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Figure 1. Digital photograph of a spinal surgery (left) and rendering of its digital twin (right) obtained using our proof of concept for
surgery digitalization.

Abstract

Surgery digitalization is the process of creating a virtual
replica of real-world surgery, also referred to as a surgical
digital twin (SDT). It has significant applications in vari-
ous fields such as education and training, surgical planning,
and automation of surgical tasks. In addition, SDTs are an
ideal foundation for machine learning methods, enabling
the automatic generation of training data. In this paper, we
present a proof of concept (PoC) for surgery digitalization
that is applied to an ex-vivo spinal surgery. The proposed
digitalization focuses on the acquisition and modelling of
the geometry and appearance of the entire surgical scene.
We employ five RGB-D cameras for dynamic 3D reconstruc-
tion of the surgeon, a high-end camera for 3D reconstruc-
tion of the anatomy, an infrared stereo camera for surgi-
cal instrument tracking, and a laser scanner for 3D recon-
struction of the operating room and data fusion. We justify
the proposed methodology, discuss the challenges faced and
further extensions of our prototype. While our PoC partially
relies on manual data curation, its high quality and great
potential motivate the development of automated methods
for the creation of SDTs.

1. Introduction

Surgery digitalization is the process of creating a virtual
replica of a real-world surgery, most commonly known as
a surgical digital twin (SDT). The digital twin concept was
first introduced by [14] and consists of three main compo-
nents: a physical object or process along with its environ-
ment, its digital replica, and the data and communication
links that connect the physical and digital entities. It is a
specific application of digitalization, namely the process of
converting information from a physical format to a digital
one, focusing on the replication and simulation of physi-
cal entities. One of the main objectives of a SDT is the
high-fidelity representation of relevant entities and their in-
teractions during the surgery, including the patient, surgical
instruments and devices, as well as medical staff.

Surgery digitalization has diverse downstream applica-
tions [37], ranging from optimizing education and enhanc-
ing the capabilities of surgical services to enabling the train-
ing of surgical robots [48]. In the realm of education,
surgery digitalization has the potential to provide medical
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students and surgeons with realistic and interactive virtual
environments to practice surgical techniques and under-
stand human anatomy without the need for real anatom-
ical models, which are often expensive and scarce, limit-
ing the hands-on learning experience [34]. It may facilitate
operative performance assessment, formative feedback and
surgical credentialing by avoiding the need for manual re-
view and assessment of surgical videos [35, 42]. The abil-
ity of replaying or streaming a surgery may enable novel
use-cases in the areas of quality control and remote surgery
[23]. In the context of workflow optimization, surgery dig-
itization enables the optimization of resource allocations
through machine learning (ML)-based surgical phase recog-
nition [18], or the automatic generation of surgery reports
[27]. In surgical navigation and robotic surgery, SDTs can
help to reduce the sim-to-real gap by providing accurate and
realistic environments in which robots and ML-based ap-
plications can be trained before being deployed in the real
world [2, 9, 15, 19].

Surgery digitalization necessitates the fusion of avail-
able information from sensors and prior knowledge into a
common spatio-temporal representation that accurately de-
scribes the state of its physical twin [12]. Data may come
from different modalities, including imaging, sound and
text. To date, imaging technologies are yet predominant.
For the acquisition of information associated with anatomy,
medical imaging technologies such as computed tomogra-
phy (CT), magnetic resonance imaging (MRI), ultrasound,
fluoroscopy and endoscopy are preferred. Optical cam-
eras remain the solution of choice for other components of
the surgery, namely for capturing information associated to
medical staff, the operating room (OR) and its devices, and
surgical instruments [20, 21]. They are widely used due
to their ability to capture detailed visual information in a
non-invasive manner while being able to record events in
real-time. Once collected, the data is processed to create a
model whose complexity varies depending on the type of
information to be encoded and on the downstream appli-
cations. A low level representation may consist of a raw
multi-view RGB(-D) video [21] while a high level repre-
sentation may consist of a detailed semantic and geometric
representation of the surgical scene [18, 41]. High level rep-
resentations could also include advanced behavioral models
such as those proposed by [50].

