
 

 

 
Abstract 

 
Accurate identification and localization of anatomical 

structures of varying size and appearance in laparoscopic 
imaging are necessary to leverage the potential of 
computer vision techniques for surgical decision support. 
Segmentation performance of such models is traditionally 
reported using metrics of overlap such as IoU. However, 
imbalanced and unrealistic representation of classes in the 
training data and suboptimal selection of reported metrics 
have the potential to skew nominal segmentation 
performance and thereby ultimately limit clinical 
translation. In this work, we systematically analyze the 
impact of class characteristics (i.e., organ size 
differences), training and test data composition (i.e., 
representation of positive and negative examples), and 
modeling parameters (i.e., foreground-to-background 
class weight) on eight segmentation metrics: accuracy, 
precision, recall, IoU, F1 score (Dice Similarity 
Coefficient), specificity, Hausdorff Distance, and Average 
Symmetric Surface Distance. Our findings support two 
adjustments to account for data biases in surgical data 
science: First, training on datasets that are similar to the 
clinical real-world scenarios in terms of class distribution, 
and second, class weight adjustments to optimize 
segmentation model performance with regard to metrics of 
particular relevance in the respective clinical setting. 

 

1. Introduction 
Semantic segmentation of anatomical structures and 

surgical instruments is an important component of holistic 
surgical scene understanding. In surgical data science 
[1,2], segmentation may be a component of complex 
downstream computer vision tasks including object-to-
object interaction detection [3], action recognition [4], and 
surgical skill assessment [5,6]. Anatomy segmentation is 

an inherently challenging computer vision task: In contrast 
to structures with a static appearance like surgical 
instruments, anatomical structures may differ drastically in 
their visual appearance between patients (i.e., appearance 
of the liver surface in patients with and without hepatic 
cirrhosis) and within the same organ of one patient (i.e., 
ischemic and non-ischemic segments of the colon). As 
organs are also targets of a surgical intervention (i.e., organ 
resection, vessel ligation, anastomosis), their laparoscopic 
appearance may change substantially over the course of a 
surgical procedure. Technical and environmental 
conditions such as reflection artifacts and the presence of 
blood or smoke in an image further alter organs’ visual 
appearance [7].  

Available datasets to train and test segmentation models 
in surgical data science are often specifically curated for 
this technical purpose [8,9]. Correspondingly, they are 
composed to contain sufficient data of different classes 
rather than reflecting the true class distribution. This 
discrepancy between clinical reality and curated training 
and test data may result in models with limited clinical 
translatability despite good nominal performance indicated 
by classical technical metrics [10–12]. In this work, we 
present an empirical investigation of the effects of training 
data biases such as class imbalance and variations in 
modeling parameters in the specific use case of organ 
segmentation in laparoscopic image analysis. Based on a 
public benchmark dataset of laparoscopic images with 
corresponding organ segmentations [13], we illustrate the 
effects of the abovementioned variations on eight of the 
most commonly used segmentation metrics.  

In summary, the contributions of our work are as 
follows:  
¾ We illustrate the relations between training data 

composition as well as class (organ) size differences 
and segmentation performance in the context of 
organ segmentation in laparoscopic imaging. Our 
findings highlight the importance of critical 
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evaluation of the data that models are trained and 
tested on. 

¾ We demonstrate the effects of variations in class 
weights on organ segmentation performance in 
laparoscopy.  

¾ By doing so, our work provides orientation as to the 
use of class weight adaptations to account for data 
biases in the context of organ segmentation in 
laparoscopy.  

 

2. Related Works 

2.1.  Semantic Segmentation in Laparoscopic 
Imaging 

Several teams have reported efforts in leveraging 
segmentation models for surgical scene understanding in 
laparoscopic imaging. A large proportion of works in the 
field have focused on instrument detection tasks, i.e., 
segmentation of surgical tools on bounding box level [15], 
detection and tracking of tool tips and other key points in 
two- and three-dimensional space [16], and instance 
segmentation [17–19]. A number of datasets are available 
for these tool-focused segmentation tasks [20–22].  

