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Abstract

The Design of effective deep-learning methods for med-
ical image analysis represents a great challenge given the
scarcity of balanced datasets, leading to biased results and
overfitting. Data augmentation mitigates these limitations
due to its effectiveness in increasing the diversity and quan-
tity of training data, but the selection of an appropriate
augmentation method strongly depends on the problem do-
main. In this study, we investigate the effects of various
feature-level augmentation methods on the performance of
Deep-Learning-based Breast Cancer (BC) diagnosis using
mammographic images of Craniocaudal (CC) and Medi-
olateral Oblique (MLO) views. Through quantitative per-
formance evaluations, we systematically assess the impact
of augmentation techniques on classification using two fea-
ture extraction techniques, namely, Haralick features and
deep GoogleNET features. Our experiments, conducted on
the Digital Database for Screening Mammography (DDSM)
and the Wisconsin Breast Cancer (WBC) datasets, reveal
that Mixup, when combined with STEM, outstands as the
most promising in a wide range of scenarios.

1. Introduction

Breast Cancer (BC) is the leading cause of mortality in
women worldwide. According to the World Health Orga-
nization, 2.3 million new reported cases were recorded in
2020, and 685,000 deaths occurred worldwide [33]. By the
end of that year, there were 7.8 million cases of women with
this deadly disease. The mortality rate due to BC is dom-
inant in 12 out of 20 regions of the world as described by
Ferlay et al. [12] and, due to the increased ageing of the gen-
eral population, the BC incidence is steadily rising. How-
ever, detection at the initial stages significantly improves
treatment outcomes, underscoring the critical importance of
timely screening and diagnosis initiatives [10].

Modern Machine Learning (ML) techniques, in particu-

lar, those that rely on Deep Neural Networks (DNN), consti-
tute the state of the art in automatic medical diagnosis from
images [4]. For these methods, the quality and quantity of
the training data are key factors influencing the performance
and robustness of models. However, in the medical diag-
nosis domain, the datasets are often imbalanced, so certain
classes or categories are underrepresented compared to oth-
ers. This class imbalance poses significant challenges for
DL-based classification algorithms [8], turning them prone
to biased predictions and reduced accuracy [46].

Data augmentation is the most widely-used method to
improve the class distribution of an unbalanced dataset. Sig-
nificant advancements in this field have been achieved in
leveraging deep learning (DL) models for the tasks of im-
age classification and segmentation [27]. These techniques
have been used extensively in medical diagnosis applica-
tions, particularly in tasks involving predicting and seg-
menting cancerous masses [28].

Implicit augmentation approaches, i.e., those performed
on the feature vectors, instead of the data itself, have
emerged as valuable tools to address this issue [42]. These
approaches include over-sampling (to generate minority-
class samples), under-sampling (to drop samples from the
majority class), and hybrid sampling (combination of both).

This work focuses only on implicit augmentation ap-
proaches, and conducts a comparative analysis of nine
methods devised to address the issue of class imbalance in
the domain of BC diagnosis. We assess the robustness of
these techniques based on two distinct feature sets: deep
GoogleNET features [32] and handcrafted Haralick fea-
tures [19] over different mammogram perspectives, namely
Craniocaudal (CC) and Mediolateral Oblique (MLO). The
augmented features are used to train two Neural Network
(NN) based classifiers, along with statistical significance
testing. As a result, we offer recommendations for the opti-
mal combination of features and augmentation methods to
enhance the accuracy of BC diagnosis, providing valuable
insights for improving detection and treatment strategies,
and then filling a gap in the literature regarding how re-
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Figure 1. (a) Left MLO View (b) Segmentation of Left MLO im-
age (c) Right CC View (d) Segmentation of Right CC image.

sponsive these augmentation techniques are to certain NN
models, views, and feature extraction methods.

The structure of this paper is as follows: Section 2 pro-
vides the background and a review of the existing literature,
Section 3 delves into the applied methods, and Section 4
outlines the experimentation process along with the results
and statistical tests. Finally, Section 5 provides our insights
on the obtained results, and Section 6 presents the closing
remarks and future work.