In this work, we describe a proof of concept (PoC) to
digitize a segment of spine surgery, more specifically the
pedicle screw drilling done within the pedicle screw place-
ment procedure, in near-realistic surgery conditions. It de-
viates from a real surgery in that it is performed by a single
surgeon without assistance to mitigate occlusions and limit
the number of cameras needed. The surgery is performed
ex-vivo on a human specimen in an operating room dedi-

cated to translational research in surgery2, enabling an ex-
tensive data collection that would be infeasible during real
patient treatment. The specific problem being addressed
is how to combine cutting-edge 3D scanning technologies
with optimal data fusion and modelling techniques to create
a spatio-temporal 3D model of a surgical scene that verifies
the following four criteria: it must be (C1) faithful with re-
spect to geometry, meaning that the dimensions and spatial
relationships in the model should accurately reflect those
of the actual surgical setting over time, (C2) explicit, (C3)
modular, which means it is built from smaller, distinct com-
ponents that represent real-world objects within the surgery,
and (C4) complete, encompassing the entire surgical scene
to provide a full and uninterrupted representation. Crite-
rion C1 ensures the model supports highly immersive train-
ing and education for surgery. Additionally, it enables pre-
cise 3D measurements, essential for surgical navigation,
planning and quality control. Criterion C2 guarantees the
model is interpretable, allows for measurements using stan-
dard metrics, and is compatible with widely used render-
ing engines. Parametric representations, especially for the
medical staff and instrument’s locations should be priori-
tized. Criterion C3 allows for the individual manipulation
of different components (anatomy, surgeon, surgical instru-
ments, etc.), enabling customizable simulations and object
level reasoning in the context of surgical workflow or activ-
ity recognition. Finally, criterion C4 guarantees a holistic
representation of the surgery, from which every downstream
application can benefit. However, this requirement necessi-
tates dedicated data acquisition setups, as the data collected
during surgeries today is still too sparse to provide such a
holistic representation.

In response to these criteria, we contribute a surgery dig-
italization approach which generates a SDT as a set of tex-
tured 3D meshes, representing the furnished OR and the
anatomy (static rigid), the surgeon and the surgical drill
(dynamic), in a shared spatio-temporal representation. The
choice of 3D scanning technologies being used and the data
fusion and modeling processes are described. The obtained
SDT is made publicly available. Although our PoC partially
relies on manual data curation and assumptions that still di-
verge from actual surgical settings, it is expected to motivate
the development of fully automated and functional methods
for surgery digitalization under real surgical conditions.

The remainder of this work is organized as follows.
The state of the art is discussed in Section 2. The pro-
posed methodology for surgery digitalization is detailed in
Section 3. Section 4 presents a quantitative and qualitative
evaluation of the quality of our SDT. Section 5 discusses the
proposed methodology and its limitations, perspectives and
potential applications, before our conclusions are drawn in
Section 6.

2https://www.or-x.ch/
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2. Related work
Surgical data science Over the last two decades the field of
surgical data science emerged from the need for systemat-
ically captured and structured medical data to improve the
quality of interventional healthcare [32]. The importance
of this field further increased with the rapid advance of ML
methods in the last decade. State-of-the-art deep learning
methods typically require large amounts of structured train-
ing data, and the lack thereof is one of the major obstacles in
the field [33]. However, patient-related data is still not sys-
tematically recorded and stored. In high-income countries,
which benefit from access to advanced healthcare systems
and robust IT infrastructures, difficulties arise from navi-
gating regulatory and policy frameworks, as well as from
the high complexity of medical data [16, 33]. Relevant in-
formation is often distributed across several disconnected
systems and in different data modalities which also makes
data collection in a standardized and systematic way highly
challenging. The digitalization of surgeries would enable a
more standardized and structured data collection process.
Surgical digital twin Digital twins aim to be a perfect vir-
tual representation of their physical counterpart, such that
observations of the digital twin yield the same informa-
tion as observations of the physical one. Later works ex-
tended this original definition by [14] to include physical,
bio-mechanical, or behavioral models that enable the simu-
lation, prediction of future states, and closed-loop optimiza-
tion of task-specific objectives [4]. In the medical field, a
digital twin of the patient has the potential to enable patient-
specific optimal treatment [29]. Previous works have pro-
posed digital twins for specific anatomies and interventions,
including knee arthroscopy and skull base surgery [4, 44].
Most approaches rely on the registration of a preopera-
tive 3D model of the patient-specific anatomy with the pa-
tient and the surgical instruments, typically through marker-
based tracking. However - to the best of our knowledge -
no existing model aims to capture a full surgery yet. On the
scale of an operating room, the interactions between patient,
instruments, surgeons and medical personnel are highly rel-
evant for an accurate description of the current state of the
surgery. Surgical scene graphs [41] are a lightweight rep-
resentation of high-level spatial and semantic relationships
of entities in the OR. Several works proposed to estimate
surgical scene graphs from video [52]. Similarly, surgical
process models [40] have been proposed to hierarchically
describe the surgical phases and steps comprising an inter-
vention. While these graph-based representations may be
beneficial for high-level tasks such as visual question an-
swering [49] or surgical phase recognition [18], they ab-
stract the low-level geometry required for a high-fidelity
representation of the surgical scene.
3D reconstruction Various types of technologies have been
developed to digitize the 3D structure of the physical world

