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Abstract

Diabetic Retinopathy (DR) is a common cause of irre-
versible vision loss in the working-age population. Au-
tomatic DR grading allows ophthalmologists to provide
timely treatment to numerous patients. However, devel-
oping a robust grading model needs large, balanced, and
annotated data, which poses challenges in the collection.
Moreover, data augmentation often fails to generate diverse
data, necessitating alternative approaches such as Gener-
ative Adversarial Networks (GANs). However, GANs of-
ten operate with low-resolution images as a result of their
costly training process. Therefore, we present a novel
method that repurposes the discriminator of an uncondi-
tional Progressive GAN, leveraging the generative knowl-
edge gained for DR grading. Furthermore, a new Log-
Likelihood Inception Distance (LLID) metric estimates the
similarity between one synthesized and a set of real im-
ages, thereby capturing human judgment more effectively.
Our method is validated through extensive experiments on
three public datasets, outperforming the baseline classi-
fiers’ performance by 12.5% and 14.33% average accuracy
on small data regimes and when combined with state-of-
the-art methods on large datasets, respectively. Addition-
ally, LLID reproduces the comprehension ability of most
of our Visual Turing Test participants, enabling differenti-
ation between a synthesized image and a set of reference
images with 82.88% accuracy. This confirms the quality of
generated images and the metric consistency with human
decision-making mechanisms.

1. Introduction

Diabetic Retinopathy (DR) is a severe complication of dia-
betes mellitus and a leading cause of blindness in working-
age adults worldwide [38]. The international protocol cat-
egorizes DR progression into normal, mild, moderate, se-
vere Non-Proliferative DR (NPDR), and PDR levels [33].

Fundus images captured by non-mydriatic colorful retinal
cameras are commonly used to provide clinicians essen-
tial characteristics for grading DR [13]. However, early
DR symptoms and subtle differences between consecutive
stages pose challenges for accurate diagnosis [20]. More-
over, manual characterization of multiple patients is ineffi-
cient and prone to fatigue and misdiagnosis in the long run.

Recently, a significant focus has been posed on develop-
ing automatic grading models for DR [14]. Deep Learn-
ing (DL) has been a promising alternative to traditional
machine learning approaches and handcrafted feature ex-
traction [29]. However, training Convolutional Neural Net-
works (CNNs) and transformers often requires a large and
diverse dataset. So, transfer learning has emerged as an ef-
fective solution to this challenge by leveraging knowledge
distilled from other datasets [15]. Unfortunately, it typically
assumes labeled and highly balanced source retinal data,
which may not always be the case [8]. Nevertheless, com-
mon data augmentation techniques limit improving model
generalization due to the augmented dataset’s similarity to
the original one [2].

In this context, generative DL models, such as Genera-
tive Adversarial Networks (GANs) [12], offer a solution to
the scarcity of fundus retina data. Starting from a latent vec-
tor z, GANs can generate synthetic data G(z) following the
probability distributions of real samples (G(z) ∼ Pact(x)).
Image generation is achieved by optimizing in a min-max
game a generative G and a discriminative D network that
differentiates between real D(x) and synthesized D(G(z))
data. GANs have successfully generated diverse retinal fun-
dus images, incorporating vessel tree semantic information
to control image realism and DR severity [5, 39]. Coyner
et al. addressed the Vanilla GANs limitations in handling
high-resolution images with a Progressive GAN (ProGAN)
and in evaluating generated image quality with the Eu-
clidean distance [7]. While Noguchi et al. achieved higher
generated retinal fundus images Fréchet Inception Distance
(FID) by leveraging a pre-trained generator [24]. However,
the knowledge repurposing of the individual GAN architec-
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ture components to address new tasks has not been deeply
investigated [31, 37]. To exemplify, the D model can learn
and preserve real-world image representations while G is
synthesizing new ones. However, exploiting it as an image
classification network to take advantage of the knowledge it
has gained has never been analyzed. Moreover, the quality
evaluation of generated images poses significant challenges.
While FID has been widely adopted due to its sensitivity to
small distributional differences, it requires comparing two
large image sets, which can be inconsistent with human in-
spection mechanisms that assess image realism by compar-
ing each image with a set of already-seen images [3].

To address these issues, we propose a methodology
to leverage the knowledge of the discriminator of a Pro-
GAN [18] trained to generate high-resolution fundus im-
ages, fine-tuning it to grade DR in small-data regimes (Fig-
ure 1). Additionally, we introduce a novel metric to estimate
the similarity between each GAN-synthesized image and a
set of real images, providing a more accurate correlation
between human visual perception and metrics for evaluat-
ing the quality of GAN-generated samples, as well as more
efficient image quality evaluation in clinical practice. Fur-
thermore, we allow accurate DR grading even in high-data
regimes, ensembling our strategy with selected state-of-the-
art models by an unweighted pooling function.

The main contributions of this paper are:
• An efficient strategy to repurpose a pre-trained uncondi-

tional GAN fundus image discriminator (Section 3.1) and
enable the generalizability of its architecture for image
classification tasks in low data regimes (Section 3.3).

