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Abstract

Semantic segmentation is a key task within applications
of machine learning for medical imaging, requiring large
amounts of medical scans annotated by clinicians. The high
cost of data annotation means that models need to make the
most of all available ground truth masks; yet many models
consider two false positive (or false negative) pixel predic-
tions as ‘equally wrong’ regardless of the individual pixels’
relative position to the ground truth mask. These methods
also have no sense of whether a pixel is solitary or belongs
to a contiguous group.

We propose the Hairy transform, a novel method to en-
hance ground truths using 3D ‘hairs’ to represent each
pixel’s position relative to objects in the ground truth. We il-
lustrate its effectiveness using a mainstream model and loss
function on a commonly used cardiac MRI dataset, as well
as a set of synthetic data constructed to highlight the effect
of the method during training. The overall improvement
in segmentation results comes at the small cost of a one-
off pre-processing step, and can easily be integrated into
any standard machine learning model. Rather than looking
to make minute improvements for mostly correct ‘standard’
masks we instead show how this method helps improve ro-
bustness against catastrophic failures for edge cases.

1. Introduction
Semantic segmentation (the process of assigning each pixel
in an image with a binary label) has a wide range of ap-
plications within medical imaging, including creating 3D
reconstructions [4], real-time ultrasound analysis [10], and
tumour classification [8]. Due to its complexity, semantic
segmentation requires significant computing resources and
large amounts of labelled data; something which is limited
due to the high demand on clinician time [11]. These chal-
lenges mean that every step of semantic segmentation needs
to be closely scrutinised, to see where improvements can be
made without additional data or other resources.

A unique advantage of medical imaging datasets is that
throughout a given dataset the biological feature being seg-

Figure 1. Top Left: An example cardiac MRI. Top Right: The
corresponding segmentation for the right ventricle. Bottom Left:
A 2.5D visualisation of a standard distance transform applied to
the segmentation. Bottom Right: A 2.5D visualisation of our
proposed ‘Hairy’ transform applied to the segmentation.

mented (such as a particular organ, bone or network of
blood vessels) not only remains the same, but many of its
geometric and topological properties do as well. An exam-
ple of this can be seen in Fig. 1, where the right ventricle in
a cardiac MRI is always a genus 0 (single) shape, and often
slightly curved and elliptical.

Our contribution provides a method of enhancing ground
truth images prior to training by treating the mask as a vec-
tor field (or ‘hairy’ surface), which can then be combined
with the predicted pixel values. By considering the sum of
these vectors we can not only establish a heuristic for clus-
tering, but also for where the clustering is with respect to
the mask. An even distribution of pixels around the mask
results in the hairs effectively cancelling each other out,
whereas large clusters (especially those further away from
the mask) will remain.

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 2. Examples of the resulting values from four transforms on data from the ACDC dataset (Sec. 5.2) with the right ventricle
highlighted. Left to Right: The original ground truth (overlaying the scan), a Distance Transform, a Hairy Transform, a Truncated
Distance Transform, and a Truncated Hairy Transform.

2. Background

Loss Functions

Loss functions are used to assign a real number to each ma-
chine segmentation against the corresponding ground truth.
This value represents how well the algorithm has modelled
the dataset at a given stage of training, and is therefore
used to refine future learning. As the loss function is ap-
plied against every machine segmentation it must be cho-
sen carefully based on the task and data used. Within se-
mantic segmentation, the ways in which loss functions con-
sider predictions can be grouped into four categories: dis-
tribution based, region based, boundary based, and com-
pounded [13].

The first two of the categories, distribution-based and re-
gion based, contain many of the most popular loss functions
for semantic segmentation, including Cross-Entropy Loss,
Dice Loss, and Tversky Loss (Sec. 5). In these functions,
the location of the pixel relative to the mask is irrelevant
to the result of the function (aside from whether or not the
pixel is in the mask). This has the benefit of being quicker to
calculate, but potentially hinders the learning of the model.

Image Processing

Image processing is routinely used in semantic segmenta-
tion for multiple reasons. Basic transforms of the individual
raw images (such as rotations and reflections) get used for
generic dataset augmentation, whereas techniques such as
contrast or smoothing filters get used to improve the suit-
ability of a raw image. Processing techniques are particu-
larly important for applications in medical imaging, where
they can help address the issue of small datasets and low
quality images respectively.

