
Distribution-Aware Multi-Label FixMatch for Semi-Supervised Learning on
CheXpert.

Sontje Ihler1, Felix Kuhnke, Timo Kuhlgatz1, Thomas Seel1
1Institute of Mechatronic Systems, Leibniz Universität Hannover

� sontje.ihler@imes.uni-hannover.de

Abstract

Semi-supervised learning (SSL) has achieved remark-
able success for multiclass classification in recent years,
yielding a promising solution for medical image classifi-
cation where labeled data is scarce but unlabeled images
are accessible. In the context of multi-label problems how-
ever, SSL is still under-explored. In this work we adapt Fix-
Match to the multi-label scenario, specifically focusing on
CheXpert, a multi-label chest X-ray classification dataset
which is imbalanced and only partially labeled. Lever-
aging distribution alignment, our proposed method, ML-
FixMatch+DA, achieves solid performance gains in SSL
tasks (AUC: +2.6%) and in a missing label scenario (AUC:
+1.9%). In contrast to previous work we achieve a perfor-
mance gain on CheXpert using FixMatch. We show that in
contrast to multiclass FixMatch, where distribution align-
ment is optional, it is essential for multi-label FixMatch
to handle class imbalance and generate reliable (positive
and negative) pseudo-labels. Our pseudo-label selection
is based on a single threshold for all classes and handles
imbalance with no prior knowledge on label distributions.
Our adaptation keeps the simplicity of the original multi-
class FixMatch with no added hyperparameters (even for
imbalanced data) and demonstrates the feasibility of sim-
ple SSL for multi-label problems, filling a crucial gap in the
literature.

1. Introduction

Automating medical image diagnosis holds the promise of
transforming healthcare by streamlining the diagnostic pro-
cess, making it faster and more efficient. At the heart of this
innovation is the use of neural networks, which require ex-
tensive data for training. This need for data ensures that the
algorithms learn accurately from a vast array of examples,
covering a wide range of conditions and scenarios.

Manual labeling of large medical image datasets is not
feasible at large scale as it requires medical experts and

Figure 1. Example image from X-ray classification dataset CheX-
pert [8]. The dataset is challenging for semi-supervised learning
as the dataset has multi-label annotations, the label distribution
is imbalanced, and because the dataset was automatically labeled
from patient files each image is only partially labeled.

is therefore time-consuming and expensive. At the same
time medical images are captured at large scale in every-
day clinical practice making unlabeled images much eas-
ier accessible than labeled ones. The goal is to exploit
this data with minimal expert annotation (efficient label-
ing). There are two promising solutions to solve this: (1)
automatic labeling using natural language processing like
done for the CheXpert dataset [8] and (2) semi-supervised
learning (SSL) which combines supervised learning from
labeled data and self-supervised learning from unlabeled
data [10, 11, 16, 24, 27].

One of the most popular approaches for SSL is FixMatch
[16]. Its popularity derives from being highly effective
while being simple at the same time. FixMatch combines
consistency regularization (ensuring consistent predictions
across augmentations) and pseudo-labeling to leverage un-
labeled data effectively. Even though FixMatch is so pop-
ular for SSL, it was designed only for multiclass classifi-
cation, i.e. each image sample represents exactly one class.
Unfortunately, many medical image diagnosis tasks are ac-
tually multi-label problems i.e. an image can show more
than one pathology class or none at all. Compared to SSL
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(a) AUC for our proposed ML-FixMatch+DA vs. supervised baseline. (b) Distribution alignment (DA) boosts pseudo-label accuracy

Figure 2. We propose distribution-aware multi-label FixMatch (ML-FixMatch+DA) for semi-supervised multi-label learning. (a) ML-
FixMatch+DA is able to exploit the unlabeled data to improve model performance (AUC) compared to the supervised baseline. ML-
FixMatch+DA has no added hyper-parameters compared to multiclass FixMatch and shares its simplicity. Positive and negative pseudo-
labels are both obtained using a single threshold, the same threshold is also used for all classes. This is achieved by incorporating
distribution alignment (DA) into the FixMatch training to handle imbalance. (b) DA boosts multi-label pseudo-label accuracy on CheXpert
from 40% to over 90%, making it possible to perform semi-supervised learning on CheXpert using a simple, straight-forward multi-
label FixMatch adaptation with no added hyperparameters. In the later training stages the pseudo label accuracy decreases but the model
performance for ML-FixMatch+DA is still improving.

for multiclass classification problems, which has made great
progress over the last years (heavily based on FixMatch),
SSL for multi-label classification is still an understudied
problem [22].

