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Abstract

We introduce a new technique for generating retinal
fundus images that have anatomically accurate vascular
structures, using diffusion models. We generate artery/vein
masks to create the vascular structure, which we then condi-
tion to produce retinal fundus images. The proposed method
can generate high-quality images with more realistic vas-
cular structures and can create a diverse range of images
based on the strengths of the diffusion model. We present
quantitative evaluations that demonstrate the performance
improvement using our method for data augmentation on
vessel segmentation and artery/vein classification. We also
present Turing test results by clinical experts, showing that
our generated images are difficult to distinguish with real
images. We believe that our method can be applied to con-
struct stand-alone datasets that are irrelevant of patient pri-
vacy.

1. Introduction

Retinal fundus images provide clear and high-resolution im-
ages of blood vessels in the eye. They are noninvasive and
inexpensive. They are used for retinal disease diagnoses and
in the early detection and prevention of chronic diseases like
diabetes and hypertension.

Extensive research has been conducted on the applica-
tion of machine learning to fundus images, including tasks
such as vessel segmentation [3, 31], artery/vein (A/V) clas-
sification [23], and disease classification [19]. The 2D na-
ture of these images, low noise levels, and the seemingly
basic structures of the regions of interest, compared to other
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modalities, may have made them an attractive area of inves-
tigation.

Despite the significant interest, limited availability of
training data remains a challenge due to the difficulty in
constructing the GT. This is particularly true for tasks such
as vessel segmentation and A/V classification, which re-
quire annotating the vascular structure. Manual or semi-
automatic annotation by clinical experts is labor-intensive,
making it prohibitively expensive for large-scale datasets.
Consequently, most publicly available datasets, including
STARE [10], DRIVE [30], CHASEDB1 [7], HRF [2] for
vessel segmentation, RITE [11], IOSTAR [34] for A/V
classification, and RETA [22] for both tasks, comprise
less than one hundred images. Although the recently pre-
sented FIVES [13] dataset comprises 800 images, the size
is limited compared to datasets such as ImageNet [5] or
COCO [21].

Recently, a framework for vessel segmentation and A/V
classification based on aligned corresponding fundus and
FA images [8, 24, 26, 27] was proposed. The results can
serve as an initial baseline, but manual inspection and edit-
ing are still required before they can be deemed accurate GT
vessel annotations, thereby limiting its scalability. Further-
more, privacy concerns may also limit the dataset size.

To address the need for more training images, genera-
tive methods can be used to synthesize additional data. A
number of methods have been proposed for this purpose us-
ing various GAN models [12, 15]. Early methods, such
as those by Zhao et al.[35] and Costa et al.[4], involved a
two-step synthesis process comprising vessel mask genera-
tion and fundus image generetation. The first step was to
synthesize the vessel segmentation mask, using adversarial
autoencoders, followed by color fundus image generation
using style transfer or conditional GAN. More recent meth-
ods, such as those by Yu et al.[33] and Paolo et al.[1], have
built on these earlier works, refining the models used to gen-
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Figure 1. Sample of generated fundus image and artery/vein mask from the proposed method, together with a real data for comparison.
The proposed method can generate anatomically accurate fundus images and corresponding artery/vein masks.

erate the vessel mask or fundus image.
Kim et al.[18] proposed a one-step approach, training

a StyleGAN[16] on a large dataset of fundus images, that
generates retinal images. While their approach generated
high-quality images, it lacks the ability to generate GT ves-
sel masks.

Recently, diffusion models [9, 29] have been gaining
much attention as an effective generative methodology and
an alternative to GANs. Diffusion models often provide bet-
ter stability in training compared to GANs [6].

Thus, we propose a novel method for generating retinal
fundus images with anatomically realistic vascular struc-
tures using diffusion models. Our approach consists of two
main steps: (1) unconditional generation of A/V masks to
establish the vascular structure, (2) generation of retinal
fundus images conditioned on the A/V mask with resolu-
tion enhancement of the generated image. To address the
sparsity of the A/V mask in the first step, we introduce a
modified loss function for the diffusion model. Sample re-
sults of our method are depicted in Fig. 1.