with high fidelity. Laser scanning and structured light scan-
ning have established themselves as powerful tools for their
direct and precise acquisition of 3D data. Laser scan-
ning, utilizing the principle of light detection and rang-
ing (LIDAR), offers unparalleled accuracy in capturing
large-scale environments and intricate details over vast dis-
tances. On the other hand, structured light scanning, which
projects patterned light onto objects and measures deforma-
tions through a camera system, excels in capturing high-
resolution surface details of smaller objects within con-
trolled environments. In clinical research, both LIDAR and
structured-light approaches have been explored for the 3D
reconstruction of soft tissue [3, 5, 11, 36]. While these
methods provide robust solutions for 3D data acquisition,
they present limitations in terms of equipment cost, opera-
tional complexity, and environmental constraints, which can
hinder their applicability in diverse scenarios.

In contrast, photogrammetry, which reconstructs 3D
models from 2D optical images, is an alternative that of-
fers versatility and accessibility beyond the capabilities of
laser or structured-light scanning. The literature on com-
puter vision presents photogrammetry methods that are ca-
pable of deducing both the shape and appearance of ob-
jects from a collection of uncalibrated optical images. Re-
cent Neural Radiance Fields (NeRFs) [39], their extensions
to surface reconstruction [46] and large scale acquisitions
[25], and even more recently Gaussian splatting techniques
[22], have demonstrated remarkable performance in both
controlled and uncontrolled environments. These advances
enable the creation of highly detailed and photorealistic ren-
derings from relatively sparse image datasets, marking a
significant leap forward in the field’s capabilities. Recent
works applying these techniques on medical imaging data
have obtained impressive results [13, 28], however there re-
main several challenges in their practical application, such
as the handling of dynamics and long temporal sequences,
or the compatibility with standard rendering engines.
Pose estimation Most of the above-mentioned computer
vision methods assume a mainly rigid scene. However,
a SDT setting includes dynamic objects, primarily med-
ical staff, surgical instruments, and the anatomy. To
estimate the pose of surgical instruments, marker-based
navigation systems like the FusionTrack (Atracsys LLC,
Puidoux, Switzerland), which combine a stereo-camera
with infrared-sensitive markers mounted on instruments,
show sub-millimeter accuracy and remain the gold standard
solution. Their main limitations are the line of sight issue
and limited working volume, which have motivated the de-
velopment of marker-less tracking approaches [10, 17]. To
estimate the pose of the medical staff, motion capture sys-
tems can be used. Vicon systems3 are the gold standard
technology for motion capture in film and video game pro-

3https://www.vicon.com/
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Figure 2. Generation of the reference point cloud from multiple laser scans. The first row shows the point cloud obtained from a single
laser scan, illustrating the occlusion challenge. In comparison, the bottom row shows the reference point cloud after fusing all 8 scans.
The top view in the center indicates the 21 marker locations and 8 scanning positions within the room. We also indicate the origin of the
reference frame, which lies in the ground plane.

duction. They are also widely used in sports biomechan-
ics and virtual reality applications. Multiple high-speed
cameras placed around a controlled environment are em-
ployed to track reflective markers attached to the subject.
These systems are costly and the required amount of cam-
eras remains invasive in the context of surgery digitaliza-
tion. Other motion capture systems such as the XSens4

rely on inertial measurement units (IMUs). However, these
systems are impractical for routine captures, largely due to
their time-consuming setup and calibration processes. An
easy-to-use alternative are marker-less body pose estima-
tion methods, which have been developed based on com-
puter vision techniques [6]. Similar to marker-based sys-
tems, they produce a skeletal representation of the body
from image data. This skeletal representation seamlessly
integrates with parametric models for the human body [30]
and hands [43], whose parameters optimally explain the im-
age content while facilitating the creation of a surface repre-
sentation of the body as a dynamic mesh. Such marker-less
pose estimation approaches enable non-invasive data acqui-
sition setups, which is highly relevant for dynamic and re-
strictive environments such as ORs.