One example of a medical multi-label dataset is the pre-
viously mentioned CheXpert dataset [8], see Fig. 1. CheX-
pert is a dataset for automated chest X-ray image interpre-
tation, which features automatically generated labels from
patient reports. One might think this solves the limited la-
bel issue, however, patient files are not designed to extract
pathological information by algorithms. They generally do
not provide a full diagnosis for each image but often only
describe one or few relevant pathologies and/or the differ-
ence to a previous diagnostic stage [18]. In conclusion,
the training set of the CheXpert dataset is not labeled for
pathologies not mentioned in the corresponding patient file
of an image i.e. it is only partially labeled. This indicates
that automatic labeling itself is not enough to solve the effi-
cient labeling issue, even with the now drastic improvement
in language models. However, it can actually form a great
basis for SSL.

Zenk et al. [25] recently applied FixMatch to the CheX-
pert dataset and found that it does not lead to improved
model performance. However, it seems they did not adapt
FixMatch to the multi-label scenario of CheXpert.

In this work we show that FixMatch can in fact improve
model performance on the CheXpert dataset if adapted to
the multi-label scenario and the class distribution is taken
into account. Due to its real-world nature, the label dis-
tribution of the CheXpert dataset is imbalanced. We show
that our adaptation distribution-aware multi-label FixMatch

(ML-FixMatch+DA) not only works for a standard SSL sce-
nario but also when learning from incomplete, i.e. missing
labels. Our adaptation starts by changing the multiclass to
multi-label losses and by proposing a simple strategy to
generate negative pseudo-labels for the multi-label losses.
We do this without adding new hyperparameters or com-
plexity to FixMatch. Tuning hyperparameters is a challeng-
ing task with limited labels and it is best if it can be avoided.
We achieve this by employing distribution alignment (DA)
[1] for pseudo-label generation which is a an established
add-on for multiclass FixMatch [1, 20, 25].

Our contributions are manifold: (I) We are the first to
provide an adaptation of FixMatch to a multi-label classifi-
cation task (ML-FixMatch) which is direct and straightfor-
ward without adding hyperparameters. (II) By incorporat-
ing (parameter-free) distribution alignment, we are able to
use only a single threshold value to obtain highly accurate
pseudo-labels. This means all pseudo-labels of all classes,
indifferent of being positive or negative pseudo-labels, can
be masked with a single parameter. (III) In contrast to pre-
vious work we are able to increase model performance on
CheXpert using FixMatch in 1) an SSL task and 2) learning
from incomplete labels. (IV) While DA is optional for mul-
ticlass FixMatch to increase model performance, our find-
ings demonstrate that DA is actually critical for multi-label
FixMatch to work on imbalanced class distributions.

2. Multiclass FixMatch
For easier understanding of our adaptations we will first re-
visit the concept and math behind multiclass FixMatch [16]
in this section. We will then build upon the provided equa-
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tions in the following section to help highlight the differ-
ence between multiclass and multi-label FixMatch.

2.1. Multiclass Problem

FixMatch was designed for multiclass SSL. Multiclass clas-
sification describes the problem where each data sample is
affiliated with exactly one class. We use the following an-
notations to describe the multiclass problem. Let x ∈ X be
a training sample with true class distribution p ∈ {0, 1}C
with |p| = 1, where C is the number of classes (or patholo-
gies in our case). For a given model f the model’s pre-
diction for x is f : x → q ∈ [0, 1]C and |q| = 1 with a
predicted probability between 0 and 1 for each class and pc
being the probability for class c. |q| = 1 is enforced by a
Softmax activation after the last model layer.