2. Background and Related Work
Data augmentation involves generating synthetic samples
by adding or altering features within the original dataset to
increase diversity [31]. Its primary objective is to mitigate
potential inaccuracies when developing diagnostic models
with limited or imbalanced data.

The problem of class imbalance is typically addressed
through two main approaches [2]: i) algorithmic, by mod-
ifying the learning process of classifiers (e.g., employing
cost-sensitive learning algorithms) to prioritize the minor-
ity group; and ii) data-level, by resampling the data space
to balance the class distribution (e.g., oversampling minor-
ity classes or undersampling majority ones). Data-level ap-
proaches are more commonly used because they are inde-
pendent of the classifiers [14].

While traditional approaches to data augmentation in-
volve explicit transformations applied directly to the input
data (e.g., operations such as cropping, flipping, or ), tech-
niques that over-sample in the feature space [15] are widely
used alternatives. Implicit augmentation operates within the
feature space, leveraging the inherent structure and relation-
ships among features to generate augmented instances [34].

The Synthetic Minority Over Sampling Technique
(SMOTE) [9] is a data-level method used to increase the
minority class samples with synthetic data. For example,
for diabetes prediction, 99.64% accuracy is noted when
SMOTE is combined with deep Long Short-Term Memory
(LSTM) classifier [5]. Research [25] integrating feature se-
lection and oversampling through SMOTE recently demon-
strated the synergy of Information Gain (IG) and SMOTE,

achieving the highest Area Under the Curve (AUC) score
of 0.788 as compared to the other combinations of Ge-
netic Algorithm (GA) with SMOTE, and IG. This outcome
was demonstrated using the KDD Cup 2008 Breast Cancer
Dataset. Additionally, SMOTE attains the highest AUC of
0.962 when applied to the Wisconsin Breast Cancer (WBC)
dataset using the Support Vector Machine (SVM) classifier.
Another oversampling approach, Adaptive Synthetic Over-
sampling (ADASYN) [22] method, generates minority sam-
ples based on the local distribution within the dataset. A re-
cent study employed the ADASYN to address class imbal-
ance when analyzing the INbreast dataset [30]. This study
used five different feature extraction types and the ReliefF
algorithm for feature selection. Remarkably, the findings
revealed an impressive accuracy rate of 99.5% with their
proposed methodology. The literature also shows promising
results in handling class imbalance with other oversampling
methods, including Borderline SMOTE (BSMOTE) [17]
and SVM-SMOTE (SVM-S) [37] [1] [6].

Hybrid data resampling methods consist of both over-
sampling and undersampling techniques. By combining the
strengths of different resampling methods, the model’s gen-
eralization and presentation of the minority class can be im-
proved. For instance, the work by Kabir and Ludwig [29]
reports maximum recall and F1 scores of 0.87 and 0.43,
respectively, for the minority class, when SMOTE Edited
Nearest Neighbour (S-ENN) [44] is applied and XGBoost
is used for classification. That work used the Breast Cancer
Surveillance Consortium (BCSC) database, which contains
a high class imbalance. Furthermore, the classification per-
formance of breast instances is compared where SMOTE
Tomek (S-Tomek) [7] combined with correlation feature se-
lection using SVM classifier outperforms when used with
Naive Bayes by securing an accuracy of 96.80% [39].

Previous work shows promising results on class-ratio
balance with data augmentation. However, selecting a suit-
able augmentation method depends tightly on the problem
domain. Therefore, we present a comparative analysis of
augmentation methods on the features of mammographic
images to identify the combination of features and augmen-
tation techniques that provide higher true predictions.

3. Methodology
The proposed workflow analyses the effects of augmenta-
tion approaches using different data variants based on their
perspectives. Two datasets, Digital Database for Screening
Mammography (DDSM) [23] and WBC dataset [45], are
employed in this study. For the DDSM dataset, images of
CC and MLO views undergo preprocessing and segmenta-
tion into three segments, and then Haralick and deep fea-
tures are extracted. Dataset configurations are then created
based on the SCC , SMLO, and SCC+MLO views. In con-
trast, only one setup of WBC, containing pre-extracted fea-
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tures, is utilized for evaluation. Nine augmentation methods
are applied to the training set described in Section 3.2, while
the test set remains unaltered. Finally, breast instances are
classified using NN classifiers as described in Section 4, in-
cluding Multilayer Perceptron (MLP) and 1 Dimensional
Convolutional Neural Network (1D-CNN). The complete
pipeline is shown in Figure 2.