The main contributions of the proposed method are as
follows:
• The proposed method can generate fundus images with

more realistic vessel structures since it is trained to gen-
erate A/V masks, rather than vessel masks.

• It also generates a wider variety of high-quality images
by leveraging the strengths of the diffusion model.

• The generated fundus image can be used directly as GT
for vessel segmentation and A/V classification by assign-
ing the generated A/V mask as the GT.

2. Methods
In this section, we provide a detailed description of our pro-
posed method, including the steps involved in collecting the
training data. We present a graphical overview of the pro-
posed approach in Figure 2.

2.1. Constructing the training dataset

To implement the proposed method, it is necessary to have
access to training datasets consisting of both fundus images
and corresponding A/V masks. To generate high-quality
A/V masks, we adopt the approach developed by Noh et
al. [8, 24, 26, 27], which utilizes fundus images and fluores-
cein angiography (FA). In the following, we provide a brief
overview of this process, which can be divided into two sub-
processes for constructing the GT vessel mask [24, 26] and
A/V masks [8, 27].

To construct the GT vessel mask, we first construct an
aggregated vessel mask from the FA sequence frames.

Rigid registration is performed to register all frames in
the FA image sequence into a common reference frame.

Then, vessel segmentation is performed for all frames
using a pre-trained CNN. The per-frame alignments are
fine-tuned using non-rigid registration on the vessel masks.
The aggregate mask is constructed as the maximum vessel
probability for each pixel.

The aggregated FA vessel mask is then aligned with the
corresponding fundus image using another registration pro-
cess, and then subjected to simple post-processing for bina-
rization. Because the FA reveals fine vessels more clearly
than the fundus images, this mask contains more fine details
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Figure 2. Overview of the proposed method. The top row depicts the process for generating GT A/V masks, which are used to train GM ,
which generates new A/V masks, and GI which generates fundus images conditioned on the A/V masks. GE performs super-resolution to
generate high-resolution images.

than masks generated from fundus images alone. Finally,
this baseline vessel mask is manually edited by clinical ex-
perts to remove any errors, resulting in the GT vessel mask.

The A/V mask is constructed using the hierarchical ves-
sel graph network (HVGN), which comprises a series of
a CNN and a GNN. First, CNN features are constructed
for the fundus and FA sequence. The GT vessel mask is
used to extract vessel pixels, which are assigned as the ver-
tices of a GNN, with the attributes defined as the CNN fea-
tures. Edges are assigned between pixels within local win-
dow neighborhoods. The CNN and GNN are trained end-
to-end with GT A/V masks, so that each node is classified
as a label of either artery or vein. We note that each A/V
mask is a two-channel binary mask with each channel for
the artery mask and vein mask, respectively. This baseline
A/V mask is again manually edited by clinical experts to
remove any errors, resulting in the final GT A/V mask.

2.2. Generating the vascular structure

We train the model to generate vascular structure, denoted
as GM , on the set of the GT A/V masks. We use the de-
noising diffusion probabilistic model (DDPM) by [9] and
improved by [6].

The concept of diffusion was inspired by the diffusion
process in thermodynamics [29]. Given an image x0, we
gradually diffuse its structure by iteratively adding random
Gaussian noise. It can be shown that this forward diffusion
process can be converted into a single equation to generate
the diffused image at any timestep t:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, with ϵ ∼ N (0, I), (1)

where ᾱt :=
∏t

s=1 αs and αt := 1 − βt, where βt is the
variance of the noise at each timestep t.

The idea is to learn the process to reverse this iterative
diffusion, i.e., the reverse denoising diffusion process, by
training a neural network with parameters θ that generates
an estimate of the noise ϵθ for a given image xt. In [9], a U-
Net [28] model is used, and is trained with the loss function:

Lsimple(θ) = Et,x0,ϵ

[
∥ϵ− ϵθ

(√
ᾱtx0 +

√
1− ᾱtϵ, t

)
∥2
]
.