In contrast, only few public datasets include detailed 
annotations of a range of anatomical structures, the most 
comprehensive of which is the Dresden Surgical Anatomy 
Dataset (DSAD) [13]. This dataset includes partially 
(binary) labeled data subsets for eleven organs and weak 
labels of organ presence for each image. The performance 
of basic segmentation models (DeepLabv3 and 
SegFormer) trained on DSAD was found to be comparable 
to human expert segmentation performance [14]. Jenke et 
al. have recently proposed integration of negative 
examples from data subsets with complementary organ 
annotations into training data for other classes as a data 
augmentation approach [23]. In addition to these newer 
approaches based on DSAD, multiple groups have 

previously investigated convolutional neural network 
(CNN)-based segmentation models for selected individual 
structures like liver, gallbladder, or uterus [8,24,25]. 

2.2.  Strategies to Mitigate Data Bias and Class 
Imbalance in Semantic Segmentation 

Data bias and class imbalance are common problems in 
computer vision that are most often caused by true 
differences in class frequencies, missing labels (i.e., when 
expert knowledge is required for annotations), or partially-
labeled data. In deep learning, data bias may result in 
models overfitting to the majority class and performing 
poorly on underrepresented classes. In the context of this 
work, we primarily study the effects of foreground-
background class imbalance (i.e., size differences between 
foreground and background). Several strategies have been 
proposed to mitigate the abovementioned challenges and 
their effects [26,27].  

Resampling (i.e., oversampling of underrepresented 
classes and/or undersampling of overrepresented classes) 
to balance the dataset is a popular approach that can 
improve the performance of segmentation models. 
Examples for resampled training data can be identified in 
various ways including bootstrapping [28,29], 
Intersection-over-Union (IoU)-based sampling [30], or 
thresholding methods [31–33]. Modification of the loss 
function or introduction of class weights during training is 
another strategy to improve model performance on 
underrepresented classes. For example, focal loss [34] and 
class-balanced loss [35] have been proposed to mitigate the 
consequences of class imbalance in object detection and 
semantic segmentation tasks. Integration of synthetic data 
may help improve segmentation performance in class-
imbalanced settings. In that regard, Zhao et al. have 
recently proposed integration of Masked Frequency 
Consistency to account for frequency variations between 
simulated data and real data influencing segmentation 
performance [36]. 

 

Figure 1: Experimental setup. Binary segmentation models were trained and tested on organ-specific or supplemented training data from 
the Dresden Surgical Anatomy Dataset providing comprehensive pixel-wise annotations of eleven abdominal organs in laparoscopic view.  
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2.3.  Segmentation Performance Metrics 
Accurate reporting of experimental results is the basis of 

reproducible and reliable science. In computational 
medical image analysis, selective reporting of 
segmentation metrics is a common shortcoming [37], 
which can result in limited reproducibility, clinical 
applicability and value of computational models [38–40]. 
Several works have described pitfalls pertaining to 
individual segmentation metrics [41–44], for example 
insensitivity of overlap-based metrics to structure 
boundaries or limited suitability of metrics penalizing both 
false positives and false negatives (i.e., IoU) for many use 
cases in medicine, where either false positives or false 
negatives should be minimized.  

Based on a comprehensive summary of metric-related 
pitfalls in medical image analysis [41], Maier-Hein et al. 
have recently presented stakeholder consensus 
recommendations for medical image analysis metrics [45]. 
Generally, metrics should be appropriately selected to 
address the biomedical problem while considering metric-
related pitfalls such as bias of the F1 score related to object 
size or shape. Recommended metrics for semantic 
segmentation include counting metrics such as F1 score 
(Dice Similarity Coefficient) and IoU as well as distance-
based metrics such as Hausdorff distance (HD) and average 
symmetric surface distance (ASSD) [43,45]. Our work 
builds on these efforts and illustrates the consequences of 
selective reporting of metrics in the specific use case of 
organ segmentation in laparoscopic imaging.  