3.1. Dataset Details

The DDSM data set consists of 43 volumes of mammo-
graphic images. Each volume contains two case types: nor-
mal cases belong to patients without cancer, while cancer
cases come from exams detecting at least one proven can-
cer. In this study, to construct a more imbalanced and thus
realistic data set, we employ the Cancer 02 set for positive
cases and three negative sets, Normal 01-03.

The number of images used in this work is 197 abnor-
mal and 3026 normal, resulting in a positive-to-negative
class ratio of approximately 6:94. This breakdown closely
reflects real-life scenarios in medical imaging, where the
prevalence of abnormal cases is typically much lower com-
pared to normal cases. Each image is segmented into three
regions using the approach described in [41]. The upper
segment refers to the top part, the central part of the breast
comes in the middle segment, and the lower segment in-
cludes the bottom part of the breast as depicted in Figure 1
for each CC and MLO views.

We preprocess the segmented images with the median
filter to smooth out irregular pixel values, for cleaner
and more uniform examples. Moreover, subsequent Otsu
thresholding for noise reduction and artefact removal are
applied. Afterwards, Haralick features are extracted using
Grey Level Co-occurrence Matrix (GLCM) with four orien-
tations of 0°, 45°, 90°, and 135° using the method described
in [21]. A total of 52 features per segment are extracted for
each image. The deep features are extracted using the pre-
trained GoogleNet architecture [32]. This results in a 1023-
dimensional feature vector per segmented region. Each set
of features can form a different dataset on which the com-
parative analysis will be performed independently.

For each dataset, we further create three setups: i) SCC ,
containing only segmented images from the CC view;
ii) SMLO, with only segmented images from the MLO view,
and iii) SCC+MLO combining both views.

The WBC dataset contains pre-extracted Fine Needle
Aspiration (FNA) features from breast masses. A total of
30 features are present for malignant and benign categories.
There are 212 malignant samples and 357 benign samples
provided. The ratio between positive and negative classes
is noted as 37:63. Integrating the WBC dataset enriches our
analysis by providing clinically relevant data for evaluating
augmentation methods and enhances the study’s applicabil-
ity to real-world scenarios. The details of positive and neg-

Table 1. The DDSM dataset is organized into three distinct se-
tups based on two mammogram views: CC and MLO. The WBC
dataset comprises a solitary setup. “Tr Pos” and “Tr Neg” denote
training positive and negative samples, respectively. The positive
test samples are designated as “Ts Pos”, while “Ts Neg” is used
for the negative test instances.

Setups Tr Pos Tr Neg Ts Pos Ts Neg
SCC 98 1216 19 308
SMLO 99 1204 20 298
SCC+MLO 158 2420 39 606
WBC 170 286 42 71

ative samples used for training and testing the DDSM and
WBC datasets are shown in Table 1.

3.2. Augmentation Methods

In this work, we compare nine different implicit augmenta-
tion methods:
1. SMOTE [9]: For each minority sample denoted as M,

another minority sample, denoted as m, is selected at
random from their k nearest neighbours. Next, a random
point is selected between m and M. This process yields
a newly created sample named (Snew), which is added
to the dataset. The balance parameter N regulates this
generation, with N = 1 indicating an equal representa-
tion of both minority and majority [2].

2. BSMOTE [17]: This is an adaptation of the original
SMOTE algorithm. It first categorizes the sample into
noise and border classes. The data point whose k near-
est neighbours belong to the majority class is considered
noise. However, if at least half of the k nearest neigh-
bour samples are from the minority class, then the data
point is classified as a border instance. After identify-
ing the border samples, BSMOTE exclusively generates
samples for the border instances, focusing efforts on ar-
eas critical for improving classification accuracy.