2.2. Multiclass FixMatch

FixMatch is a multiclass SSL strategy that leverages both
labeled and unlabeled data using pseudo-labels. It combines
a supervised loss Ls and a self-supervised pseudo-label loss
LPL with weighting factor α:

L = Ls + α · LPL. (1)

The supervised loss function Ls is computed from the la-
beled data using cross entropy loss:

Ls =
1

N

N∑
i

pi log(q
w
i ). (2)

For easier reading we simplified
∑C

i pi,c log(qi,c) to
pi log(qi) in the above and all following equations. Fix-
Match uses weakly augmented training samples in its su-
pervised loss. We provide loss computation per batch. The
number of labeled samples per batch is N .

To train on the unlabeled data, FixMatch uses augmen-
tation anchoring to create pseudo-labels. FixMatch creates
two different augmentations of a training sample with the
idea that both augmentations share the same class distribu-
tion p as they both derive from the same image sample. Fix-
Match incorporates weak and strong image augmentations,
augw and augs respectively. We refer to predictions from
weak augmentations to qw = f(augw(x)) and from strong
augmentations to qs = f(augs(x)). Positive pseudo-labels
p̃+ ∈ [0, 1]C with |p̃+| = 1 are created from the weakly
augmented images by creating hard labels from qw. Fix-
Match then filters these pseudo-labels by confidence so that
only high-confidence predictions are retained for loss com-
putation to avoid noisy training.

A prediction is considered confident if the predicted
probability is higher than a threshold t resulting in the fol-

lowing pseudo-label loss:

p̃+ = 1(qw > t), (3)

LPL =
1

M

M∑
i

1qwi >t log(q
s
i ). (4)

where M is the number of unlabeled samples in a batch. If
the model is not confident about a prediction, it is discarded.
The pseudo-label loss is naturally small in the beginning of
the training process. Only m =

∑M
i 1(p̃+i = 1) are se-

lected for pseudo-labels but the loss is still normalized with
M and M >> m. The loss increases over time with in-
creasing prediction confidence.

3. Multi-Label FixMatch
This section explains how we adapt multiclass FixMatch
to the multi-label setting and incorporate distribution align-
ment to handle imbalance and label masking to handle miss-
ing labels in CheXpert. While distribution alignment is op-
tional for multiclass FixMatch to boost performance, it is
critical for single-threshold, multi-label FixMatch adapta-
tion to actually work on class-imbalanced multi-label data.

3.1. Multi-label Problem

Multi-label classification describes the problem where each
data sample can be affiliated to an arbitrary number of
classes and therefore have more than one label associated
with it. In applications the number of possible classes is
limited to the number of observed classes. It is also possi-
ble that there is no class affiliation.

To underline the similarities between multiclass and
multi-label FixMatch we adapt the previous notation to
our multi-label problem. Again let x ∈ X be a train-
ing sample but now with a true multi-label class distribu-
tion p ∈ {0, 1}C , where C again is the number of classes.
Again for a given model f the model’s prediction for x is
f : x → q ∈ [0, 1]C with a predicted probability between 0
and 1 for each class. In the multi-label case this is achieved
by applying Sigmoid activation to each class after the final
model layer. (In the multi-label case the elements of p (nor
q) must not sum up to 1.)

3.2. Multi-label Adaptation for FixMatch

The overall concept of ML-FixMatch is identical to mul-
ticlass FixMatch which results in the same composition of
the loss function L′ from a supervised loss L′

s and a pseudo-
label loss L′

PL with weighting factor α:

L′ = L′
s + αL′

PL. (5)

We first adapt the supervised loss from cross entropy to
binary cross entropy to optimize for multi-label classifica-
tion. Binary cross entropy is identical to cross entropy for
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positive labels with an added term for negative labels (see
Sec. 2.2):

L′
s =

1

N

N∑
i

pi log(qi) + (1− pi) log(1− qi). (6)

In the second step the pseudo-label loss is also reformu-
lated to binary cross entropy. FixMatch only generates pos-
itive pseudo-labels. We propose a simple strategy to gen-
erate negative pseudo-labels. To maintain FixMatch’ sim-
plicity we mirror the generation of positive pseudo-labels
and generate negative pseudo-labels by filtering predictions
with very low probabilities using the confidence threshold
(1− t). We refer to a negative pseudo-label as p̃−.

p̃− = 1(q < (1− t)), (7)

L′
PL =

1

M

M∑
i

1(qwi >t) log(q
s
i ) + 1(qwi <(1−t)) log(1− qsi ).