 

3. Methodology 

3.1.  Dataset 
For this work, we used the DSAD dataset [13], the most 

comprehensive publicly available laparoscopic image 
dataset with annotations of the presence and exact 
localization of abdominal organs. This dataset comprises 
13195 distinct images, further subdivided into 11 organ 
subsets with at least 1,000 images from at least 20 patients 
each. Each organ subset contains binary annotations of the 
respective organ. In addition, the dataset contains binary 
weak labels for each image indicating the presence of all 
eleven organs in the respective image. Throughout this 
work, we followed the proposed split of surgeries into 
training, validation, and test data [14].  

In terms of data for model training and testing, we 
compare two setups: (1) Organ-specific training and test 
data, which contain just class-positive images, as described 
in [14], and (2) supplemented training and test data, which 
comprise the organ-specific data and, in addition, an equal 
number of randomly sampled class-negative images that 
were sampled based on the weak labels provided in the 

DSAD (Figure 1). From a clinical perspective, the 
supplemented data better represent the clinical scenario of 
laparoscopic surgery, as it includes images with the 
respective target organ out of view. Therefore, we present 
the results of evaluation on the supplemented test dataset 
in the main manuscript, while the results from evaluation 
on the organ-specific test datasets are provided in the 
Supplementary Material. 

3.2. Baseline Segmentation Method 

SegFormer-based binary (structure-specific) 
segmentation models were implemented as described 
previously [14]. In brief, every model is a binary semantic 
segmentation model of a specific organ (such as the colon) 
and its corresponding background (non-colon). On an 
image y from the original dataset, the model's binary cross-
entropy loss function 𝐿!"#$, is given by: 

 
𝐿!"#$ =	𝐿%!& +	𝐿'($																				(1) 

 
We split the loss function into two parts: 
 

Positive Loss 𝐿%!& (on foreground pixels, where 𝑦# = 1): 
 

𝐿%!&	 =	−
1
𝑁+

[𝑦# log(𝑦0#)]
*

#+,

																				(2) 

 
Negative Loss 𝐿'($ (on background pixels, where 𝑦# = 0): 
 

𝐿'($	 =	−
1
𝑁+

[(1 − 𝑦#)𝑙𝑜𝑔(1 − 𝑦0#)]
*

#+,

																			(3) 

 
Here, 𝑁 is the total number of pixels in the image from 

the original dataset. 𝑦#  is the true label of the i-th pixel, 
where 𝑦# = 1  indicates that the pixel belongs to the 
foreground, and  𝑦# = 0 indicates that the pixel belongs to 
the background. 𝑦0#  is the probability predicted by the 
model that the i-th pixel is part of the foreground. 

Using this approach, 𝐿!"#$ can guide the optimization of 
the model during the training phase. However, if the 
original dataset itself exhibits biases, such as training 
images always containing the target organ, or an imbalance 
in the number of pixels between the foreground and 
background, it is necessary to introduce modifications to 
the loss function. 

3.3. Supplementary Negative Samples 
All images in the original training dataset are selected 

from video frames of surgeries where the target organ 
appears within the camera's field of view, which does not  
reflect the variety encountered in actual surgeries. 
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Therefore, we introduce images of the same size that do not 
contain the organ from datasets of other abdominal organs 
as supplementary negative samples to address this bias. 
When the number of samples from the original dataset and 
the supplementary negative samples is at 1:1, the combined 
loss function, denoted as 𝐿-!./, can be formulated as: 

 
𝐿-!./ =	𝐿!"#$ +	𝐿&0%%1 																				(4) 

 
𝐿&0%%1  can be written as: 
 

𝐿&0%%1	 =	−
1
𝑁+

[log(1 − �̂�#)]
*

#+,

																				(5) 

  
Here, 𝑧 represents a supplementary negative sample. �̂�# 

is the probability that the i-th pixel of 𝑧 is part of the 
foreground. The formats of (5) and (3) should be identical, 
but 𝑧#  are 0 (meaning all pixels in 𝑧   belong to the 
background), the term (1 − 𝑧#)  is omitted from the 
product. 