3. ADASYN [22]: Inspired by the principles of BSMOTE,
ADASYN generates varying numbers of synthetic ex-
amples for the minority class based on its distribution.
It determines the number of synthetic examples for each
minority example by considering the number of its near-
est neighbours from the majority class. Specifically, the
greater the number of majority nearest neighbours, the
more synthetic examples are generated [26].

4. SVM-S [37]: This method uses the SVM algorithm to
locate the support vector samples within the minority
class, utilizing them as a reference for generating syn-
thetic instances. These support vector samples are noise-
free attributes as they reside closest to the boundary, re-
stricting the majority and minority classes [35].

5. S-ENN [44]: This combines SMOTE and ENN in a
two-step process. First, it leverages SMOTE to create
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Figure 2. The workflow illustrating our comparative analysis of data-level augmentation approaches for Breast Cancer classification.

synthetic samples before employing ENN to cleanse the
dataset by eliminating noisy instances. ENN eliminates
the majority class instances that differ from their k near-
est neighbours, facilitating smoother decision bound-
aries, resulting in a refined and more reliable dataset for
subsequent analysis [48].

6. S-Tomek [7]: The primary aim of this method is to
reduce the overlapping data points within each class’s
sample space. Following SMOTE oversampling, clus-
ters of different classes might overlap upon each other’s
space. Tomek links come into play, identifying pairs
of instances from distinct classes close to each other.
By systematically eliminating these instances from both
classes, the technique yields a balanced dataset charac-
terized by distinct and well-defined class clusters [43].

7. Mixup [47]: This operates by combining two input
samples, Ix and Iy , along with their corresponding la-
bels, Ox and Oy , to create a new sample Inew and label
Onew using linear interpolation [18]. This is achieved as
shown below:

Inew = λIx + (1− λ)Iy (1)

Onew = λOx + (1− λ)Oj (2)

Here, λ is a randomly sampled mixing coefficient from a
beta distribution. The interpolated sample Inew lies along
the line connecting Ix and Iy in the feature space. When
applied to tabular data, Mixup involves linearly interpo-
lating feature values between pairs of rows in the dataset,
along with their corresponding labels.

8. STEM [20]: This hybrid method operates by employing
S-ENN on minority and majority-class samples, lever-
aging the overall distribution of both classes to alleviate
both between-class and within-class imbalances. By in-
tegrating Mixup, STEM ensures a balanced generation
of sample points.

9. STEM/Mixup: In addition to the methods described
above. We also explore the combination of STEM and
Mixup in this work. In STEM/Mixup, half of the sam-
ples generated by STEM are selected, alongside half of
the samples produced by Mixup, and merged into a sin-
gle dataset. By merging samples from both STEM and
Mixup, this approach creates a balanced combination of
synthetic samples. This balance aims to leverage the
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strengths of each approach: the diversity and balance
provided by STEM and the robustness and generaliza-
tion capabilities offered by Mixup.

3.3. Classifiers

The augmented samples were used as input to two clas-
sifiers: a One-dimensional Convolutional Neural Network
(1D-CNN) and a Multilayer Perceptron (MLP).

For MLP, we employed a sequential model structure con-
sisting of the input layer accepted data with dimensions
corresponding to the shape of the training dataset, ensur-
ing compatibility with the input data format. Subsequent
dense layers were added to the model, each with 64 and
32 units and Rectified Linear Unit (ReLU) activation func-
tions. Dropout regularization with a rate of 0.5 was applied
after each dense layer to mitigate overfitting by randomly
dropping a fraction of the units during training. Finally,
the output layer consisted of a single unit with a sigmoid
activation function, suitable for binary classification tasks,
providing probability predictions for the positive class.

1D-CNNs is a type of CNN designed to process one-
dimensional data. They process convolutional operations to
extract local features from input sequences, capturing pat-
terns across neighbouring elements. The structure of 1D-
CNNs consists of an input layer, convolutional layers, pool-
ing layers, fully connected layers, and an output layer. The
input to a 1D-CNN is a one-dimensional sequence fed to the
network through the input layer [40].