Whilst many processing techniques are aimed at the orig-
inal raw data, in this work we focus on processing tech-
niques applied to segmentation masks. These techniques
can be used to directly affect the results of loss functions;
regardless of the choice of function, the resulting value is

generally dependent on the ground truth and its correspond-
ing machine segmentation, rather than the original image.

When considering image pre-processing for the inputs to
a loss function, we can choose to apply the processing to ei-
ther the ground truth or the machine segmentation (or both).
Each comes with its own advantages and disadvantages:
• Ground Truth Processing only needs to be applied once,

but cannot provide insight into a specific machine seg-
mentation [9, 18].

• Machine Segmentation Processing must be reapplied for
each segmentation, but provides insight specific to each
segmentation [21].

For our study we transform the ground truth images, a pro-
cedure which has only a small impact on the training time
on the model. Uniquely however, the method we propose is
still able to provide additional insight into the distribution
of pixels in the machine segmentation.

Existing Methods

Distance transforms (Fig 2) are an existing method of
transforming a binary mask: each pixel is assigned a value
relating to the distance away from a ground truth object.
Truncated distance transforms were used by Audebert et
al. to help improve accuracy on the boundary of predic-
tions [1]. Another use of distance transforms was within
the deep learning architecture ResUNet [6]. This model
achieved semantic segmentation of aerial images by using
a multi-task learning algorithm, which trained a network si-
multaneously on multiple instances of the ground truth, in-
cluding distance transform.

Another family of processing methods are polar coordi-
nate transforms, which convert the image from Cartesian
to polar coordinates (or spherical coordinates in 3D). This is
normally applied to both the scan and the segmentation, us-
ing a given point of origin (such as the centre of the image).
One theory is that these coordinates can be beneficial to seg-
menting elliptical features, such as tumours or lesions, or in
scenarios when the original area is spherical such as retinal
imaging [2, 16, 20].
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Figure 3. Fitting a Bézier curve within the Hairy Transform: a) The ground truth, considering pixel p b) Identifying the closest mask
boundary pixel p0 and corresponding image boundary pixel p3, such that p, p0, and p3 are collinear on line segment S c) Fitting control
points p1 and p2 to determine the curve B(t) d) Calculating the new value for p, as well as the curve normal np

3. Method
We compare two methods of transforming a ground truth
prior to use in a machine learning model:
• Distance Transform. The conventional distance trans-

form fd2
results in a value representing the shortest dis-

tance from the pixel to the mask boundary.
• Hairy Transform. The novel Hairy transform fh incor-

porates aspects of distance transforms, whilst also adding
a heuristic for position relative to the mask.

This section describes both fd2
and fh in detail. For both

methods we also consider truncated versions of the trans-
forms, referred to as ft-d2 for the truncated distance trans-
form and ft-h for the truncated Hairy transform.

Key Definitions

In this work, we consider the segmentation image P as
a complete 2D set of pixels with height h+1 and width
w+1. Each pixel p has co-ordinates px∈[0, ..., w] and
py∈[0, ..., h] as well as value pv∈[0, 1]. The mask C is then
a subset of P , such that:

C = { p ∈ P | pv = 1 } (1)

The function nbrhd(p) returns the set of adjacent pixels in
P , including those diagonal to p. The boundary of P is
defined as:

Pb = { p | px = 0 ∨ px = w ∨ py = 0 ∨ py = h } (2)

The boundary of C is defined as

Cb = { p /∈ C | ∃ pi ∈ nbhd(p) s.t. pi ∈ C, p /∈ Pb} (3)

i.e. for all p ∈ Cb where p does not lie on the boundary
of P , there exists some adjacent pixel to p in C.

Truncation

Within a distance transform, we can introduce a maximum
scalar pMAX . This truncation value is a function of C,

where for a given mask C:

pMAX =

√
|C|

aspect(C)
(4)

This has the effect of localising the transform within a set
distance around the mask, and is frequently used alongside
distance transforms in semantic segmentation tasks [5, 12].