3.4. Fore-Background Loss Weights 
Severe fore-background imbalance in some organs' 

training datasets causes decaying performance on organs 
of smaller size or visible portion. In addition, 
supplementary negative training samples also result in a 
significantly higher number of negative pixels than 
positive pixels. These two points lead to positive loss 𝐿%!& 
occupying only a small portion in 𝐿-!./ , while the 
combined negative loss 	𝐿'($ +	𝐿-!./  constitute a 
significant portion. This will result in the loss function not 
adequately reflecting the model's performance in the organ 
areas. To address this issue, we propose to re-weight the 
loss. Specifically, we introduce foreground loss weight 
𝑤%!& and background loss weight 𝑤'($ and modify (4) to 
the following form that is used in our experiments: 

 

𝐿-!./ = −
𝑤%!&
𝑁 +[𝑦# log(𝑦0#)]

*

#+,

 

−
𝑤'($
𝑁 =+[(1 − 𝑦#) log(1 − 𝑦0#)]

*

#+,

++log(1 − �̂�#)
*

#+,

> 

(6) 
     

For extremely small organs such as pancreas and ureter, 
the value of	𝑤%!&: 𝑤'($ should be greater than 1, thereby 
allowing the 𝐿%!& to contribute a larger portion. However, 
it is worth noting that the optimal ratio of 	𝑤%!&: 𝑤'($ does 
not strictly equal the inverse ratio of the number of 
foreground to background pixels in the training datasets, 
because the fore-background loss weights also depend on 
other factors such as the difficulty of segmenting the organ 

or the quality of the training samples. Our experiments 
show that in specific surgical scenarios, if different metrics 
are focused on, the optimal choice of foreground-
background loss weights also changes accordingly. In 
summary, the selection of foreground-background loss 
weights is empirical. We will analyze these scenarios in the 
next section in detail. 

3.5. Segmentation Performance Metrics 
We report six of the most commonly used and 

recommended [43,45] counting metrics for segmentation 
performance evaluation: accuracy, precision, recall, IoU 
[46], F1 score [47], and specificity. Counting metrics are 
calculated pixel-wise per image and are aggregated over all 
images in the test set. In addition, we report two distance-
based metrics, HD and ASSD, calculated per image and 
aggregated over all images. Since these metrics require a 
ground truth annotation, we only report these metrics for 
the organ-specific test setups (Supplementary Material). 

 

4. Experiments and Results 

4.1.  Organ Size Differences Relate to Organ 
Segmentation Performance 

We first investigated the relationship between class 
(organ) segment size and segmentation performance 
metrics. Based on the average proportion of foreground 
pixels in the respective organ subset, organ sizes in the 
dataset range from 1.2% for the ureter to 26.2% for the 
abdominal wall. With increasing organ size, we observed a 
trend towards increasing F1 score, IoU, and recall, and 
slightly decreasing accuracy and specificity. Precision did 
not show a clear relation with organ size when trained on 
organ-specific training data. These tendencies pertained to 
models trained with class weights identical for foreground 
and background (Table 1) and organ size-adapted class 
weights (Table 2). We observed similar general relations 
between organ size and segmentation performance when 
models were trained on organ-specific training data and 
supplemented training data (Table 1, Table 2, Figure 2). 
When models were tested on organ-specific test data, we 
observed similar organ size-related trends for counting 
metrics. For the distance-based metrics (HD and ASSD), 
we did not find a clear relation with object size 
(Supplementary Table 1, Supplementary Table 2, 
Supplementary Figure 1). 