(8)

Using the same value t for the upper and lower confi-
dence threshold will however fail in the presence of class
imbalance. To solve this we align the model predictions for
the pseudo-labels to a uniform distribution (for each class)
using distribution alignment.

3.3. Distribution Alignment for ML-FixMatch

The concept of ML-FixMatch+DA is based on Distribution
Alignment (DA). DA was introduced by ReMixMatch to re-
duce confirmation bias [1]. Distribution alignment aims to
mitigate the impact of class imbalance pseudo-label genera-
tion during SSL. It ensures that the learned model’s predic-
tions align with the underlying data distribution, even when
the distribution is skewed. This is achieved by computing
the expected probability values for each class i.e. the mean
probability q̄c of all model predictions for each class c. Each
model prediction q is then aligned to q∗ by normalizing each
class prediction with q̄c :

q∗c = qc ·
1

q̄c
, (9)

q̄c =
1

M

M∑
i

qi,c. (10)

This results in the aligned pseudo loss function:

L∗
PL =

1

M

M∑
i

1(q∗,wi >t) log(q
s
i ) + 1(q∗,wi <(1−t)) log(1− qsi ).

(11)

The computation of the expected values q̄c for each class
from probabilities q are the same for multiclass and multi-
label. The difference lies in the activation function that was

used to obtain q. While multiclass DA computes q from
Softmax, multi-label DA requires Sigmoid activation.

DA has the advantage that it predicts q̄c solely based on
the model’s predictions and does not pose any assumptions
on the class distributions based on the labeled data (like e.g.
logit adjustment [12]). This is a necessity for generating
distribution-aware pseudo-labels for CheXpert as the class
distribution between labeled samples and unlabeled sam-
ples differ drastically.

For ML-FixMatch+DA L∗
PL replaces L′

PL in Eq. (5).

3.4. CheXpert Masking for Missing Labels

CheXpert is only partially labeled. We address this by
masking L′

s similarly to L′
PL in Eq. (8) and only compute

the supervised loss from existing labels 1 and 0. To coun-
teract fluctuation in our supervised loss due to fluctuating
amount of labels in a batch we divide by the number of la-
bels n in a batch rather than the labeled batch size N :

L∗
s =

1

n

N∑
i

1pi=1 log(qi) + 1pi=0 log(1− qi), (12)

n =

N∑
i

1pi=1 + 1pi=0. (13)

For learning on CheXpert L∗
s replaces L′

s in Eq. (5).

4. Experiments
In this section, we describe our experimental setup to show
the effectiveness of our proposed FixMatch adaptation ML-
FixMatch+DA on the CheXpert dataset [8].

4.1. Dataset and Datasplit

CheXpert We perform our experiments on the multi-label
chest X-ray dataset CheXpert [8]. The training set was auto-
matically labeled from patient files, while the validation and
test set were manually labeled by radiologists. The train-
ing set contains approx. 225k images and has labels for 15
pathologies. We follow common protocol to only use five
of the 15 pathologies for model optimization and validation:
atelectasis, cardiomegaly, consolidation, edema and pleural
effusion [7, 8, 25]. The automatically labeled training set is
special as the labels are incomplete ie. not fully labeled and
it contains uncertain labels. There are four label categories:
1. pathology present according to patient file (1)
2. pathology explicitly not present according to patient

file (0)
3. pathology mentioned in patient file but algorithm is un-

sure if patient has pathology (u for uncertain)
4. not mentioned in patient file (not labeled)

CheXpert5000 SSL experiments require labeled and un-
labeled samples. To ensure repeatability we use the public
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Table 1. Label distribution of one of the five CheXpert5k training sets for five pathologies [7]. The dataset is only partially labeled with
confident labels 1 and 0. It also contains uncertain labels u and missing labels not labeled. Because CheXpert is a multi-label dataset each
image can contain 5 labels, one for each pathology. If this training set was fully labeled it would have 25k labels. Due to it being only
partially labeled this set only has approx. 7k confident labels. The imratio describes imbalance of the label distribution and is computed
from the ratio of positive to all confident labels for each class. It cannot be assumed that the class distribution of the labeled samples and
the unlabeled samples is the same or similar. The unlabeled samples contain more negative samples than the labeled samples.