The Distance Transform

For two pixels p and q, the result of a standard distance
transform is defined by a chosen distance metric. In this
work we solely use the Euclidean distance d2:

d2(p, q) =
√

(px − qx)2 + (py − qy)2 (5)

For an image P with corresponding mask C, the distance
transform fd2

(P ) affects only the values pv for p ∈ P . Each
pixel p is considered independently:

fd2
(p) =

{
0 for p ∈ C
min( d2(p, b) | b ∈ Cb ) for p /∈ C

}
(6)

The transformed value of pv is then:

pv = fd2(p) (7)

For the truncated version of fd2 we simply have:

ft-d2(p) = min( fd2(p), pMAX ) (8)

The Hairy Transform

The high-level concept of the Hairy transform is to assign
each pixel in the ground truth a vector (or ‘hair’), transform-
ing the mask into a vector field. By replacing pixel values
with multi-dimensional vectors we can embed information
about the pixel position with regards to the relevant mask.
The Hairy transform can be broken down into three stages:
1. A distance transform
2. A transform to a Bézier curve
3. The calculation of surface normals
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Distance Transform

This is identical to the transform applied earlier, with trun-
cation applied here if being used.

Bézier Transform

We now define a function bezier that takes a point p and
transformed image f(P ) as input, and returns a three di-
mensional vector.

For our given point p, we have three associated values:
px, py and pv . We can consider pv as a equivalent z co-
ordinate, transforming P into a h × y field of three dimen-
sional points.
We now wish to construct a three dimensional Bézier curve
intersecting p. A single Bézier curve of degree n requires
n + 1 control points, where the first and last control points
are interpolated. We use a cubic Bézier as it gives control of
the gradient at both ends of the curve, without adding sig-
nificant complexity. This then requires four control points
to be assigned.

In our transform we want to only interpolate points in
Pb and Cb. This sets a convex hull around these points,
meaning that all Bézier curves constructed lie ‘under’ this
hull. In instances where C is concave or disconnected we
also look to interpolate local maxima, however for now we
just consider the simpler cases.

Control Points. For each point p /∈ Pb, Cb, we begin by
assigning the first and last control points p0 and p3. The
first point p0 can be considered as the closest point to p on
the boundary Cb:

p0 ← { p0 ∈ Cb | d(p0, p) < d(q, p) ∀q ∈ Cb } (9)

Assuming C ̸= ∅ and C is not concave, a single closest
point must exist. The other interpolated point p3 is then
chosen as a point from Pb such that p0, p, p3 are collinear.
It must also be closer to p than p0, such that the line segment
S from p0 to p3 does not intersect C:

p3 ← { p3 ∈ Pb | d(p0, p) + d(p, p3) = d(p0, p3)

∧ d(p3, p) < d(q, p) ∀q ∈ Pb }
(10)

An illustration of this can be seen in Fig. 3 parts a and b.
With the interpolation points assigned, we then look to

define the other two control points p1 and p2. These lie on
the plane that both contains S and is also perpendicular to
the xy-plane:

p1 ←

 p0x + |p3x−p0x|
2

p0y +
|p3y−p0y|

2

p0z

 (11)

The point p1 lies on the xy-plane, with x and y values
halfway between p0 and p3. The point p2 lies directly un-
derneath p3, halfway between the z values of p0 and p3:

p2 ←

 p3x
p3y

p0z +
|p3z−p0z|

2

 (12)

With the control points established, we can then define the
Bézier curve as a function of a parameter t ∈ [0, 1]:

B(t) = (1−t)3p0+3(1−t)2tp1+3(1−t)t2p2+t3p3 (13)

This is then used to calculate the transformed value of p,
where t is relative to the placement of p on S:

p← B(
|p0 − p|
|S|

) (14)

The selection of p1 and p2, as well as the resulting Bézier
curve, can be seen in Fig. 3 c.

As all control points lie in a plane perpendicular to
the xy-plane, the transformed values of px and py are
unaffected; only pv is changed. In the simple version of the
Hairy transform, this transformed value of pv is sufficient
as a form of distance heuristic to the mask. However, by
considering the normal to the curve B(t) at p we can find
further uses for the transform.