(2)

In our experiments, we found that if we directly train
GM on the A/V masks using the above configuration, many
generated samples contained little to no vascular structures
at all. As A/V masks are mostly composed of background,
with artery and veins comprising only a small portion of
the whole area, even an empty image can be a reasonable
sample if all pixels are considered equally. We thus modify
the loss function L as follows:

Lvessel(θ) = Et,x0,ϵ
[
exp (cx0)⊙ ∥ϵ− ϵθ

(√
ᾱtx0 +

√
1− ᾱtϵ, t

)
∥2

]
,

(3)
where x0 is the given A/V mask, and exp (x0) is the pixel-
wise exponential of each pixel value, c is a scalar parame-
ter, and ⊙ denotes the Hadamard, or element-wise, product.
Also, we empirically determined the resolution of the model
output and thereby the generated images as 256 × 256, as
the model was difficult to train for higher resolutions. Note
that, we incorporate the increased number of attention heads
and attention layers, and the adaptive group norm layers as
proposed in [6].
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2.3. Generating the fundus image

Given the A/V masks, we then train the model to generate
the fundus image, denoted as GI . We apply a conditional
GAN, namely, the pix2pixHD [32] as the network model. It
is an improvement over the previous pix2pix [12] by using
a coarse-to-fine generator, a multi-scale discriminator ar-
chitecture, and a robust adversarial learning objective func-
tion. GI is trained with GT A/V masks as the input training
set and the corresponding fundus images as the output su-
pervision. Since generated A/V masks with low-resolution
256 × 256 will be given as input at inference time, we re-
size the GT A/V masks and fundus images to have the same
size.

To enhance the low-resolution of the generated images,
we further train a super-resolution network, denoted as GE ,
to up-sample the images at rate 4 to 1024×1024. We apply
the Enhanced Deep Residual Network (EDSR) [20]. The
GT fundus images are used as supervision for correspond-
ing input images down-sampled by rate 4.

3. Experiments
3.1. Dataset and implementation details

Private Dataset: We use a private dataset of corresponding
fundus images and FA comprising 449 cases of correspond-
ing fundus image and FA pairs from 339 patients from Seoul
National University Bundang Hospital (IRB no. B-1810-
501-104, approval date 12 Oct, 2018). *. Canon CF60Uvi,
Kowa VX-10, and Kowa VX-10a cameras were used to ac-
quire the fundus images and FA. Image resolutions were all
normalized to 1536× 1024 from original resolutions, vary-
ing from 1604×1216 to 2144×1424. We note that we have
named this dataset as the FIREFLY (Fundus Images REgis-
tered with FLuorescein angiographY) dataset, and will refer
to it as such. For training the CNN for vessel segmenta-
tion within the process for constructing the GT vessel seg-
mentation masks of our private SNUBH dataset, we use the
publfic datasets DRIVE [30] and HRF [2]. For training the
HVGN for constructing the GT A/V masks, we use 46 cases
among the 449 of the private dataset.
Public Dataset: We also trained and evaluated our method
on the DRIVE public dataset, which includes expert anno-
tated vessel mask GT. Annotated artery/vein vessel mask
GT were also made available from added research, entitled
as the RITE dataset [11]. The dataset consists of 20 images
each for the training and testing datasets.
Environment and implementation details: Experiments
were performed on a system with a 2.2 GHz Intel Xeon

*This study was approved by the Institutional Review Board (IRB) of
the Seoul National University Bundang Hospital (IRB no. B-1810-501-
104, approval date 12 Oct, 2018), and the requirement of informed consent
was waived from the IRB. The study complied with the guidelines of the
Declaration of Helsinki.

CPU and 4 nVidia Titan V GPUs. We used the DDPM im-
plementation publicly provided by [6]. We set the maxi-
mum number of timestep iterations T = 1000 for sampling
the DDPM.

