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Abstract

Manual annotation of 3D medical images is expensive
and time-consuming, resulting in datasets focused on seg-
menting individual organs. This leads to training sev-
eral specialized models that limit clinical translational util-
ity. To that end, we developed SegViz, a federated learn-
ing (FL) framework to aggregate knowledge from hetero-
geneous datasets with partial annotations into a single
multi-organ segmentation model. SegViz uses collaborative
3D-U-Nets, with selective weight synchronization across
distributed sites, to consolidate knowledge by averaging
shared representation weights while isolating task-specific
heads during synchronization. SegViz was compared to
conventional FL using FedAvg, single-organ baseline mod-
els, and a single centralized model trained using data ag-
gregated from all sites. Four partially annotated datasets
were used in this study: Spleen MSD, Liver MSD, Pan-
creas MSD, and the Kidney Tumor Segmentation dataset.
All approaches were evaluated using the independent BTCV
dataset for segmentation of liver, spleen, pancreas, and kid-
neys using the dice similarity metric. Extensive experi-
ments across the two-, three- and four-client FL setups with
each client holding a dataset with single-organ annotations
demonstrated the effectiveness of SegViz for collaborative
multi-task segmentation from distributed sites with partial
labels. All our implementations and code are available at
https://github.com/UM2ii/SegViz.

1. Introduction

Medical image segmentation is a fundamental task in arti-
ficial intelligence (Al)-assisted decision support, enabling
applications like diagnosis, treatment planning, and assess-
ing therapy response. However, it is reliant on expensive
and time-consuming manual annotations from domain ex-
perts like radiologists. As a result, deep learning (DL) seg-
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mentation models developed in literature are “narrowly” fo-
cused only on a subset of structures that are present in a
patient based on the research groups’ focus, thereby reduc-
ing their clinical translational utility and interoperability.
For example, a model trained to only segment pneumonia
in lung CTs would fail to segment any additional abnor-
malities that might be present in a patient (e.g., lung tu-
mors). This siloed approach results in hundreds of models
that would need to be deployed in the clinical environment.
Therefore, there is a critically unmet need to collaboratively
train global models by aggregating knowledge from decen-
tralized datasets curated by different research groups focus-
ing on different tasks within the same domain. Knowledge
aggregation would not only save time but also allow differ-
ent groups to benefit from each other’s annotations without
explicitly sharing them (Figure 1).

Federated Learning (FL) presents an opportunity to ag-
gregate knowledge from datasets curated by different re-
search groups into unified multi-task models in a privacy-
preserving manner. However, aggregating knowledge from
diverse datasets curated at different imaging centers using
FL is challenging as each imaging center may focus on re-
lated but different tasks. For example, as shown in Figure 1,
each center is focused on segmenting only one of the four
organs (liver, spleen, pancreas, kidneys) despite sharing the
same field-of-view, thereby missing annotations for the re-
maining organs.

To that end, we developed SegViz, an FL framework
to aggregate knowledge from heterogeneous medical imag-
ing datasets into a single multi-organ segmentation model
(Figure 1). SegViz employs a multi-head 3D-U-Net archi-
tecture with selective knowledge aggregation to collabora-
tively learn a shared representation while preserving task-
specific knowledge for each class. Using selective knowl-
edge aggregation at the server, SegViz overcomes the limi-
tations of existing techniques by removing the need for ev-
ery client to work on the same task (e.g., tumor segmenta-
tion) or have knowledge of all the tasks in the network. We
evaluated SegViz across different FL setups with different
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Hospital AINode 1 - Kidney data

Hospital B/Node 2 - Pancreas Data

Figure 1. Illustration of SegViz. Suppose there are four research groups, each working on segmenting a single organ using abdominal CT
scans. Using our proposed method, they can collaboratively train a multi-organ segmentation model capable of segmenting all four organs.

number of nodes, segmentation tasks, and dataset charac-
teristics. We further compared the performance of SegViz
to different FL techniques, individual models trained sepa-
rately for each task, and centralized models trained by ag-
gregating all the datasets in one place. We hypothesize that
SegViz will effectively consolidate knowledge across dif-
ferent datasets and demonstrate equivalent performance to
the current state-of-the-art non-FL baselines such as models
trained individually on each task.