Label Atelectasis Cardiomegaly Consolidation Edema Pleural Effusion

1 813 637 363 1443 2086
0 16 146 368 367 485
u 810 178 666 332 271

not labeled 3361 4039 3603 2858 2158

# confident labels 829 783 731 1810 2571
imratio 98.1 81.4 49.3 79.7 81.3

datasplit from the CheXpert5000 (CheXpert5k) study [7] as
our labeled data to mimic the limited label scenario. It splits
the full CheXpert training set into a new training (124,664
samples), validation (16,989 samples) and test set (25,205
samples) by uniform sampling i.e. all datasets have about
the same distribution as the full dataset. From the new train-
ing set the authors again sampled five subsets of 5000 sam-
ples each intended as a new dataset for limited data learning.
We provide the class distribution and the imratio, a metric
for label imbalance, in Tab. 1. Only the training subsets are
used in this study.

Evaluation set For validation we follow common prac-
tice and evaluate our experiments on the official validation
set of 234 fully labeled chest X-rays which were fully man-
ually annotated by three board certified radiologists.

4.2. Experimental Setup

On our experiments we validate the feasibility of our ap-
proach in two settings and perform an ablation study for
distribution alignment.

Feasibility Study For our feasibility study, we perform
standard SSL (study I) on two hyperparameter configura-
tions, as well as a study solely focusing on the missing la-
bels (study II). An overview of our experimental settings
is presented in Tab. 2. To assess the effectiveness of our
method in a standard SSL setting (study I), we conduct ex-
periments using the CheXpert5k training subsets described
previously as labeled data, hence using a total of 5000 la-
beled samples. As we rely on the confident labels (1 and 0)
only for supervised learning this results in which results in
approx. 7000 labels (see Table 1). We perform our standard
SSL experiments on two different set of hyperparameters to
test the robustness of our approach. As unlabeled data we
use the remaining full CheXpert5k training set with 120k
samples and hence 600k potential pseudo-labels (5 for each

Table 2. Feasibility study design. (I) We validate our approach for
two different hyperparameter configurations for the standard SSL
setup with a labeled and an unlabeled dataset. (II) We validate our
approach only on the missing labels (uncertain and not labeled) of
the CheXpert5k training set without adding additional unlabeled
data. The CheXpert5k datasets have approximately 18k missing
labels which can be exploited by ML-FixMatch+DA to generate
pseudo-labels.

Study # labeled
images # labels # unlab.

images
# potential

PL* N M

I 5k ∼7k 120k 600k 32 64
I 5k ∼7k 120k 600k 12 84

II 5k ∼7k (5k) 18k 32 64

unlabeled image sample). In a second experiment (study II),
we test if the model performance can also be improved us-
ing only the uncertain and non-labeled image samples (la-
bel u and not labeled in Table 1) from the partially labeled
CheXpert5k datasets i.e. if we only use those labels as po-
tential pseudo-labels. This is especially interesting as these
were skipped by the automatic labeler and might therefore
be more difficult than additional unlabeled samples (which
the automatic labeler was able to annotate with confident
labels). For this study of exploiting the missing labels we
therefore reuse the labeled CheXpert5k subsets and use the
missing labels (uncertain and not labeled) of this training
subset for unlabeled data. Because the CheXpert5k subsets
are only partially labeled (with 7k labels) they have approx-
imately 18k missing labels which can be exploited by ML-
FixMatch+DA to generate pseudo-labels. We compare our
ML-FixMatch+DA with a supervised ML-Baseline which
was trained solely supervised with binary cross entropy.