The architecture of the 1D-CNN consists of an input
layer that accepts one-dimensional sequences, which are
then processed through convolutional layers with 128 fil-
ters and a kernel size of 3. Max-pooling layers were added
to down-sample the feature maps, reducing the spatial di-
mensions while preserving the most important features. The
output of the pooling layers was then flattened and passed
through fully connected layers with 64 units and ReLU ac-
tivation functions. Dropout regularization with rates of 0.5
and 0.2 was applied after the fully connected layers to pre-
vent overfitting. Additionally, batch normalization was em-
ployed to standardize the inputs to the network, accelerat-
ing the training process and improving model performance.
The output layer utilized a sigmoid activation function, pro-
viding probability predictions for binary classification.

4. Experimental Setup

All experiments involving 1D-CNN and MLP models were
conducted utilizing the scikit-learn library [38] and Tensor-
Flow framework [3]. To ensure comprehensive statistical
analysis, the AutoRank library [24] was employed to evalu-
ate the performance of implemented approaches.

Both models were trained for five epochs and 30 runs
with a batch size of 64. The Adam optimizer was used with

a learning rate 0.0001 and binary cross-entropy loss. Early
stopping was employed to prevent overfitting.

The experiments were conducted on the DDSM and
WBC datasets described in Section 3.1. Before training the
models, the dataset was split into training and testing sets
using an 80:20 ratio. We do not require a validation set,
as we are performing a comparative analysis. Additionally,
standardization was applied to normalize the data.

4.1. Results

We use AUC as the performance metric. AUC is a valuable
evaluation criterion for binary classifiers because it repre-
sents the likelihood of ranking positive predictions higher
than negative ones at random [16]. Moreover, it is a com-
prehensive evaluation, encapsulating sensitivity and speci-
ficity across a wide range of potential threshold values [11].

The initial experiments were conducted using eight aug-
mentation approaches, and the results, as presented in Ta-
ble 3, show that Mixup and STEM are the best-performing
strategies. Detailed analysis of the table findings is pro-
vided in Section 4.2. Consequently, another round of exper-
iments was undertaken, incorporating a combined version
of both techniques. The results reported in Table 2 include
the STEM/Mixup approach and the other eight methods.

In Table 2, the three setups of DDSM datasets are cat-
egorized under deep and Haralick feature sets. When us-
ing deep features and the SCC setup, the highest AUCs
for both 1D-CNN and MLP were achieved using the
STEM/Mixup strategy, with scores of 0.852 and 0.888, re-
spectively. When using Haralick features on that setup, the
best-performing augmentation strategy for both classifiers
is still STEM/Mixup, although it disimproves for 1D-CNN
to 0.741, while it improves to 0.929 for MLP.

For SMLO, the best results for 1D-CNN are, once again,
with the STEM/Mixup strategy, scoring 0.942 AUC, while
the best-performing strategy for MLP was ADASYN , with
0.983, which is tied with the best score of all methods.
Mixup performs best for 1D-CNN when using the Haral-
ick feature set, scoring 0.808, while STEM/Mixup is again
the best strategy for MLP, scoring 0.888.

When using the setup with both CC and MLO views,
i.e.. SCC+MLO, the highest AUC for 1D-CNN with deep
features was, once again, STEM/Mixup, with 0.942, the
best result for 1D-CNN across all setups and augmenta-
tion strategies. STEM was the best-performing strategy for
MLP, with a result of 0.923. Both classifiers disimproved
when using Haralick features; the best score for 1D-CNN
was 0.808, with Mixup, while for MLP, the best score was
0.888 with STEM/Mixup.

The highest AUC achieved by 1D-CNN on the WBC
dataset was 0.719, using STEM, while both STEM and
STEM/Mixup scored 0.983 with MLP.

In Figure 3, we compare the performance of the 1D-
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Figure 3. AUC of 1D-CNN and MLP classifiers using Haralick and deep features with different balancing techniques for all the data setups.
The x-axis contains the data setups categorized into deep and Haralick features for 1D-CNN and MLP classifiers. The y-axis contains the
obtained AUC by each classifier. The legend displayed the nice augmentation methods used in this work.

