass label
10 action_high_pass high pass label
11 action_short_pass short pass label
12 action_shot shot command
13 action_sprint vt−1 ≤ 6.0m/s, 6.0m/s < vt
14 action_release_direction vt−1 > 1.0m/s, vt ≥ 1.0m/s
15 action_release_sprint vt−1 > 6.0m/s, vt ≥ 6.0m/s
16 action_sliding sliding command
17 action_dribble 1.0m/s < vt ≤ 4.2m/s,ball-holding player
18 action_release_dribble 1.0m/s < vt−1 ≤ 4.2m/s, vt ≤ 1.0m/sorvt < 4.2m/s, ball-holding player

Table 2. List of pass label definitions

Pass type Definition

short_pass Passes shorter than 36m

high_pass Passes between 36m and 45m, or crosses and clearances

long_pass Passes longer than 45m

Table 3. Comparison of pass prediction using synthetic data gen-
erated by random and AI strategies

Policy Top-1 Top-3 Top-5 Loss
Random 57.54 90.41 97.08 1.204
Built-in AI 61.58 91.63 97.40 1.036
Cloning 66.00 93.20 97.95 0.9681

actions with equal probability and a strategy using built-in
AI within the simulator. We compared the accuracy of pass
prediction when trained with these synthetic datasets. De-
tailed comparisons are shown in Tab. 3. The Top-1 accura-
cies for the random AI and built-in AI strategies decreased
by 8.46% and 4.42%, respectively, compared to the behav-
ior cloning strategy of the proposed method. These re-
sults suggest that data generation using the behavior cloning
strategy is more effective than data generation methods that
do not capture players’ strategies.