Ablation study for DA To validate the necessity of DA in
our approach we perform an ablation study where we com-
pare ML-FixMatch+DA to ML-FixMatch without DA.
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(a) Reproducing CheXpert5000 hyperparameters: labeled batch size 32, learning rate 3e-3, unlabeled batch size 64

(b) Reproducing 1:7 FixMatch ratio: labeled batch size 12, learning rate 1e-3, unlabeled batch size 84

Figure 3. Results for the feasibility study for standard SSL setting. ML-FixMatch+DA improves model performance on all performance
metrics i.e. area under the curve (AUC), area under the precision recall curve (AUPRC) and the F1 score. We show the results over five
runs. While the supervised baseline is already converged ML-FixMatch+DA is still improving.

4.3. Implementation Details

Following the CheXpert5k study we employ BitM-50x1 [9]
a ResNet-50 [6] variant trained on ImageNet-21k [14] for
improved generalization performance .

For our standard SSL experiment (study I), we validate
two hyperparameter configurations (1) We adapt the hyper-
parameters from the CheXpert5k study. We use SGD opti-
mizer, learning rate of 3e-3 and batch size 32 for our la-
beled data. We add batch size of 64 for unlabeled data
which maxes out VRAM (24GB) for one batch. (2) Fix-
Match recommends a ratio of 1:7 for labeled to unlabeled
training samples. We therefore employ a labeled batch size
12 with an unlabeled batch size 84. Due to the decreased
labeled batch size we decrease the learning rate to 1e-1.

For our missing label setting (study II) and ablation study
we adapt the first hyperparameter configuration. Because
we don’t want to use the large CheXpert5k validation set,
as it is not representative for limited learning and small val-
idation sets have a risk of being unreliable, we do not use a
validation set to estimate optimal training time instead we
train our models for a fixed amount of epochs. These were
determined by the convergence of the supervised baseline.
For configuration (1) we used 150 epochs and configuration

(2) we used 100 epochs. We use a constant learning rate for
both configurations. It is common practice to map the un-
certain labels and missing labels to either 0 or 1 to increase
the amount of training labels for supervised learning, how-
ever, this leads to noise in the training labels. To keep noise
to a minimum, we only use confident labels 1 and 0 and
ignore all other labels.

For weak and strong augmentation we directly adapt Fix-
Match augmentations (but no Cutout[3]) [16]. We skip
Cutout to avoid label flips in the pseudo-labels. Follow-
ing FixMatch we set α to 0.5 and t to 0.95. We use Sigmoid
activation in the final layer. We do not use temperature scal-
ing [4] for two reasons. One, temperature scaling assumes
a Softmax probability distribution and is not directly appli-
cable for our multi-label scenario. Two, the default hyper-
parameter for temperature scaling in multiclass FixMatch
is set to 1 anyway which is equivalent to no scaling. We
further follow [9] and [7] and use CheXpert at resolution
320x320 which we downscale to 224x224 for model train-
ing and validation. The pseudo label distribution q̄ is esti-
mated from the previous 256×M predictions of unlabeled
samples. M is the number of unlabeled samples per batch.
We use PyTorch [13] and the timm libray [21].
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5. Results
5.1. Feasibility

Study I: Standard SSL To validate the feasibility for
standard SSL we compare ML-FixMatch+DA to a super-
vised baseline computed from the confident CheXpert5k
labels with binary cross entropy. We provide area un-
der the curve (AUC), area under the precision recall curve
(AUPRC) and the F1 score for both hyperparameter config-
urations. We follow common binary classification protocol
and set the decision threshold for the F1 score at 0.5. The
F1 score is a combined metric of recall and precision which
rewards high precision and recall. It rewards the balance of
the two. We provide the mean over five runs with different
labeled data splits (see Sec. 4.1).

Our proposed method ML-FixMatch+DA improves
model performance on all metrics and for both hyperpa-
rameter configurations showing the feasibility of our ap-
proach. Our results are shown in Fig. 3. This proves that the
model is able to exploit the unlabeled data and learn from
the pseudo-labels. Our approach can handle CheXpert’s im-
balance with a single threshold for pseudo-label generation.
The improved F1 score is especially interesting: a higher F1
score results from a more balanced recall to precision ratio
which means that ML-FixMatch+DA pushes the model to
have an optimal decision threshold at 0.5. This is benefi-
cial as this is a sign of a non-biased classifier. Please note
that a FixMatch epoch contains more images than a super-
vised epoch, however, the supervised baselines were fully
converged while ML-FixMatch+DA was still improving.