Table 2. The AUCs using deep and Haralick features for each DDSM data setup are compared using the different augmentation methods.
Moreover, the WBC dataset contains pre-extracted features. Both 1D-CNN and MLP classifiers are presented. The highest AUCs achieved
by employing the augmentation method for each classifier are emphasized in the following results.

Features Deep Haralick Pre-extracted
Augmentation

Methods
SCC SMLO SCC+MLO SCC SMLO SCC+MLO WBC

1D-CNN MLP 1D-CNN MLP 1D-CNN MLP 1D-CNN MLP 1D-CNN MLP 1D-CNN MLP 1D-CNN MLP
ADASYN 0.669 0.882 0.729 0.983 0.841 0.911 0.669 0.884 0.729 0.866 0.841 0.914 0.547 0.977
BSMOTE 0.670 0.878 0.717 0.978 0.845 0.904 0.670 0.867 0.717 0.861 0.845 0.912 0.516 0.975

S-ENN 0.620 0.881 0.682 0.967 0.817 0.919 0.737 0.815 0.682 0.822 0.817 0.920 0.576 0.978
SMOTE 0.682 0.884 0.729 0.979 0.828 0.908 0.620 0.892 0.729 0.865 0.828 0.914 0.556 0.976
S-tomek 0.649 0.885 0.716 0.981 0.845 0.907 0.649 0.881 0.716 0.859 0.845 0.914 0.677 0.976
SVM-S 0.640 0.859 0.716 0.976 0.819 0.905 0.682 0.905 0.716 0.850 0.819 0.908 0.611 0.975
Mixup 0.737 0.880 0.808 0.858 0.854 0.903 0.735 0.929 0.808 0.887 0.854 0.914 0.618 0.979
STEM 0.735 0.883 0.805 0.968 0.849 0.923 0.640 0.835 0.805 0.889 0.849 0.922 0.719 0.983

STEM/Mixup 0.852 0.888 0.942 0.961 0.909 0.921 0.741 0.929 0.805 0.888 0.858 0.919 0.675 0.983

CNN and MLP classifiers. Across all five data setups, the
MLP classifier consistently performs better than the 1D-
CNN classifier. The Haralick and deep feature sets are indi-
vidually analyzed using nine augmentation setups; in each
case, the MLP classifier consistently outperforms the 1D-
CNN classifier by a distinct margin.

4.2. Statistical Tests

The non-parametric Friedman test [13] was performed on
the mean values. AUCs for all 30 runs are used for both
MLP and 1D-CNN classifiers. After rejecting the null hy-
pothesis, a comprehensive understanding of the specific in-
tergroup differentiation was identified using the Nemenyi
post hoc test [36]. The significance level is set at α = 0.05.
An in-depth examination of these results shows, as depicted
in Figure 4 (a), that the SCC+MLO setup with deep features
was the highest ranking approach for the 1D-CNN classi-
fier. Deep features also performed best for 1D-CNN for the
other two setups, achieving a higher rank than Haralick fea-
tures in all cases. However, the horizontal bar connecting
the two approaches shows no statistical difference.

Figure 4 (b) shows that the best result for MLP occurred
when using the MLO view with deep features. This result

is significantly better than the other views. The second po-
sition is shared between deep and Haralick features, both
using the SCC+MLO setup, and there is no significant dif-
ference between them. For SCC , Haralick performed sig-
nificantly better than deep features.

The results in Figure 4 were produced only using the
DDSM dataset, as WBC contains pre-extracted features that
cannot be directly compared to deep or Haralick features.

Another configuration was designed for the Friedman-
Nemenyi post hoc test to gain more insights into the aug-
mentation approaches. The augmentation methods for each
feature type, i.e. deep and Haralick, are compared using the
1D-CNN and MLP classifiers separately. Table 3 shows that
Mixup was the best-performing strategy six times for the
1D-CNN classifier and twice for the MLP; the test shows
that this is a statistically significant result with 95% con-
fidence level. The WBC dataset containing pre-extracted
features was the only setup where it wasn’t the best per-
former. Furthermore, STEM outperforms other methods in
the WBC setup for both classifiers. Additionally, STEM
exhibits promising performance in the SMLO − H and
SCC+MLO −D scenarios when used with the MLP classi-
fier. In the SCC −D scenario, S-Tomek secures the highest
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Table 3. The post hoc Nemenyi test reveals the best-performing
augmentation approaches for the DDSM data setups using both
1D-CNN and MLP classifiers. Mixup secured the first rank.