2. Related Work

Generating manual annotations for medical images is time-
consuming, requires high skill, and is an expensive effort,
especially for 3D images [14]. One potential solution is
to curate datasets with partial annotations, wherein only a
subset of structures is annotated for each image or volume.
Furthermore, knowledge from similar partially annotated
datasets from multiple groups can be aggregated to collab-
oratively train global models using FL [3]. Knowledge ag-
gregation would not only save time but also allow different
groups to benefit from each other’s annotations without ex-
plicitly sharing them. Consequently, different techniques
have been proposed in the literature for aggregating knowl-
edge from distributed heterogeneous datasets with partial,
incomplete labels [6, 9, 12, 15, 16].

Xu et al. introduced Fed-MENU [16], an FL setup for

segmentation using partial labels where client nodes were
trained on specific encoders for their specific tasks using a
shared decoder. However, this technique required as many
encoder blocks as the number of tasks making it compu-
tationally expensive. In addition, this technique requires
apriori knowledge of all potential tasks across all partici-
pating nodes making it practically challenging to scale. In
contrast, Shen et al. [13] trained a single global model for
aggregating knowledge from partially labeled nodes. How-
ever, the global federated learning framework developed in
their work failed to accurately segment different anatomical
structures on the external test set. For optimal performance,
the authors used an ensemble of multiple local federated
learning models, making it computationally expensive and
practically challenging. In contrast, the marginal loss im-
plemented in Liu et al. [9] and the conditional knowl-
edge distillation technique implemented in Wang et al. [15]
were both able to successfully segment all organs being seg-
mented across all the nodes. Similarly, Jiang et al. [6]
also introduced a knowledge distillation based technique for
training a global FL. model from partially annotated sites.
However, a major limitation across all these techniques is
the requirement of knowledge of all tasks being tackled
across different nodes. This is practically challenging to
setup, especially in a class-heterogeneous scenario. Fur-
thermore, these techniques cannot scale to accommodate
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scenarios with new nodes with newer tasks joining the fed-
eration at different points in time.

Therefore, we developed SegViz to address the short-
comings of current techniques in efficiently aggregating
knowledge from heterogeneous datasets with partial anno-
tations. Our method utilizes the intrinsic similarities be-
tween the different imaging datasets to learn a general rep-
resentation across multiple tasks. Moreover, it does not re-
quire knowledge of all the tasks, and is able to tackle do-
main shifts between these datasets.

3. Materials and Methods
3.1. Clinical Data

This study was approved by the institutional review board
and compliant with HIPAA regulations. Informed consent
was waived given the use of de-identified public datasets.
This retrospective study utilized four public datasets for
model development and validation, and one independent
dataset for testing. The image acquisition, processing, and
annotation details for these datasets have been summarized
in Table 1.

3.1.1 Spleen MSD

The Spleen dataset was obtained from the Medical Segmen-
tation Decathlon (MSD) challenge [1]. It contains 61 ab-
dominal CT volumes collected from a mix of patients and
healthy volunteers. Manual spleen segmentations were ob-
tained for all scans. The original data includes both training
(N=41) and test sets (N=20); only the training subset was
used in this study for model development. Scans varied in
spatial dimensions and voxel spacing. While multiple or-
gans (e.g., liver, kidneys, pancreas) are visible within the
imaged anatomy, only the spleen segmentation labels were
provided.