We tested our approach with two sets of standard hyper-
parameter configurations (no hyperparameter tuning) to get
an idea of the robustness. We see robust improvements for
both configurations. These are promising findings towards
robustness. Robustness to changing hyperparameters is a
big win in limited data learning.

Study II: Exploiting missing labels In our second feasi-
bility experiment we test if the model performance can also
be improved using only the uncertain and non-labeled im-
age samples from the partially labeled CheXpert5k datasets.
We did this by again employing the confident labels from
the limited 5k datasets for supervised training and instead
of providing the rest of the full CheXpert dataset we pro-
vided the limited dataset again but without labels. We can
see from Fig. 4 and Tab. 3 that we can achieve a similar per-
formance gain to the SSL setting only by using only the un-
certain or unlabeled labels in the 5k training samples. This
means that ML-FixMatch+DA is able to exploit the uncer-
tain and unlabeled data that was not labeled by the auto-
matic labeler. ML-FixMatch+DA can therefore also be ben-
eficial for partially labeled data and missing labels which
are common occurrences for medical datasets [23], espe-

Figure 4. Results for feasibility of exploiting missing labels. We
can see that only using the missing labels as unlabeled data im-
proves the model performance significantly.

cially if they are created from automatic annotations.

5.2. Ablation study for DA

In a final experiment, we show that DA is crucial in our
approach. We can see that in Fig. 2 FixMatch with no DA
performs poorer than the supervised baseline i.e. the model
degenerates during training with pseudo-labels. This is due
to very poor pseudo-label accuracy. In Fig. 2b we see how
DA boosts pseudo-label accuracy from 40% to above 90%.

6. Related Work
In this section we provide a short review on current work
on multi-label semi-supervised learning. Generally multi-
label semi-supervised learning is a very understudied prob-
lem with few publications [5, 10, 15, 22, 24], with imbal-
ance even more understudied [10, 22]. Most of these are in
the medical context [5, 10, 24].

Apart from FixMatch [16] closest to our work is class-
distribution-aware thresholding (CAT) [22]. It is, to our
knowledge, the first and only work to explicitly address
imbalanced, multi-label semi-supervised learning. Their
approach is very similar to ours and mainly differs in the
confidence-thresholding of the pseudo-labels where our ap-
proach is much simpler. While we rely on a single thresh-
old for the whole algorithm, CAT requires two thresholds
for each class, one for positive and one for negative pseudo-
labels. Furthermore, CAT relies on the labeled data class
distribution to approximate the class distribution for unla-
beled data. In our case the labeled and unlabeled data distri-
bution differ drastically so CAT will not be able to estimate
reliable thresholds.

The most recent works on multi-label SSL for medi-
cal image classification are ACPL [10] and PEFAT [24].
They both perform experiments on the multiclass dataset
ISIC 2018 [2, 17] and the multi-label dataset chestX-ray14
[19]. ChestX-ray14 is a slightly older dataset for x-ray
classification than CheXpert. ACPL selects pseudo-labels
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Table 3. Results for our feasibility study for standard SSL setting and exploiting missing labels. Metrics are computed from five runs. N
is the number of labeled samples per batch with a total of 84 samples per batch. Results for N = 32 were taken at epoch 150. Results for
N = 12 were taken at epoch 100. Our proposed ML-FixMatch+DA always improves the supervised baseline.