Curve Normals. To calculate the normal to B(t) for a value
t ∈ [0, 1] we can use the cross product of the derivative
B′(t) and the normal to the plane defined by the control
points p0, p1 and p3. For the former, we have:

B′(t)=3(1−t)2(p1−p0) + 6t(1−t)(p2−p1) + 3t2(p3−p2)

For the latter, the three points are not collinear as long as
p0 ̸= p3, meaning we can calculate the plane normal nplane

using the control points:

nplane = (p1 − p0)× (p1 − p3) (15)

From this the curve normal nB(t)
for a given value t is:

nB(t)
= B′(t)× nplane (16)

Example curve normals can be seen in Fig. 3 d.
As each point p lies on a single curve B for a unique

value of t, we can refer to nB(t)
more simply as np, i.e.

the normal at point p. This value can then be returned as
the output of bezier, giving us the Hairy transform for a
point p:

fh(p) =

{
[0, 0, 1]⊤ for p ∈ C
bezier(p, fd2

(P )) for p /∈ C

}
(17)

For the truncated version of fh we have:

ft-h(p) =

{
[0, 0, 1]⊤ for p ∈ C
bezier(p, ft-d2(P )) for p /∈ C

}
(18)
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Use of Curve Normals

The previous steps allow us to use fh to convert an image P
into an array of normal vectors Pn with shape [h,w, 3]. For
a given point p on P we can use the corresponding normal
np as an efficient heuristic for two pieces of information.

The first is the distance from the nearest mask pixel. This
can be calculated as:

dc = 1− np · [0, 0, 1]⊤ (19)

or more simply, the z-coordinate of np.
The second piece of information is the divergence score

for a (non-activated) segmentation, which can be easily gen-
erated at the same time as the loss function. For an image
P , a machine segmentation S can be considered an array of
shape [h,w], with each value sij ∈ [0, 1] (as this is before
application of an activation function). To calculate the di-
vergence score div(P, S) we first need to get the relevant
non-mask vectors:

n =
∑

(fh(P − C) · S ) (20)

We then normalise the sum of these vectors, then take the
length of the x and y components:

div(P, S) = | n̂|xy (21)

Integration with Cross Entropy Loss

In standard Cross Entropy (CE) loss, the loss for a pixel p
is calculated as the sum of the loss across all classes:

CE(p) =
∑

c∈ classes

−yc log(ŷc) (22)

When the ground truth is transformed with a transform f ,
the new CE loss becomes:

CEf (p) =
∑

c∈ classes

−yc log(ŷc · 2f(p, P )) (23)

As the transform is only applied to the ground truth, the
value of f(p, P ) only needs to be calculated once ahead of
training. The scalar multiplier is used to account for the
original normalised values f(p, P ) ∈ [0, 1].

4. Datasets
The experiments make use of: synthetic data constructed
specially for illustration purposes, as well as a cardiac MRI
dataset.

4.1. Synthetic Data

The synthetic data is a set of 10 ground truths, each 16
by 16 pixels. Each pixel may only have the value 0 or 1.
For each image there are 5 artificial machine segmentations,

each with exactly 10 false positive pixels (there are no false
negative pixels).

The use of the synthetic data is to illustrate on a more
manageable scale how the use of ground truth augmenta-
tions would change the resulting CE loss.

4.2. ACDC

The ACDC dataset is a publicly available set of cine-MRI
cardiac images, taken for the purpose of measuring vari-
ations in the diastolic volume and ejection fraction of the
heart [3]. In this dataset we consider the segmentation
tasks of identifying the left and right ventricles as inde-
pendent tasks. In each case we only used images from the
dataset containing these features, resulting in 1,772 images
for the left ventricle and 1,540 images for the right ventricle.

5. Experiments
5.1. Synthetic Data

The results for the first three synthetic images can be seen
in Fig. 4, showing the range in resulting CE values as well
as the div values. As expected, not using a ground truth
transform resulted in an identical maximum CE loss for
all machine segmentations, and when all false positive pix-
els were outside of the truncation radius the T-Dist and T-
Hairy transforms would result in the same maximum CE
loss value. We can also see that when an transform is used
the CE Loss is near zero for the first segmentation, which
suggests that the transformed CE loss may need to be ad-
justed to stop it from being too low in these cases. Gener-
ally the truncated transforms resulted in the greatest spread
of values, with T-Hairy slightly above T-Dist.