3.1.2 Liver MSD

The Liver dataset was also sourced from the MSD chal-
lenge [1]. It comprises 201 contrast-enhanced abdominal
CT scans collected at varying imaging sites and protocols.
Manual delineations of the liver structure and lesions are in-
cluded; only liver organ annotations were retained for this
study. The original data includes both training (N=131) and
test sets (N=70); only the training subset was used in this
study for model development. Scans exhibit heterogeneity
in dimensions and resolutions. Both patient and healthy vol-
unteer cases are covered. Only the liver organ is annotated
although other visible structures (spleen, pancreas, kidneys)
exist without labels.

3.1.3 Pancreas MSD

This dataset was collected from the pancreas subsection of
the MSD challenge [1]. It consists of 420 abdominal CT
volumes acquired from multiple institutions using differ-
ing scanners and protocols. Manual pancreas segmentation
masks are provided for all scans. Similar to the previous
datasets, the original data includes both training (N=282)
and test sets (N=139); only the training subset was used in
this study for model development. As in the other MSD
subsets, multiple organs appear within the imaged anatomy,
but annotations cover solely the pancreas gland.

3.1.4 Kidney Tumor Segmentation (KiTS19)

The Kidney dataset was obtained from the Kidney Tumor
Segmentation (KiTS19) challenge [5]. It encompasses 210
contrast-enhanced abdominal CT volumes collected from
multiple institutions using various scanners and protocols.
Manual delineations of kidney structures and kidney tumors
are included; only organ annotations were used in this work.
Consistent with the other datasets leveraged, numerous or-
gans and tissues are visible within the CT scan field of view
but labels are only provided for the kidney structures. Pre-
processing retained the kidney organ segmentation masks
while discarding the kidney tumor labels, yielding a dataset
with incomplete annotations covering only the kidneys.

3.1.5 Beyond the Cranial Vault (BTCYV)

The BTCV dataset was used as the independent test set
across all our experiments [7]. The BTCV dataset consisted
of 50 scans of portal-venous phase contrast-enhanced ab-
dominal CT volumes, out of which 30 scans from the train-
ing set with annotations for thirteen different organ anno-
tations, including the four organs of interest: liver, spleen,
kidneys, and pancreas were considered as part of our test
set.

3.2. Image Pre-processing

Each of the four training datasets exhibited heterogeneity
in annotations, voxel spacing, dimensions, and formats as
shown in Table 1. To harmonize the data, we first discarded
any tumor or lesion annotations and retained only the or-
gan segmentations present in each dataset. This resulted in
heterogeneous multi-organ data with incomplete disjoint la-
bels across datasets for the liver, spleen, pancreas, and kid-
neys. To enable efficient harmonization for model train-
ing, all volumes were resampled to isotropic 1.5 x 1.5 x
2.0 mm voxel spacing and reshaped to uniform 256 x 256
x 128 voxel dimensions using trilinear interpolation. Nor-
malization scaled intensities for each volume to a range of
[0, 1]. To augment data, random 128 x 128 x 32 foreground
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Table 1. Dataset description and availability of organ annotations for the Medical Segmentation Decathlon (MSD) Liver, MSD Spleen,
MSD Pancreas, Kidney Tumor segmentation (KiTs-2019) and BTCV datasets.

Set Annotated Organ Dataset Modality Imaging Protocol Median Shape  Median Spacing  Sample Size  Intensity Range
(mm)

Training + Liver MSD CT Portal Venous 432x512x 512 1x0.77x0.77 131 [-200, 200]
Validation
Training + Spleen MSD CT Portal Venous 90x 512 x 512 5x0.79 x 0.79 41 [-57, 164]
Validation
Training + Kidneys KiTs-2019 CT Preop. Late 107 x 512 x 512 3x0.78x0.78 206 [-79 , 304]
Validation Arterial Phase
Training + Pancreas MSD CT Portal Venous 93x512x512 25x0.8x0.8 282 [-87, 199]
Validation

Testing Liver, Spleen, BTCV CT Portal Venous 128 x 512 x 512 3x0.76 x 0.76 30 [-175, 250]

Kidneys, Pancreas

patches were extracted from each volume, centered on vox-
els belonging to the labeled organs.