Experiment Method N AUC AUPRC F1

Baseline ML-Supervised 32 0.7794 ± 0.0220 0.5351 ± 0.0300 0.4866 ± 0.0193
Standard SSL (I) ML-FixMatch +DA 32 0.8004 ± 0.0177 0.5530 ± 0.0226 0.5210 ± 0.0158
Missing labels (II) ML-FixMatch +DA 32 0.7942 ± 0.0175 0.5473 ± 0.0185 0.5044 ± 0.0226

Baseline ML-Supervised 12 0.7829 ± 0.0164 0.5460 ± 0.0323 0.4888 ± 0.0071
Standard SSL (I) ML-FixMatch +DA 12 0.8026 ± 0.0121 0.5611 ± 0.0163 0.5290 ± 0.0071

based on the distance in feature space. They claim that
unlabeled samples with a larger distance to labeled sam-
ples are more informative and are more likely to belong
to the minority class. This would be beneficial in imbal-
anced SSL. PEFAT selects pseudo-labels based on consis-
tency but instead of selecting high confidence predictions
they select low loss predictions (self-supervised loss based
on consistency). Both ACPL and PEFAT compute selec-
tion thresholds based on Gaussian mixture models which is
great as thresholds generically adapt to datasets or tasks at
hand. However, it is noticeable that both ACPL and PEFAT
were designed with a focus on multiclass classification and
do not fully embrace the multi-label problem. ACPL cre-
ates pseudo-labels based on a graph-based nearest neighbor
approach which to our understanding leads to single-label
pseudo-labels as does PEFAT’s argmax method. Allowing
only a single label (multiclass label) for each image can
be a problem for multi-label learning. Single-label pseudo-
labels from argmax will favor pseudo-labels for the easiest
pathology in an image (easy classes) and therefore an over-
selection of pseudo-labels for these classes. We don’t know
the effect of single-label pseudo-labels selected by ACPL. It
would be interesting if these are robust to the just mentioned
effect. Neither methods employs negative pseudo-labels.

Recent works for semi-supervised learning on CheXpert
are Gyawali et al. [5] and Zenk et al. [25]. Zenk et al. use
FixMatch on CheXpert but it seems like did not adapt Fix-
Match to a multi-label setting. Gyawali et al. use global la-
tent mixing and mixup [26]. The supervised baseline seems
to have been trained using multiclass cross entropy instead
of multi-label binary cross entropy1 This again bears the
risk to favor easy classes during training and ignore the rest
if easy classes are present in an image sample.

To our best knowledge the first to introduce negative
pseudo-labels into semi-supervised learning were Rizve et
al. when they proposed uncertainty-aware pseudo-labeling
(UPS) [15] for multiclass and multi-label semi-supervised
learning. Instead of relying on augmentation anchoring and
confidence like FixMatch and our adaptation, they combine

1Information taken from the paper. However, the authors provide code
with binary cross entropy, so we are not sure.

confidence and uncertainty to select reliable pseudo-labels.
The selection requires several parameters. The uncertainty
estimation adds additional complexity compared to our ap-
proach. UPS theoretically addresses our problem, however
it was recently outperformed by ACPL [10] which was then
outperformed by PEFAT [24] on chestX-ray14.

Every year there is a large number of variations built
upon the FixMatch concept for multiclass classification.
We believe that our adaptation ML-FixMatch+DA holds the
same potential for multi-label SSL.

7. Conclusion

In conclusion, this work successfully achieved its objective
of adapting FixMatch to the semi-supervised multi-label
learning (SSMLL) scenario while maintaining simplicity
and avoiding the introduction of complexity or additional
hyperparameters. By providing a straightforward adapta-
tion of FixMatch, our approach ensures accessibility and
usability. This simplicity mirrors the popular characteris-
tics that have established FixMatch as a cornerstone in the
field of semi-supervised learning

The significance of this adaptation is underscored by
the relatively understudied nature of SSMLL compared to
its single-label counterpart. While FixMatch has garnered
widespread acclaim for its efficacy in simplifying multiclass
SSL, our work extends this simplicity to the realm of multi-
label SSL, filling a crucial gap in the literature.

Furthermore, our approach does not require prior knowl-
edge about label distribution, making it particularly appli-
cable to automatically labeled medical datasets where as-
sumptions about class distributions cannot be derived from
labeled data. This aspect is pivotal for ensuring robustness
and generalizability in medical image diagnosis tasks.

Overall, our adaptation of FixMatch to SSMLL repre-
sents a significant advancement in the field, offering a prac-
tical and effective solution for enhancing the efficiency and
accuracy of medical image diagnosis.
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