The div values for both T-Hairy and Hairy transforms
can be seen above each segmentation in Fig. 4, referred to
as T-Div and Div respectively. Much as expected, T-Div >
Div; also, T-Div reaches its maximum value once all pixels
lie outside the truncation distance. The distance from the
mask appears to have significant weight over the clustering
of the pixels, for example when considering the fourth and
fifth segmentations of Image 2 in Fig. 4.

5.2. ACDC

Experimental Setup

A U-Net was trained for 80 epochs for each task, using
an 80/20 split of train/test images. The U-Net architecture
was designed specifically for biomedical imaging segmen-
tation [15], and it continues to perform highly across medi-
cal imaging modalities [17].

For each model CE loss was used, enhanced with one of
the five types of ground truth transform as described in the
previous section:
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Figure 4. Three of the synthetic ground truths, with each with 10 false positive pixels (in white). The right column shows a comparison of
the CE values for each transform and each set of false positive pixels.

• No transform (None)
• Distance transform (Dist)
• Distance transform with truncation (T-Dist)
• Hairy transform (Hairy)
• Hairy transform with truncation (T-Hairy)

The predicted masks were evaluated with a range of mea-
sures, including:
• Dice - the Sørensen-Dice similarity coefficient [7]
• SBM - the Symmetric Boundary Match percentage [19]

with a radius of 5 pixels
• RVD - the Relative Volume Difference between the

ground truth and machine segmentation
• Miss% - the percentage of the number of masks in the

test set in which the predicted mask entirely missed the
ground truth

• FNVF/FPVF - the False Negative Volume Fraction and
False Positive Volume Fraction [14], measures of the
number of false negatives and positives respectively.
Training was repeated five times for each model, with the

test and training sets shuffled randomly each time. The re-
sults presented below are the mean metric values across the
test sets.As all transforms were applied to the ground truths
prior to training, there was no significant increase in training

time when using transformed ground truths. Training was
implemented with PyTorch 2.0.0, with a 6.0GB NVIDIA
GeForce RTX 3060 GPU.

Results

Tables 1 and 2 list the mean and standard deviation values
for the performance metrics used. For most metrics the
difference between models was slight, with the notable
exception being the Miss%. Across both the left and right
ventricles the standard deviation values were generally
consistent across the models , with the highest deviation in
the RVD and Miss% values.

Left Ventricle For the left ventricle there was little to no
change seen in the first three metrics, although there was
a reduction in the average number of masks missed when
using an transform (in particular the T-Hairy transform).

Right Ventricle For the right ventricle there was slightly
more variance across all of the metrics used, both between
models and across each test set. Generally the transformed
models performed worse that the non-transformed model,
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Mean Values LV
Aug Dice RVD SBM FNVF FPVF Miss%
None 0.909 ± 0.13 0.116 ± 0.30 0.916 ± 0.12 0.084 ± 0.13 0.00053 ± 0.0005 0.90 ± 0.75
Dist 0.909 ± 0.13 0.121 ± 0.33 0.917 ± 0.12 0.088 ± 0.13 0.00050 ± 0.0005 0.68 ± 0.47

T-Dist 0.910 ± 0.12 0.118 ± 0.32 0.918 ± 0.12 0.085 ± 0.13 0.00052 ± 0.0005 0.79 ± 0.38
Hairy 0.909 ± 0.12 0.120 ± 0.32 0.917 ± 0.12 0.085 ± 0.12 0.00051 ± 0.0005 0.79 ± 0.75

T-Hairy 0.909 ± 0.12 0.118 ± 0.31 0.916 ± 0.12 0.086 ± 0.13 0.00051 ± 0.0005 0.51 ± 0.39

Table 1. Mean and Standard Deviation values for the Left Ventricle, with the optimal result for each metric in bold.

Mean Values RV
Aug Dice RVD SBM FNVF FPVF Miss%
None 0.841 ± 0.20 0.194 ± 0.68 0.853 ± 0.19 0.162 ± 0.20 0.00096 ± 0.0013 2.01 ± 1.15
Dist 0.840 ± 0.20 0.189 ± 0.61 0.852 ± 0.19 0.169 ± 0.21 0.00090 ± 0.0013 1.95 ± 0.92

T-Dist 0.838 ± 0.20 0.196 ± 0.64 0.850 ± 0.19 0.167 ± 0.20 0.00096 ± 0.0013 1.82± 1.02
Hairy 0.840 ± 0.19 0.196 ± 0.62 0.852 ± 0.19 0.166 ± 0.20 0.00093± 0.0012 1.88 ± 1.15

T-Hairy 0.842 ± 0.20 0.193 ± 0.66 0.854 ± 0.19 0.160 ± 0.20 0.00098 ± 0.0013 2.01 ± 1.13

Table 2. Mean and Standard Deviation Values for the Right Ventricle, with the optimal result for each metric in bold.

except for T-Hairy which performed marginally better with
the right ventricle on multiple metrics (Dice, SBM, and
FNVF).