3.2. Qualitative Evaluations

Qualitative visual comparisons: We first present quali-
tative examples of the generated images in Fig. 3. Each
column presents three samples generated using a diffusion
model, (a) without any structural conditions, (b) condi-
tioned on A/V masks from StyleGAN2, (c) conditioned on
vessel masks from a diffusion model, and (d) the proposed
method of images conditioned on A/V masks from a diffu-
sion model. For each sample, we present the global image
(best viewed using a monitor with by zoom-in) above and
a crop-and-zoomed patch below. The zoomed patches for
columns (a), (b), and (c) all depict vascular structures with
anatomically infeasible structures, including fragmented
vessels, unrealistic bifurcations or trifurcations, or unnat-
ural loops. In general, we observed that the generated im-
ages from the proposed method generally has more realistic
vascular structures.

We also present comparisons between the A/V masks
generated from (a) StyleGAN2 and (b) our trained diffusion
model in Fig. 4. We can observe that StyleGAN2 mostly
fails in generating contiguous vascular structures, especially
in the vessel branching, and cannot model crossings. In
contrast, A/V masks generated by diffusion have realistic
bifurcations and crossings. Also, results from StyleGAN2
are generally more noisy and cannot be readily binarized,
compared to images generated by the diffusion.
Qualitative Turing test: We next present results of qualita-
tive Turing tests. We asked five board certified ophthalmol-
ogists to determine if the image is from a real patient or was
synthesized for (1) real fundus images acquired from pa-
tients, (2) fundus images generated from a diffusion model
directly trained on fundus images, (3) fundus images gener-
ated from A/V masks generated using StyleGAN2 [17], and
(4) fundus images generated from A/V masks generated us-
ing a diffusion model. For each category, 20 images were
presented.

Table 1 summarizes the results. It is evident that there
are no decisive image features for identifying real fundus
images, as the experts mistook real images as synthetic im-
ages in 40% of the cases. Nonetheless, they were able to
correctly identify 90% of the images generated from diffu-
sion without generating vascular structure, likely due to un-
realistic artifacts. For images generated from the proposed
method, the participants were incorrect in more than half
the cases. For images generated using StyleGAN2 [17], the
expert participants guessed that a higher portion were real
compared to the real fundus images. We believe that these
results demonstrate that more realistic fundus images are
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Condition

(b) Conditioned on 
Diffusion Vessel Mask

(d) Conditioned on 
Diffusion A/V Mask

(c) Conditioned on 
StyleGAN2 A/V Mask

Figure 3. Samples of generated fundus images for qualitative evaluation. Two samples of generated fundus images (a) with no structural
condition, (b) conditioned on vessel masks generated by diffusion model, (c) conditioned on A/V masks generated by StyleGAN2, and,
(d-proposed) conditioned on A/V mask generated by diffusion model.

Figure 4. Samples of generated artery/vein masks from StyleGAN2 and the diffusion model. Masks from the diffusion model have fewer
discontinuities and include realistic vessel crossings. Hyperparameters for both methods have been empirically optimized.

generated when conditioned on vascular structures.
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Table 1. Qualitative comparative evaluation of generated fundus images via Turing test, asking whether the image is real or synthesized.
Each test comprises 20 images.

Real/Synth. Gen. Model Vascular structure Acc.(95% CI)
Real - - 60(±11.47)

Synth Diffusion [6] None 90(±8.99)
Synth Diffusion [6] A/V mask 41.25(±7.35)
Synth StyleGAN2 [17] A/V mask 22.5(±9.34)

3.3. Quantitative Evaluations

As it was observed in the qualitative Turing test, it is very
difficult to estimate or measure how realistic is the gener-
ated image. We thus focus on measuring the effect of the
generated images on the original goal, of improving the
training of methods of vessel segmentation and A/V clas-
sification.

In Table 2, we present the performance of recent state-of-
the-art methods SSA-Net [25] and RV-GAN [14] for vessel
segmentation, and HVGN [8] for A/V classification, with
and without data augmentation based on the generated fun-
dus images and corresponding vessel masks. For all meth-
ods, we use the implementations provided by the authors.
For the HVGN method, we evaluate the version with only
fundus image inputs, in contrast to the version that with both
fundus and FA images, which was used to construct the GT
A/V masks of the FIREFLY dataset.