3.3. Segmentation Architecture

We implemented a 3D U-Net architecture [4] with 5 lev-
els and 2 residual convolutional blocks per level for recep-
tive field depth. The same architecture was used across all
the experiments and methods. We used batch normaliza-
tion to ensure stable convergence. For every experiment,
the network was trained for 500 epochs on combined ex-
tracted patches using the Adam optimizer with initial learn-
ing rate le-4, batch size 2, and cosine annealing schedule
[10]. Data augmentation applied random affine transfor-
mations including scaling, rotation, and elastic deforma-
tion to improve generalization under distribution shifts be-
tween datasets. All our models were implemented using the
MONALI framework [2].

3.4. SegViz

SegViz adapts U-Net into an FL framework optimized for
learning from heterogeneous data with partial incomplete
labels. The U-Net architecture is divided into two parts —
the representation block and the task block. The representa-
tion block consists of subset architecture withing U-Net that
encodes task agnostic features that are aggregated across all
the nodes every 10 epochs to align the representation block
across all the datasets. We utilized a cosine annealing learn-
ing rate schedule with FedAvg to account for non-iid distri-
bution across the datasets [8]. The task block corresponds
to the final two convolutional layers in the network that en-
code task specific features for every node’s task and are not
aggregated at the server to preserve task-specific features.
At the end of the training, the task-specific blocks across all
the nodes are attached to the same representation block to
create the final multi-task model, as shown in Figure 2 (D).
Furthermore, conventional FL models lack privacy protec-

Figure 2. Illustration of the various setups that are trained in this
study. (A) Baseline: Independent models trained on each dataset’s
labels. (B) Central aggregation: Single model trained on combined
datasets. (C) Conventional federated learning: Tasks pre-defined,
full weight aggregation. (D) SegViz: Selective aggregation pre-
serving task specificity, no prerequisite task knowledge required

tion and may cause data leakage as shown in the literature
[18, 19]. In contrast, the selective aggregation strategy em-
ployed in SegViz provides a privacy-preserving way to ag-
gregate knowledge across different nodes [17].
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Table 2. Comparison of the experimental results between SegViz, single-dataset models, central aggregation, and conventional federated
learning (FL) models for each of four organs across all three experimental setups.

Experimental Setup Models Organ Segmented
Liver Spleen Pancreas Kidneys
Liver 0.88£0.15 - - -
. Spleen - 0.79 £ 0.17 - -
Single-Dataset Models Pancreas i ) 0.46 % 0.20 i
Kidneys - - - 0.64 £0.21
Central Aggregation 0.00 £ 0.00 0.65 +0.14 - -
2-node Conventional FL. 0.89 £+ 0.06 0.84 +0.09 - -
SegViz 0.90 £0.04 0.84 £0.12 - -
Central Aggregation 0.00 +0.00 0.61 +£0.18 0.00 + 0.00 -
3-node Conventional FL 0.75 £ 0.29 0.71 £0.17 0.45+0.17 -
SegViz 0.91 £+ 0.06 0.81 +£0.17 0.55 +0.19 -
Central Aggregation 0.65 +£0.14 0.00 £+ 0.00 0.55+0.18 0.68 £0.21
4-node Conventional FL 0.91 £0.03 0.46 +0.15 0.53 £ 0.18 0.68 £0.12
SegViz 0.93 +£0.02 0.78 +£0.14 0.40 +0.20 0.78 +£0.12

3.5. Comparative Methods
3.5.1 Ensemble of Single-Dataset Models

For comparison, individual 3D U-Net models were trained
on each dataset for the corresponding annotated organ as
shown in Figure 2 (A). These baseline models represent
the conventional setup where there are no incomplete an-
notations and each model is trained specifically for only the
annotations present in a dataset, in this case, single organ
annotations. Each model was trained from scratch for 500
epochs on its dataset’s extracted patches using a batch size
of 2 and cosine annealing learning rate decay.