3. Methodology
In this section, we describe our prototype for surgery
digitalization. Our data acquisition setup comprises five
RGB-D cameras for dynamic 3D reconstruction of the
surgeon, a high-end camera for 3D reconstruction of the
anatomy, and an infrared (IR) stereo camera for surgical in-
strument tracking. We additionally employ a laser scanner
for 3D reconstruction of the OR and its devices, and for the

4https://www.movella.com/products/xsens/

fusion of all captured entities in a shared reference frame.
We first describe the acquisition and fusion of data associ-
ated with static elements and their modelling in Sections 3.1
and 3.2, and those associated with dynamic elements in Sec-
tion 3.3.

3.1. Reference frame acquisition

The basis of our SDT is a 3D representation of the OR with
metric scale, which serves as our reference frame for the
registration of all static and dynamic elements. We em-
ployed a Faro Focus 3D 120 laser scanner (FARO Technolo-
gies Inc., Lake Mary, FL, USA) to generate a point cloud
representation of the room. To minimize occlusions, we
conducted 8 scans from various positions, which were sub-
sequently fused. To this end, we temporarily and uniformly
positioned 21 markers throughout the space, as depicted in
Figure 2. These markers were used as point primitives for a
point-to-point registration of all 8 point clouds. Finally, the
origin of the reference point cloud was established at the
center of the floor. Its orientation was defined by the first
two main components from principal component analysis
applied to the floor points.

In this PoC we assume that the ceiling objects, OR equip-
ment, and the instrumentation table are static. Based on
these assumptions, this reference point cloud is utilized to
integrate all components of the model.

3.2. Modeling the operating room

The objective of this phase was to create a detailed and vi-
sually accurate virtual model of the operating theatre, in-
cluding permanently mounted devices like the OR lamps
and displays. For this purpose, we utilized the open-source
3D modeling software Blender (Stichting Blender Foun-
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dation, Amsterdam, Netherlands) in conjunction with its
Eevee rendering engine. The CAD models of the room
and ceiling elements were crafted by a professional graph-
ics artist, while utilizing the reference point cloud to accu-
rately determine the dimensions. We modeled the textures
and materials based on detailed photographs to enhance the
visual realism. Given the necessity for this simulation to
accommodate various configurations of the OR, the ceiling
elements in the model were designed with movable joints,
which replicate the kinematics of their real-world counter-
parts. Additionally, we incorporated the functionality to ad-
just the parameters of both the ceiling and OR lighting, as
well as the contents of the display screens within the OR.

The CAD model of the operating theatre is precisely
aligned with the reference point cloud. In this alignment
process, the joints of the ceiling objects are manually ad-
justed to match the reference point cloud. Exemplary ren-
derings can be seen in Figure 5. Although the manual mod-
eling of the operating room is time-consuming, this one-
time effort yields a detailed model of an OR which can be
the basis for realistic training simulators and synthetic data
generation.
Operating table and anatomy We employed a photogram-
metry approach to reconstruct the operating and instrumen-
tation tables, as well as the visible surface of the anatomy.
For this, we utilized a Sony Alpha7R digital single-lens re-
flex camera (Sony Group Corporation, Tokio, Japan) to cap-
ture 102 sets of images from different viewpoints. These
photos were captured just before the start of the surgery and
with the anatomy and instruments already placed on the ta-
bles. Each set included a focus bracket of five pictures to
capture finer details of the tools and spine. Focus stacking
was performed using the publicly available code [1] applied
to the captured photographs. The commercial photogram-
metry software RealityCapture5 was then used to produce
a textured 3D model of the scene from the focus-stacked
images. The use of this software was mainly motivated by
the quality of its 3D reconstructions that is competitive with
state of the art in computer vision, its good compromise be-
tween reconstruction quality and computation time, and its
camera self-calibration. The focus-stacked images lead to a
very fine detailed texture the 3D model benefits from. Re-
construction artifacts were manually removed. The feet of
both tables were modeled by hand, as their reconstruction
was incomplete due to very challenging surface material
and occlusions. The obtained 3D models were then man-
ually aligned with the reference point cloud to accurately
reflect the real-world setup.