Setups 1D-CNN MLP
SCC −D Mixup S-Tomek
SCC −H Mixup Mixup
SMLO −D Mixup ADASYN
SMLO −H Mixup STEM
SCC+MLO −D Mixup STEM
SCC+MLO −H Mixup Mixup
WBC STEM STEM

rank when samples are classified using MLP. Conversely,
ADASYN is the optimal choice for the SMLO setup when
employed with the MLP classifier.

The results summarized in Table 3 indicate that
Mixup and STEM are the two most frequently occur-
ring approaches that outperformed the others. Therefore,
STEM/Mixup is introduced as described in Section 3.2. The
results obtained from the STEM/Mixup included in this test
are shown in Table 4. It can be concluded that STEM/Mixup
achieved the highest rank in all setups except for WBC and
SMLO −H when used with the 1D-CNN classifier. Addi-
tionally, it demonstrates the best performance for the setups
SCC −D and WBC when utilized with the MLP classifier.

Moreover, Mixup and STEM emerge as the second most
promising approaches. STEM achieved the highest rank
in the WBC setup when utilizing the 1D-CNN classifier,
alongside SMLO −H and SCC+MLO −D when classified
with the MLP classifier. Mixup demonstrates superior per-
formance when applied to samples from setups SMLO −H
and classified using the 1D-CNN classifier. Additionally,
Mixup excels as the top performer for the SCC − H and
SCC+MLO − H setups using the MLP classifier. Lastly,
ADASYN emerges as the best-performing approach for the
SMLO −D setup when combined with the MLP classifier.
The nemenyi plots of the Tables 3, 4 and detailed access to
our code are presented in our GitHub repository1.

5. Discussion
As pointed out in Section 4.2, we performed two sets of sta-
tistical tests to determine, in first place, the most successful
setup (i.e., combination of views and feature extractor) for
each classifier and, in second place, which augmentation
technique excels in each setup. These tests, along with the
results presented in Table 2 and Figure 3 reveal interesting
patterns in the interaction between classifiers, views, feature
extractors and, more importantly, augmentation methods.

The most prominent pattern is the clear superiority of

1https://github.com/yumnah3/-Comparative-Analysis-of-Implicit-
Augmentation-Techniques-for-Breast-Cancer
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Figure 4. A Nemenyi Plot illustrates the comparative performance
of dataset setups on the DDSM dataset across nine augmentation
methods using 1D-CNN (a) and MLP (b) as classifiers. The setups
are ranked in descending order from 1 to 6, where 1 represents
the highest rank (best performance), and 6 represents the lowest
rank (worst performance). The methods connected by a horizontal
bar lie within the Critical Distance (CD), indicating no significant
difference in average ranks. The significance level is set at α =
0.05. Here, D is for deep features, and H is for Haralick features.

Table 4. The STEM/Mixup combination added in the augmenta-
tion methods to explore the diversity of generated samples from
Mixup and STEM using both 1D-CNN and MLP classifiers.

Setups 1D-CNN MLP
SCC −D STEM/Mixup STEM/Mixup
SCC −H STEM/Mixup Mixup
SMLO −D STEM/Mixup ADASYN
SMLO −H Mixup STEM
SCC+MLO −D STEM/Mixup STEM
SCC+MLO −H STEM/Mixup Mixup
WBC STEM STEM/Mixup

the MLP network over the 1D-CNN. Given that the inputs
to both models are feature vectors, few or no spatial rela-
tions exist among neighbouring scalars, so dense layers are
more suited than convolutional ones to extract discriminat-
ing information. For the WBC database, this difference is
especially large, because the feature extraction process for
FNA is the one that preserves the less spatial relations.