3.5.2 Central Aggregation

To evaluate multi-organ learning, a central aggregation ap-
proach combined all datasets into one unified repository for
training a single model on all data as shown in Figure 2 (B).
While this does not reflect real-world privacy constraints, it
provides a lower bound on performance given the partial in-
complete labels across datasets. The aggregated 3D U-Net
had the same configuration as the baseline models. It was
trained on the combined patch data using the same scheme,
learning all tasks simultaneously from the heterogeneous la-
bels.

3.5.3 Conventional Federated Learning

We compare SegViz to a conventional federated learning
(FL) approach using Federated Averaging (FedAvg) [11].
Four clients were configured, each initialized with the full
3D U-Net architecture containing segmentation heads for

all four organs as shown in Figure 2 (C). Every 10 lo-
cal epochs, the server aggregated and synchronized all the
weights between clients using the FedAvg algorithm. This
represents traditional FL without specific optimizations for
heterogeneous partial labels. Similar to SegViz, we uti-
lized a cosine annealing learning rate schedule to account
for non-iid distribution across the datasets.

3.6. Experiments

We evaluated all four approaches in three experimental se-
tups with two, three, and four nodes. The liver and the
spleen datasets were used for the two-node experiment. The
three-node experiment added the pancreas dataset and the
four-node experiment used all four datasets. For each exper-
iment, the model performance was evaluated on 30 external
volumes from the BTCV dataset using the Dice similarity
metric. We performed Mann-Whitney non-parametric tests
using SciPy 1.5 for statistical comparisons, with p < 0.05
defining significance.

4. Results

Table 2 summarizes the performance of all four models on
all four organs across all experiments. Our results demon-
strated that the SegViz method consistently outperformed
the comparative methods for segmentation of all four or-
gans across all experimental setups. Figure 4 provides a vi-
sual comparison between the performance of all four mod-
els compared to the ground truth for four example cases.
Individual comparisons are detailed in the following sub-
sections.
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Figure 3. (A) Comparison between all four comparative models in
different experimental setups: 2-, 3-, and 4-node. (B) Comparions
between the four comparative models across each organ evaluated
in this work. (ns: p > 0.05, *: p < 0.05, **: p < 0.01, ***:
p < 0.001)

4.1. SegViz vs. Single-Dataset Models

As shown in Figure 3 (A), the overall performance for
SegViz across the 2-, 3-, and 4-node setups was 0.87+0.10,
0.76 £ 0.21, and 0.73 % 0.24, respectively. In comparison,
the baseline models individually trained on each dataset had
a similar overall performance (p > 0.05) of 0.84 4+ 0.17
and 0.70 £ 0.25 for 2-, 4-dataset scenarios, respectively.
However, baseline model performance in the 3-dataset sce-
nario was 0.71 % 0.26, significantly (p < 0.001) lower than
SegViz.

Similarly, there was no significant difference in the over-
all performance of the two models across liver, spleen, and
pancreas as shown in Figure 3 (B). For the kidneys, SegViz
again outperformed the baseline model trained only KiTS19
(SegViz: 0.78 = 0.12 vs. Baseline: 0.65 £ 0.22, p < 0.01)

4.2. SegViz vs. Central Aggregation

As shown in Figure 3 (A) and (B), SegViz outperformed
central aggregation across all organs and experimental se-
tups. Furthermore, our results demonstrated the inability
of conventional segmentation models to effectively train on

datasets with missing annotations, even with central aggre-
gation. As shown in Table 2, the central aggregation model
failed to segment liver in the 2-node setup, failed to seg-
ment both liver and pancreas in the 3-node setup, and failed
to segment spleen in the 4-node setup. SegViz, on the other
hand successfully segmented all organs across all datasets
across all experiments.