We furthermore integrated a 3D model of the inner
anatomy into our SDT as to capture the interactions be-
tween the surgical instruments and the anatomy. To this
end, we manually registered the 3D spine model to the vis-

5https://www.capturingreality.com/

Figure 3. Schematic overview of the experimental setup. Five
ceiling-mounted Azure Kinect RGB-D cameras capture the motion
of the surgeon. A FusionTrack 500 marker-based tracking system
captured the trajectories of the surgical instruments.

ible anatomy surface included in the photogrammetric re-
construction. Due to time constraints we utilized a generic
3D spine model, however this generic model can be easily
replaced with a patient-specific preoperative model. These
models can be obtained from CT or MRI and are readily
available for most orthopedic interventions.

3.3. Motion capture setup

To capture the dynamics of the scene, we deploy a motion
capture setup comprising five ceiling-mounted Azure Kinect
RGB-D cameras (Microsoft Corporation, Redmond, WA,
USA) and a FusionTrack 500 marker-based tracking system
(Atracsys LLC, Puidoux, Switzerland). We place four cam-
eras opposite of the surgeon to capture their interaction with
the instruments and patient, as shown in Figure 3. These
cameras are mounted at different distances to the operat-
ing table, such that both the surgical near field and far field
are captured. As the surgeon’s lower body is occluded by
the operating table in all four cameras, we mount a fifth
camera behind the surgeon to complement the four frontal
viewpoints and simplify the body pose estimation task. All
cameras are mounted above the surgeon’s head height to
minimise the intrusiveness of our setup. Due to weight lim-
itations of the camera arms, the tracking system is placed on
a tripod. All RGB-D cameras are hardware-synchronized.
We follow the approach proposed by [17] to calibrate the
cameras extrinsic parameters and to temporally synchro-
nize them with the tracking system. We then registered the
multi-camera setup to the surgical environment by solving
the perspective-n-point (PnP) problem between 3D points
in the reference point cloud and corresponding 2D pixels in
one of the cameras. Hereby, we utilized the same 21 mark-
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Figure 4. Comparison of the rendered digital twin with the real camera images. The camera perspectives shown from left to right correspond
to the Kinect cameras 1-5 as shown in Figure 3. The digital twin was rendered in Blender using the Cycles engine.

ers that were used to register the laser scans, as described in
Section 3.1.
Surgical instruments Spinal instrumentation consists of
pre-drilling screw trajectories for pedical screw placement.
Hereby, an AR-600 battery-powered drill (Arthrex Inc.,
Naples, FL, USA) is used along with a drill sleeve (Depuy
Synthes, Raynham, MA, USA). The drill is tracked via a
marker array comprising five IR reflective hemispheres with
a diameter of 3mm attached to the drill body. Following
[17], we obtain a 3D model of the surgical drill and marker
array using a high-fidelity 3D scanner (Artec3D, Senninger-
berg, Luxembourg). We registered the marker array to the
3D model by aligning virtual spheres to each hemisphere
using the iterative closest point (ICP) algorithm. We obtain
a second 3D scan without any attached markers in order to
hide the attached marker in the renderings. Both 3D scans
are registered using ICP.
Human pose estimation To recover the surgeon’s body
pose, we fit the SMPL-H model [30, 43] to the multi-view
RGB images. We detect 2D keypoints for all RGB im-
ages via OpenPose [6]. These keypoints describe 25 dis-
tinct anatomical locations of the human body as well as 21
locations on each hand. To take into account that multiple
individuals would be present in a real surgery, we follow
a simple heuristic to select the keypoints corresponding to
the surgeon by computing the mean for each identified per-
son and selecting the person closest to the operating table.
Given the 2D keypoints detected in all images and the cam-
era calibration, we compute the 3D keypoints of the surgeon
via triangulation. Lastly, we run a multi-stage optimiza-
tion algorithm over the 2D and 3D keypoints, 2D bound-
ing boxes, and SMPL-H model parameters and weights to
compute the SMPL-H model. The optimization algorithm
strongly resembles the one from EasyMocap6, but we added
a moving average smoothness term to reduce jittering.