We present results using the private FIREFLY dataset
and the public DRIVE [30]/RITE [11] dataset. For the
FIREFLY dataset, we assign a random partition of 100 im-
ages for the test set and the remaining 359 images for the
training set. We present results for within-domain evalu-
ation, i.e., using the training and test sets from the same
dataset, as well as the cross-domain evaluation trained on
the FIREFLY training set and tested on the DRIVE/RITE
test set. For all configurations, 3000 synthetic A/V masks
and images and were generated from the proposed method
were used in the data augmentation. Accuracy (Acc),
sensitivity (Se), specificity (Sp), and the area-under-curve
(AUC) of the receiver-operating-characteristic (ROC) curve
are measured based on pixel-wise true/false positives and
true/false negatives, for binary vessel masks and A/V masks
comprising binary artery and vein tree masks, respectively.

We observed that the quantitative results were improved
for all measurements when using the generated data aug-
mentation, regardless of the vessel analysis task or specific
method, or the specific train/test dataset configuration. We
believe these results strongly support the effectiveness and
generalizability of the proposed method.

In Table 3, we present the comparative evaluation ac-
cording to the number of the synthesized images for data
augmentation, for the FIREFLY dataset. Similar to a prac-
tical dataset expansion process, we simulate a gradual in-

crease of the dataset, adding 1000 generated images up
to a maximum of 6000 images. We train methods for
vessel segmentation and A/V classification, SSA-Net [25]
and HVGN [8], respectively, on these datasets. We ob-
served that the quantitative results were improved for al-
most all measurements with the increase in the synthetic
data. Again, we believe that these results support the rele-
vance of the generated images in training methods for vessel
analysis.

To further evaluate how much the generated images can
faithfully constitute relevant information, we trained the
vessel segmentation and A/V classification methods on syn-
thetic images only, without any real images. We observed
that there were only slight decreases in the quantitative re-
sults, demonstrating that the generated images faithfully
represent the characteristics of the original real images, and
contain sufficient information for training methods for ves-
sel analysis.

We provide sample results for vessel segmentation and
A/V classification in Fig. 5 and Fig. 6, respectively. These
results demonstrate that the data augmentation from the im-
ages generated from the diffusion model helps to correct
many misclassifications and broken vessel branches in ves-
sel segmentation and A/V classification.
Quantitative evaluation of perceptual image quality: In
Table 4, we present the FID values for the fundus im-
ages generated from A/V masks generated using Style-
GAN2 [17], and those generated from A/V masks generated
using diffusion [6]. It is evident that the diffusion model
results in lower distances, demonstrating the benefit of the
diffusion model. We note that, due to computational con-
straints, neither GAN nor diffusion model were not opti-
mized in respect to the scores, as was done in [18].

4. Discussion

Different models may be used as the generators for the
mask, GM , the mask-to-image generator GI , and the high-
res image generator GE . For instance, diffusion models
could also be used for both GI and GE . Here, we avoided
their use, because they required considerably higher compu-
tation, while only achieving comparable results. This may
be due to the nature of the GT fundus images, which were
limited to images from normal patients, and mostly contains
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Table 2. Comparative evaluation of vessel analysis methods trained w/wo generative data augmentation using on the proposed method.
Area-under-curve (AUC) of the receiver-operation-characteristic curve (ROC), Accuracy (Acc), Sensitivity (Se), and specificity (Sp) are
presented.

Task Model Train DB∗ Aug. Test DB AUC Acc. Se. Sp.