4.3. SegViz vs. Conventional FL

As shown in Figure 3 (A), there was no significant dif-
ference between the performance of conventional FL and
SegViz in a 2-node setup. However, the performance of the
conventional FL fails to scale with the increasing number of
nodes with a significantly lower performance than SegViz
for both the 3-node (SegViz: 0.76 £ 0.21 vs. Conven-
tional FL: 0.64 £ 0.26, p < 0.001) and the 4-node (SegViz:
0.73 + 0.24 vs. Conventional FL: 0.65 + 0.22, p < 0.001)
setups.

Similarly as shown in Figure 3 (B), SegViz signifi-
cantly outperformed conventional FL across all organs, ex-
cept pancreas where the difference was not significant. As
shown in Table 2, the conventional FL model performs con-
sistently well for the segmentation of Liver across all exper-
imental setups (0.89 =+ 0.06 for the 2-node to 0.91 &£ 0.03
for the 4-node setup). However, the performance of the
spleen drops significantly with the increasing number of
nodes (0.84 + 0.09 for the 2-node to 0.46 + 0.15 for the
4-node setup).

5. Discussion

This study introduced SegViz, a federated learning frame-
work that achieves excellent multi-organ segmentation
performance by effectively aggregating knowledge from
unique heterogeneous datasets with partial disjoint anno-
tations. Unlike current approaches in the literature [6, 9,
12, 15, 16], SegViz enables decentralized collaboration be-
tween nodes without requiring awareness of all tasks across
clients. Furthermore, the selective aggregation approach
used in SegViz provides additional security to data leakage
as only partial networks are shared and aggregated at the
server [17].

SegViz provides a mechanism for research groups and
healthcare centers to improve multi-organ capabilities by
learning from each other, without sharing raw protected
health data by consolidating task knowledge from distinct
partial labels into unified federated models. This setup thus
allows a flexible federation and provides the possibility of
onboarding of new participants to join the federation. This
decentralized collaboration has the potential to consolidate
learning across isolated datasets thereby reducing the need
to manually segment organs and accelerate the translation
of radiological research into clinical practice.
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Figure 4. Visualization of the overlay segmentations for four different images from the BTCV test set. Purple masks are for Liver, Green

for Spleen, Red for Pancreas, and Yellow for Kidneys

Quantitative results demonstrate SegViz matches or ex-
ceed fully supervised baselines; models trained indepen-
dently on each fully labeled dataset representing an up-
per bound, despite learning from incomplete heterogeneous
data. This highlights effective knowledge transfer, with
federated collaboration compensating for partial labels. In
contrast, naive central aggregation of all data showed sig-
nificantly degraded performance. This result was expected
given the missing ground truth across datasets. SegViz over-
comes this challenge via selective weight synchronization
during federated learning, preventing contamination across
disjoint partial labels and effectively consolidating comple-
mentary knowledge. Further, a conventional FL approach
was also inferior in performance to SegViz. Conventional
FL demonstrated significantly lower performance with in-
crease in the number of nodes. SegViz outperformed con-
ventional FL as the number of nodes in the federation in-
creased demonstraing SegViz’s potential for scaling to sev-
eral nodes while maintaining knowledge transfer.

Our study has several limitations - First, SegViz requires
the same model architecture at each client thus making it
difficult for multi-task learning at each client site. This
was demonstrated by the model’s inability to effectively
segment pancreas across all experiment setups and mod-
els. Next, our study was only evaluated using CT data and

further experiments would need to be conducted to include
other imaging modalities like MRI. We also note that our
experiments were only performed on disjoint data and needs
to be evaluated in scenarios with overlapping labels. In the
future, we will extend our experiments to other imaging
modalities (e.g., MRI) and overlapping labels. In addition,
we will also investigate the real-world performance of our
FL setup where random client nodes can continue to join
the federation at different points in time.
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