6https://github.com/zju3dv/EasyMocap

4. Results

While acknowledging the preliminary nature of this re-
search and the requirement for manual intervention, we pro-
vide both quantitative and qualitative results to demonstrate
the feasibility, accuracy, and potential benefits of our PoC.
Quantitative results The registration error for the laser
scan fusion is reported using the root mean square errors
(RMSE) from point-to-point registrations performed be-
tween two laser scans, namely source and target ones. One
laser scan was used as target for all the registrations and
all the other ones as sources. We additionally report the
3D reconstruction accuracy for the OR in terms of cham-
fer distance (CD) over overlapping areas between two laser
scans. The per-registration RSME and CD reported in Table
1 verify that the fused reference point cloud is millimeter-
accurate on the scale of the operating room. We furthermore
evaluate the registration error between the laser scans and
the photogrammetry model in terms of one-sided CD from
the fused laser scans to the photogrammetry model. The
obtained CD is 6.72mm. These results show that our SDT
is generally millimeter-accurate, an accuracy which may be
partially attributed to the rigidity assumption that holds for
our experimental setup.

Following [17], we evaluate the calibration and temporal
synchronization errors of the RGB-D cameras in terms of
reprojection errors. The errors are averaged over all frames
in the calibration sequence and reported in Table 2. We ad-
ditionally evaluate the registration of the camera array to the
reference point cloud by computing the reprojection errors
of the reference markers (as discussed in Section 3.1) into
each camera. We obtain an average reprojection error of
1.39 pixels.
Qualitative results To showcase our digital twin, we render
a video of the spatio-temporal scene with different visual
overlays, which is available in the supplementary material.
The video is rendered in Blender 3.3.1 using the Eevee ren-

2360



Figure 5. Exemplary renderings of the operating room including the reconstructed operating table and the surgeon’s estimated body pose.

Table 1. Point-to-point registration errors of the laser scans. We
choose the laser scan with most visible markers as the reference
and register the remaining 7 scans based on all markers visible
whose number is indicated in the first row. We report the RMSE
of the registered 3D marker positions as well as chamfer distance
(CD) between both point clouds, with an outlier filtering of 0.1m.

Laser Scan 1 2 3 4 5 6 7 Mean
# Markers 12 13 13 14 12 13 12 12.7
RMSE (mm) 7.81 6.42 6.72 5.79 6.95 8.16 6.03 6.84
CD (mm) 4.47 5.02 4.90 4.08 2.90 3.50 3.81 4.10

Table 2. Reprojection errors after the extrinsics calibration and
synchronization of each RGB-D camera to the tracking system.
We report the mean and standard deviation of reprojection errors
over all frames in the calibration sequence. The camera locations
are visualized in Figure 3.

Camera 1 2 3 4 5 Mean
Mean error (px) 0.75 0.40 1.06 1.63 0.39 1.19
Std of errors (px) 0.36 0.29 0.89 1.12 0.38 0.92

dering engine. Subtitles, transitions and side-by-side com-
parisons are added in post-processing using DaVinci Re-
solve (Blackmagic Design Pty. Ltd, Port Melbourne, Aus-
tralia).

The point clouds computed for each RGB-D camera are
combined and outlier filtering is applied. The filtered point
cloud is cropped using manually defined bounding boxes to
remove static elements like walls and floor. The cropped
point cloud is voxelized to obtain a cleaner look with a uni-
form density. Additional static rendered images are also
shown in Figures 4 and 5.

5. Discussion
In this section, we discuss the challenges we encountered
that justify the sensors being employed and the proposed
methodology. We also outline the main limitations of our
PoC and discuss directions for future work.
Challenges The generation of this digital twin highlighted
several surgery-specific challenges. Firstly, the frequent use
of glass and metal surfaces in operating rooms poses a sig-
nificant challenge for optical sensors and systems due to
their reflectivity. We tested two commercial 3D scanners
and a photogrammetry approach for the reconstruction of
the operating room, but all failed to reconstruct the glass-
covered walls or the metal operating tables. These early re-
sults also motivated us to use a laser scanner for the genera-
tion of a reference point cloud, which greatly simplified the
registration of all entities in a common coordinate frame.

Secondly, the 3D reconstruction of human anatomy re-
quires high-resolution imaging to capture its complex ge-
ometry and fine detailed texture. The resolution of the Faro
laser, designed to capture large objects and environments,
has shown to not be sufficient. This motivates the use
of photogrammetry to reconstruct the operating table and
anatomy, a technology that shows a good compromise be-
tween acquisition time and reconstruction accuracy at this
scene scale.