The comparison between Haralick and GoogleNet fea-
tures shows that, in general, both extractors presented a sim-
ilar performance. However, a significant difference was ob-
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served in SMLO, under MLP classification, in which Deep
GoogleNet features clearly outperform its competitor and,
additionally, obtained the best overall performance. We hy-
pothesize that MLP could take special advantage of the deep
features due to the fact that they are not as specialized as the
Haralick ones. Also, SMLO provides a more global view of
the breast, better captured by GoogleNet while Haralick, by
being a local texture descriptor, could have missed.

In our experiments, the SCC view seemed to hinder the
discrimination capacity of the models. Not only it presented
the worst performance by itself but, when added to SMLO

(SCC+MLO), it was worse than SMLO alone.
Regarding the augmentation approaches, no significant

difference was observed among them under MLP classifica-
tion, suggesting a lack of responsiveness of dense layers to
synthetic data obtained from the nine approaches presented.
On the other hand, the 1D-CNN model is clearly benefited
by the STEM/Mixup approach, as it has shown to be more
sensitive to the synthetic data.

6. Conclusion
In this study, we delve into a critical aspect of Deep Learn-
ing (DL) for Breast Cancer (BC) diagnosis using mam-
mographic images: the significance of data augmentation.
We emphasize how the selection of augmentation meth-
ods is closely tied to the unique characteristics and require-
ments of the diagnostic task. This highlights the ongo-
ing need for thorough investigation to determine the most
effective approach for enhancing DL-based BC diagno-
sis. Through a systematic evaluation of various augmen-
tation techniques on CC and MLO views from the Digi-
tal Database for Screening Mammography (DDSM) and the
Wisconsin Breast Cancer (WBC) datasets, we identify that
Mixup and a combined version of the Synthetic Minority
Over Sampling Technique (SMOTE) with Edited Nearest
Neighbour (ENN) Mixup (STEM) are the most promising
approaches for 1D-CNN based architectures. A rigorous
statistical analysis supports our findings.

Based on our experiments, we remark the following:
• Given the responsiveness of dense layers for feature vec-

tors and the global perspective provided by SMLO, the
most promising setup involves the use of an MLP clas-
sifier with deep features and using only the MLO view.
Any augmentation technique can be considered.

• When a dense architecture is not an option, an alterna-
tive like 1D-CNN can be used. For that case, deep fea-
tures from only the MLO view, and augmented through
STEM/Mixup (or only Mixup if STEM is possible), are
preferred, given the responsiveness of convolutional lay-
ers to STEM/Mixup augmented features.

• When the features cannot be algorithmically derived from
images, like the case of FNA in the WBC database, a
convolutional architecture (e.g. 1D-CNN) will probably

present poor performance, and the impact of implicit data
augmentation will likely be precarious, as no spatial in-
formation is preserved in such representations.

• If deep features are not available but local extractors (e.g.
Haralick) are, the CC view is more appropriate, and a
better performance is expected with an MLP classifier,
as SCC provides a more local view that matches the re-
ceptive field of local extractors.

• For the same reason, when only the CC view is available,
the Haralick features are the most appropriate, and better
performance is expected with an MLP.

Although our work does not entail significant ethical
concerns, given that we work with synthetic data at the fea-
ture level that cannot be associated to any patient, we high-
light the importance of informed consent and appropriate
data anonymization. Our work takes part into the efforts
that constitute an important step into algorithmic fairness,
as it objective is to reduce biases in the training data.

The scope of this research can be broadened in the fu-
ture by incorporating alternative feature extraction meth-
ods, such as local binary pattern and wavelet transform,
alongside the existing deep features. Exploring the fu-
sion effect of handcrafted and deep features in classifica-
tion tasks presents an intriguing avenue for further investi-
gation. Additionally, delving into the comparative analysis
of these diverse feature sets could offer valuable insights
into the strengths and limitations of different feature extrac-
tion techniques, ultimately enhancing the robustness and
accuracy of classification models in medical image analy-
sis. On the other hand, we encourage any effort towards
accountability regarding the effect of the studied augmen-
tation methods on the decision boundaries of the classifi-
cation algorithms. Finally, the results obtained from the
STEM/Mixup combination suggest that simply merging the
synthetic data from multiple augmentation techniques may
positively impact generalization. Hence, more thoroughly
exploring such combinations is a promising approach for
future endeavors.
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