4.2.  Training Data Composition Impacts Organ 
Segmentation Performance 

We next investigated the impact of training data 
composition on traditional segmentation performance 
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metrics. When models were evaluated on test data 
containing both class-positive and class-negative images, 
training on data containing class-positive and class-
negative examples resulted in a reduced frequency of false 
positives as compared to models trained on only class- 
positive examples. We consequently observed relative 
improvements in accuracy (particularly for large 
structures), specificity (particularly for large structures), 
and precision (particularly for small structures), with 
observed performance differences of up to 50% for 
precision of pancreas segmentation. Particularly for 

smaller structures, F1 score and recall decreased. For IoU, 
we observed no clear trend (Figure 2).  

When models were tested on organ-specific test data not 
including negative examples, we observed overall similar 
trends related to training data composition. Addition of 
negative samples to the training dataset resulted in an 
increase of distance-based segmentation performance 
metrics (HD and ASSD) as compared to organ-specific 
training data (Supplementary Figure 1, Supplementary 
Table 1, Supplementary Table 2).   

In most organs, the tendencies related to training data 

Table 1: Performance of binary organ segmentation models trained with class weights identical for foreground and background. 
Models were trained on organ-specific (O) training data including only class-positive images or supplemented (S) training data including 
class-positive and class-negative examples. All models were tested on supplemented test data. Abbreviations: Intersection-over-Union 
(IoU), Organ-specific training dataset (O), Supplemented training dataset (S).  
 

Organ 
Organ Size  

(% 
Foreground) 

Accuracy Precision Recall IoU F1 Score Specificity 

O S O S O S O S O S O S 

Ureter 1.2% 99.51 99.43 58.26 42.71 24.92 19.94 21.14 15.73 34.91 27.19 99.9 99.86 
Intestinal Veins 1.3% 99.50 99.68 51.57 81.24 62.26 49.69 39.29 44.58 56.41 61.67 99.70 99.94 
Pancreas 2.7% 98.55 98.85 43.76 92.85 43.44 11.74 27.88 11.64 43.6 20.85 99.27 99.99 
Inferior Mesenteric Artery 2.8% 99.05 99.09 59.19 76.40 36.75 22.20 29.32 20.77 45.35 34.40 99.72 99.93 
Vesicular Glands 2.9% 98.37 98.56 43.88 74.06 30.33 6.36 21.85 6.22 35.87 11.71 99.41 99.97 
Spleen 3.2% 99.15 99.00 71.25 67.74 78.75 72.79 59.76 54.05 74.81 70.17 99.48 99.43 
Stomach 5.0% 94.55 97.28 27.21 48.21 63.61 41.36 23.55 28.64 38.12 44.52 95.38 98.79 
Colon 11.8% 93.71 94.66 46.64 52.56 72.68 63.02 39.69 40.17 56.82 57.32 94.98 96.57 
Small Intestine 15.5% 93.99 95.85 52.91 63.66 91.14 88.22 50.33 58.67 66.96 73.96 94.19 96.39 
Liver 19.7% 97.27 96.73 78.78 77.71 70.46 58.58 59.22 50.15 74.39 66.80 98.87 99.00 
Abdominal Wall 26.2% 94.69 95.58 77.79 84.65 81.10 79.44 65.85 69.44 79.41 81.97 96.65 97.92 
 
Table 2: Performance of binary organ segmentation models trained with class weights adapted to organ size. Models were trained 
on organ-specific (O) training data including only class-positive images or supplemented (S) training data including class-positive and 
class-negative examples. All models were tested on supplemented test data. Abbreviations: Intersection-over-Union (IoU), Organ-specific 
training dataset (O), Supplemented training dataset (S).  
 

Organ 
Organ Size  

(% 
Foreground) 