Thirdly, the surgical scrubs posed a challenge for human
body pose estimation method and specifically for the key-
point detector, which were trained on humans wearing ca-
sual clothing. Refining the pretrained models on medical
staff wearing scrubs, e.g. using the MVOR dataset [45],
could yield a domain-specific model with an improved per-
formance.
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Limitations Our current implementation has several
limitations that need to be addressed. Firstly, the
photogrammetry-based reconstruction of the incision does
not capture any dynamics, so the reconstruction of a full
surgery would require multiple captures at different key
steps as a minimum. The time-consuming capture pro-
cess makes this approach unfeasible for real surgery. In-
stead, recent dynamic 3D reconstruction approaches based
on NeRFs [38] or Gaussian splatting [47] could be utilized
to reconstruct dynamic surfaces in the scene and specifically
the incision. The limited changes of the patient anatomy
during the step of pedicle screw placement motivated us to
rely on a photogrammetry approach for this prototype.

Secondly, our proof-of-concept assumes rigidity of the
instrument table, operating table, and OR lamps and dis-
plays. Articulations and movements of the operating tables
could instead be tracked by continuously registering the 3D
model to the dynamic point cloud, via ML-based pose esti-
mation methods [24], or by utilizing marker-based tracking.
In a similar fashion, a CT-based 3D model of the patient
anatomy could be registered to the spatio-temporal scene
by either point cloud-based registration [26] or via marker-
based tracking. Also, the static display contents in our PoC
could be replaced by a screen recording or a lightweight
state-based representation of the shown contents.

Thirdly, the available data streams are added indepen-
dently to our digital twin. As a result, calibration errors
and noise can cause inconsistencies in the shared spatio-
temporal representation, e.g. a mismatch in the hand and
instrument pose. These inconsistencies could be reduced by
integrating sensors jointly or based on a learnt model, such
that the spatio-temporal consistency and plausibility of the
digital twin can be enforced.

Finally, the generation of this prototype was time-
consuming due to the lack of automated processes. Several
steps of our pipeline, such as the registration of overhead
devices, the capture of close-range photographs for the pho-
togrametric reconstruction of the operating table, or the reg-
istration of the anatomic model were conducted by hand. To
enable a systematic and efficient generation of SDT, these
manual steps need to be automated.
Future work Evolving our presented PoC into a complete
SDT requires the integration of further sensors, an auto-
mated interpretation to generate semantic labels, and ide-
ally the inclusion of prior knowledge. First, the integra-
tion of additional sensors like microphones, patient vitals,
and medical imaging ensure that the digital twin accurately
captures the available information at a time. Naturally, the
most relevant sensors to monitor the patient already exist
in today’s OR, which reduces the cost of integrating addi-
tional sensors. Second, the data streams from all sensors
need to be automatically analysed and interpreted to ex-
tract semantics. The method of estimating the surgeon’s

body pose is representative for further extensions of our
digital twin with estimated semantic annotations, for ex-
ample from segmentation [31], surgical scene graphs [27],
anatomical landmarks [51], or surgical phase detection [7].
Last, the integration of prior knowledge in form of physical,
(bio-)mechanical [8], or behavioral models [50] is needed
to extend the presented spatio-temporal reconstruction to a
comprehensive digital twin.

6. Conclusion

In this work, we presented a proof-of-concept for surgery
digitalization. We outlined the potential of SDTs for edu-
cation, training data generation, simulation and closed-loop
optimization, and automation of surgical tasks such as plan-
ning and reporting. We proposed a methodology to obtain
an SDT encompassing the most relevant entities in surgery.

In contrast to related works that manually craft a virtual
environment to simulate surgeries, our approach focuses on
the capture of a real surgery. In its current state, our proto-
type can already be used to capture and re-render surgical
steps or simple interventions for educational purposes, for
example in the form of training videos or interactive virtual
reality (VR)-based applications.

Our PoC is a step towards the systematic capture of
surgeries, which may be used to collect a large dataset of
digitized surgeries, including rare pathological cases and
other infrequent events such as unforeseen complications
or surgical errors. Moreover, the generated SDTs can pro-
vide a realistic environment for the training of ML-based
models and robotic agents with a reduced sim-to-real gap.
In the long run, holistic approaches to surgery digitization
may boost the performance of state-of-the-art methods in
computer-assisted surgery due to comprehensive represen-
tations of the current state of the surgery. We hope that our
work motivates further research on automated methods for
surgery digitization and the creation of SDTs.

Data availability

The data will be made available on our project page
https://jonashein.github.io/surgerydigitization/.
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