Segmentation

SSA-Net [25]

FIREFLY ✗ FIREFLY 0.973 0.963 0.797 0.983
✓ 0.984+.011 0.976 0.815 0.990

FIREFLY ✗ DRIVE-AV 0.948 0.910 0.870 0.920
✓ 0.952+.004 0.918 0.874 0.924

DRIVE-AV ✗ DRIVE-AV 0.961 0.914 0.868 0.921
✓ 0.966+.005 0.921 0.906 0.923

RV-GAN [14]
FIREFLY ✗ FIREFLY 0.937 0.945 0.713 0.989

✓ 0.944+.007 0.947 0.672 0.993

DRIVE-AV ✗ DRIVE-AV 0.970 0.950 0.630 0.919
✓ 0.981+.011 0.967 0.658 0.995

A/V cls. HVGN [8]

FIREFLY ✗ FIREFLY 0.973 0.912 0.923 0.901
✓ 0.980+.007 0.922 0.930 0.915

FIREFLY ✗ DRIVE-AV 0.909 0.819 0.971 0.768
✓ 0.914+.005 0.824 0.879 0.769

DRIVE-AV ✗ DRIVE-AV 0.917 0.855 0.877 0.832
✓ 0.924+.007 0.860 0.884 0.835

*The diffusion model for image generation and the model for vessel analysis tasks are both trained using the same Train DB. A total

of 3000 synthetic A/V masks and fundus images generated by the proposed method were used for data augmentation.

Table 3. Comparative evaluation of vessel analysis methods on the FIREFLY dataset, trained with different number of generated images in
data augmentation. Area-under-curve (AUC) of the receiver-operation-characteristic curve (ROC), Accuracy (Acc), Sensitivity (Se), and
specificity (Sp) are presented.

Training Set Size
Segmentation A/V cls.
SSA-Net [25] HVGN [8]

AUC Acc. Se. Sp. AUC Acc. Se. Sp.
Real. 359 0.973 0.963 0.797 0.983 0.973 0.912 0.923 0.901

Real + Synth. 500 0.979 0.972 0.798 0.986 0.976 0.915 0.926 0.905
Real + Synth. 1000 0.980 0.973 0.803 0.988 0.976 0.915 0.927 0.902
Real + Synth. 2000 0.983 0.975 0.812 0.989 0.978 0.921 0.928 0.914
Real + Synth. 3000 0.984 0.976 0.815 0.990 0.980 0.922 0.930 0.915
Real + Synth. 6000 0.986 0.978 0.819 0.991 0.984 0.930 0.935 0.926

Synth. 6000 0.985 0.976 0.818 0.990 0.983 0.932 0.933 0.924
Synth. 3000 0.984 0.975 0.816 0.988 0.980 0.921 0.929 0.912
Synth. 2000 0.982 0.974 0.811 0.989 0.978 0.919 0.926 0.910
Synth. 1000 0.979 0.973 0.801 0.988 0.975 0.914 0.924 0.903

Table 4. Fréchet Inception Distance (FID) for generated fundus
images.

Gen. Model Vascular structure FID
StyleGAN2 [17] A/V mask 122.8

Diffusion [6] A/V mask 86.78

smooth textures other than the vascular structure. As our
main target application was the use of generated images for
training methods for vessel analysis, we did not consider

various pathologies such as macular degeneration. Thus,
further research may be warranted for improving the gen-
eration framework when generating synthetic datasets for
disease diagnosis.

In the short term, we plan to apply the proposed method
to construct a large-scale dataset with high-quality GT vas-
cular structures and without any privacy concerns. Based
on the dataset, we hope to further develop more advanced
metrics for measuring the performance of segmentation and
classification techniques.
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(a) (b) (c) (d)

Figure 5. Sample vessel segmentation result of SSA-Net [25], trained on the FIREFLY dataset. (a) Input fundus image, (b) result of SSA-
Net trained only on real images, (c) result of SSA-Net trained with data augmentation from synthetic dataset of 3000 images generated by
the proposed method, and (d) the GT. The top and bottom rows show the images in full and zoomed resolution.

(a) (b) (c) (d)

Figure 6. Sample A/V classification result of HVGN [8], trained on the FIREFLY dataset. (a) Input fundus image, (b) result of HVGN
trained only on real images, (c) result of HVGN trained with data augmentation from synthetic dataset of 3000 images generated by the
proposed method, and (d) the GT. The top and bottom rows show the images in full and zoomed resolution.
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