Accuracy Precision Recall IoU F1 Score Specificity 

O S O S O S O S O S O S 

Ureter 1.2% 99.20 99.10 27.49 27.19 30.65 41.52 16.95 19.66 28.99 32.86 99.57 99.41 
Intestinal Veins 1.3% 98.92 99.52 29.80 52.79 79.29 79.52 27.65 46.47 43.32 63.45 99.03 99.63 
Pancreas 2.7% 98.62 99.08 47.26 76.73 61.38 41.27 36.43 36.68 53.40 53.67 99.10 99.84 
Inferior Mesenteric Artery 2.8% 98.89 98.90 48.26 49.00 45.77 44.42 30.70 30.38 46.98 46.60 99.47 99.50 
Vesicular Glands 2.9% 97.95 98.18 33.74 37.50 37.98 31.13 21.75 20.50 35.73 34.02 98.86 99.21 
Spleen 3.2% 98.62 98.95 54.55 63.79 84.77 79.93 49.68 54.98 66.38 70.95 98.84 99.26 
Stomach 5.0% 92.69 92.38 22.2 22.95 70.65 80.03 20.33 21.70 33.79 35.67 93.29 92.71 
Colon 11.8% 92.56 93.31 41.79 44.89 78.25 77.39 37.44 39.69 54.48 56.83 93.42 94.27 
Small Intestine 15.5% 95.42 94.34 60.88 54.45 88.14 93.48 56.27 52.46 72.02 68.82 95.94 94.40 
Liver 19.7% 96.91 96.65 70.30 75.08 77.91 60.46 58.61 50.35 73.91 66.98 98.04 98.80 
Abdominal Wall 26.2% 94.41 95.52 74.36 84.48 85.09 79.03 65.78 69.01 79.36 81.66 95.76 97.90 
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composition were considerably stronger when models 
were trained with 1:1 foreground-to-background class 
weights than with organ size-adapted class weights (Table 
1, Table 2, Figure 2). Overall, these results illustrate that 
both training data composition and class weight variations 
considerably impact nominal segmentation performance, 
and that inclusion of class-negative training data improves 
accuracy, precision, and specificity of segmentation 
models. 

4.3.  Adaptation of Class Weights to Optimize 
Segmentation Performance in Specific Use 
Cases 

Building on our observation of the relevance of class 
weight changes, we systematically investigated the impact 
of varying the foreground-to-background class weight ratio 
between 0.7 and 15 on segmentation performance metrics. 
Variations in class weights impacted nominal segmentation 
performance for all organs across metrics. For individual 

Figure 2: Quantitative evaluation of segmentation model performance in relation to training data composition and foreground-
background class weight. Models were trained on either organ-specific training data including only class-positive images or 
supplemented training data including class-positive and class-negative examples. Foreground and background were either weighted 
identically (1:1) or adapted to organ size. Models were tested on supplemented test data. Abbreviation: Intersection-over-Union (IoU).  
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metrics, we observed distinct trends that were partially 
related to organ size: Accuracy and specificity decreased 
with increasing class weights, particularly for large organs. 
Precision decreased for all organs with increasing class 
weights, independent of organ size. Recall increased with 
increasing class weights, particularly for smaller organs. In 
comparison to the other counting metrics, F1 score and IoU 
remained more stable when class weights varied (Figure 3).  

These class weight-related trends in counting metrics 
were similar when models were tested on organ-specific 
test data. Foreground-to-background class weight 
increases overall resulted in relative increase of distance-

based segmentation performance metrics (HD and ASSD) 
(Supplementary Figure 2).   

Optimal class weights for an organ differed between 
metrics. For example, pancreas segmentation performance 
was optimal in terms of precision when foreground-to-
background class weight was 1.0, while the highest IoU 
and F1 score were observed at a foreground-to-background 
class weight of 5.0 (Figure 3). These observations highlight 
how class weight adjustments may help optimize 
segmentation model performance with regard to one or 
multiple metrics of interest, depending on the clinical use 
case. 

Figure 3: Impact of variations in foreground-background class weights on segmentation performance metrics. Models were trained 
and tested on supplemented training data including class-positive and class-negative examples. Abbreviation: Intersection-over-Union 
(IoU).  
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5. Discussion 
Accurate identification of risk and target structures is 

critically important to avoid complications and errors in 
surgery [48]. Consequently, organ segmentation is an 
important computer vision task in the field of surgical data 
science [2]. In this work, we illustrate the consequences of 
data bias related to (1) organ size and (2) representation of 
positive and negative examples in the training data on 
organ segmentation performance. Additionally, we 
demonstrate the impact of varying foreground-background 
class weights during the modeling process on eight 
segmentation performance metrics.  