When considering the difference between the masks
for the left and right ventricle, an significant factor is
the irregularity of the shape. In this work we chose the
consider the Aspect Ratio as a measure of irregularity, for
which a value close to 1 indicates a shape with similar
height and width (such as a circle), whereas a higher value
indicates a more elongated, less regular shape. In Fig. 5
the distribution of Aspect Ratio values for the left and right
ventricle masks is shown, highlighting significantly more
variance in the right ventricle. Examples of a right ventricle
with aspect ratio 4.1 and 13 can be seen in Fig. 6.

Figure 5. The distribution of Aspect Ratio values for the left and
right ventricles within the ACDC dataset. Values close to 1 indi-
cate a more regular shape.

To see how the transforms performed on more irregular
masks, we compared the same performance metrics again
on the right ventricle test set, but this time using the up-

per quartile of the aspect ratio distribution. The change in
values for the Dice and Miss% can be seen in Fig. 7.

A clear take-away from these results is that in almost all
cases, models perform worse with the more irregular masks.
When considering the other metrics used for comparison
the change in performance was similar to that of the Dice
values; a drop in performance roughly consistent across the
models. Overall the non-transformed and T-Hairy models
saw the least change, indicating that they were not only the
best performing models overall but also the most robust.

Most effective, however, is the change in Miss% –
unlike every other model, the T-Hairy model actually
saw a significant decrease in the percentage of entirely
missed masks. These results indicate that using the T-Hairy
transform may lead to a better performance with more
irregular segmentations, resulting in a higher accuracy and
less masks missed.

6. Conclusion

As of writing, despite the growing need for techniques that
do not increase the complexity of the model, ground truth
transforms are still an under-utilised method in deep learn-
ing. This work shows how ground truth enhancement can
improve the performance of segmentation methods. Such
results should encourage the investigation of these tech-
niques as as a way to increase model performance effi-
ciently.

The proposed T-Hairy ground truth transform is particu-
larly effective when applied to segmentation tasks for more
irregular shapes. The careful analysis based on bespoke
synthetic data suggests that this may be because it only ef-
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Figure 6. Segmentation examples from two different scans of the right ventricle. Top: A case where all transforms resulted in an accurate
segmentation (Aspect Ratio: 4.1) . Bottom: A case where no transform resulted in a satisfactory segmentation, in particular with large
amounts of false negative pixels (Aspect Ratio: 13.0). Even though the T-Hairy model misses the mask entirely, the predicted mask is the
closest both geometrically and topologically. This illustrates the specific benefit of the T-Hairy model.

Figure 7. Bar charts comparing the mean Dice and Miss% values for the right ventricle test set, when considering full test set (blue) or the
upper quartile of the aspect ratio distribution within the test data.

fects the CE Loss within the truncation radius, allowing for
a broader range of reasonable values within this distance.
Whilst current improvement is slight, there is a notable ben-
efit in the number of machine segmentations where an ob-
ject is missed entirely.

Use of the curve normals also appears to provide addi-
tional insight into the distribution of a segmentation prior
to activation, in particular highlighting clustering outside of
the target object. Utilising these normals may still require
further refinement however, as the values are highly depen-
dent on the distance of individual pixels from the mask.

7. Further Work
The next areas to be developed regarding the transform
techniques include the use of signed transforms for all four
transform techniques described, as well as introducing a
lower limit for the CE values. The Hairy and T-Hairy tech-

niques should also be tested with the div values incor-
porated, potentially using hyperparameters to control the
weighting of the different elements.

When considering the data used, subsequent experiments
should look to incorporate additional datasets, ideally ones
containing topologically complex components such as holes
or concavities. Subsequent experiments could also use other
medical imaging modalities, or apply the transform in a 3D
setting.
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