Our findings show that segmentation performance 
metrics are related to the size of the visible portion of the 
organ, with smaller organs exhibiting poorer performance 
compared to larger organs across most counting metrics. 
Furthermore, we quantify the effect of including negative 
examples in the training data: small organs particularly 
benefit from the inclusion of negative data in terms of 
improved precision, while larger organs in particular 
benefit from inclusion of negative training data in terms of 
accuracy and specificity. Last, we show how changes in 
class weights alter segmentation performance as 
determined by counting metrics and distance-based 
metrics. In conclusion, class weights can be adjusted to 
optimize specific metrics of interest, even at the expense of 
others.  

Our work adds concrete evidence from the field of 
surgical data science to the ongoing discussion about 
selection and reporting of metrics in medical image 
analysis [37,39,41,49]. Specifically, our results highlight 
the distortive potential of poor selection of segmentation 
performance indicators and selective reporting of modeling 
parameters. As the surgical data science community 
anticipates an integration of computer vision models into 
intraoperative surgical decision support systems within the 
next decade [2,50], awareness of the impact of such errors 
is of utmost importance: In many surgical scenarios, blood 
vessels, for example, represent risk structures that need to 
be identified. False negatives (i.e., not identifying a visible 
blood vessel) may result in injury of the vessel and 
complications such as intraoperative bleeding. The target 
metric therefore needs to meet the demands of the specific 
clinical application scenario. In the example of risk 
structures such as a blood vessel that must not be violated, 
a metric penalizing false negatives, such as recall, would 
be more suitable than more general metrics such as IoU.  

Our work has limitations. First, we analyzed only one 
dataset. While we expect the observed patterns to be 
transferable to other use cases beyond organ segmentation 
in laparoscopic imaging and similarly biased datasets, we 
do not prove this directly. Based on the limitation to the 
DSAD dataset, we only investigated the biases that this 
dataset represents. Biases such as a priori exclusion of 
patients with visibly diseased organs or different disease-

related phenomena would need additional data and 
annotations that the DSAD dataset does not provide. 
Second, we selected a subset of eight commonly used 
metrics to evaluate segmentation performance. While these 
metrics are among those recommended for segmentation 
performance assessment, other metrics such as volumetric 
similarity or mean absolute surface distance may have 
provided additional insights [8]. Third, while the 
supplemented training dataset used in our experiments 
comes closer to reflecting clinical reality than the organ-
specific data used in the baseline study [14], it represents a 
fixed distribution of images that display and do not display 
the class of interest. This does not fully model the true 
distribution of organ classes, which differs between 
surgery types. Last, our work focuses on binary 
segmentation problems and only considers one model 
architecture. In instance segmentation use cases, 
competition between classes may occur, resulting in more 
complex influences on nominal segmentation 
performance, which we did not explore in our study.  

Despite these limitations, our work highlights the 
importance of critically evaluating and reporting data 
characteristics and algorithm parameters used in 
segmentation tasks. Ultimately, in the context of medical 
imaging, these modeling choices may be decisive for 
clinical applicability and patient safety. 
 

6. Conclusion 
In this work, we empirically investigate the impact of 

object size and class distribution in training and test data as 
well as class weights on popular segmentation performance 
metrics in the specific use case of anatomy segmentation in 
laparoscopic imaging. Our results indicate that changes in 
these parameters can introduce drastic changes in nominal 
performance of over 50%. Class weight alterations 
differentially impact segmentation performance metrics 
and thereby allow for regulation and optimization of 
individual model performance metrics. Overall, these 
findings provide insights into the impact of data biases on 
nominal model performance in surgical data science and 
support two adjustments to account for these biases: First, 
training on datasets that are similar to the clinical real-
world scenarios in terms of class distribution, and second, 
class weight adjustments to optimize segmentation model 
performance with regard to metrics of particular relevance 
in the respective clinical setting. 
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