• A novel quantitative metric, called Log-Likelihood Incep-
tion Distance (LLID), for evaluating GAN performance
that captures the knowledge of human judgment by com-
paring the similarity between each synthesized image and
a set of real images (Section 3.2).

• An ensemble learning technique for DR grading that com-
bines the proposed repurposing strategy with CNN mod-
els to grade DR in different data regimes (Section 3.3).

2. Related Work
This study encloses two key research areas: DL for DR
grading and fundus image generation. We provide an in-
depth overview of relevant research in each domain.

Deep Learning for DR grading. In recent years, DL has
emerged as a promising solution to address the limited ef-
ficiency and generalization posed by manual feature extrac-
tion from fundus images to grade DR [25]. Gayathri et al.
used CNNs to automate feature extraction while machine
learning classifiers to grade DR [10]. Image enhancement
and classification have been combined in a three-branch
neural network to perform grading reliably, also with low-
quality images [16]. Furthermore, attention modules have
been employed to focus on essential parts of the retinal im-

age to improve the CNN-based detection performance [1].
Given the time-consuming and economically expensive reti-
nal image labeling, transfer learning has emerged to relax
the DL need for high-dimensional annotated datasets. In
this context, Li et al. employed a fine-tuned CNN to ex-
tract features from retinal fundus images while using sup-
port vector machines for grading a small DR dataset [22].
Similarly, Zhang et al. combined five pre-trained CNNs for
feature vector representation of DR images but trained an
ensemble classifier on top of these CNNs to grade DR [35].
Finally, Tymchenko et al. adopted transfer learning in a
three-headed ensemble CNN, achieving superior results by
different model ensembles and trimmed mean predictions
from five-ary DR fundus image classification [30]. Al-
though these advancements enhance DR grading accuracy
and efficiency, reducing huge dataset needs, working on a
diverse data regime remains a firm requirement.

Deep Learning for Fundus Image Generation. GAN
and diffusion models can tackle the scarcity of large and di-
verse annotated fundus image datasets. Early two-step ap-
proaches generated vessel masks followed by GAN fundus
image one [6, 36]. Subsequently, DR-GAN incorporated
multi-scale spatial and channel attention modules to im-
prove the DR-related lesions FID in generated images [39],
while Odena et al. extended the GAN framework for simul-
taneous generation and classification [26]. More recently,
diffusion models have gained attention due to their com-
parable, if not better, generation and training stability than
GAN. Sojung et al. used diffusion models for fundus image
generation with artery/vein masks for vessel segmentation
and classification [11], while DiffMIC used a novel condi-
tional guidance and regularizations for image denoising and
classification [34]. However, they are less effective than
GANs in generating semantically meaningful latent repre-
sentations, thus sometimes requiring conditioning during
the generation. In addition, they provide less privacy and
maintain GANs faster at predicting images since they must
perform multiple inference steps to generate only one sam-
ple. Given the computational burden of training these mod-
els from scratch, transfer learning has primarily focused on
fine-tuning pre-trained GANs on new datasets [24, 32]. Dif-
ferently, Salimans et al. proposed a semi-supervised classi-
fier by incorporating GAN-generated samples during train-
ing. However, comprehensive exploration of GAN pre-
training remains limited, especially for fundus image dis-
criminative purposes [27]. To exemplify, although Vineeta
et al. developed a classifier for age-related macular degen-
eration using adversarial training as a regularization term,
they did not investigate its use as a pre-training step nor for
DR grading applications [9].

We have identified three key issues requiring attention.
Firstly, DR grading relies on supervised learning, requiring
many labeled samples not always readily available for fun-
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Figure 1. High-level description of the proposed methodology from the ProGAN training, the ProGAN discriminator repurposing
(ProGAN-d), the ResNet18 and SqueezeNet baselines comparison, to the ensemble binary and five-ary classification.

dus images. Secondly, previous research has overlooked the
potential of using a pre-trained GAN discriminator to dis-
cern image features. Finally, while FID is widely adopted in
GANs evaluation, concerns exist in its consistency with hu-
man inspection. To the best of our knowledge, our work is
the first and only attempt to propose a DR grading method
that leverages the classification knowledge acquired by
the discriminator of a pre-trained GAN during uncondi-
tional image generation and introduces a novel inception-
based distance metric to estimate the similarity between
each synthesized image and a set of real images.

3. Method

This Section describes the DL architecture and the loss
function for image generation. It details the novel metric
to evaluate image-generated quality. Finally, it describes
the proposed repurposing strategy for DR grading.

3.1. Fundus Image Generation

This work proposes a more lightweight version of the origi-
nal ProGAN, exploiting the unconditional synthesizing and
learning ability to alleviate DL models’ annotated datasets’
constraints and distinguish large structures with fine details.

DL model architecture. The ProGAN generator model
uses a 512-element latent vector of Gaussian random noise
as a starting point. Subsequently, blocks of 3 × 3 convo-
lutional layers, pixel normalization, LeakyReLU activation
function (slope of 0.2), and 1 × 1 convolution mapping the
RGB image are progressively added until the target image
dimension of 256× 256 is reached. During the progressive
resolution increase, the output of each new layer is com-
bined with the output of the previous one, upsampled by
nearest neighbor interpolation to the current higher resolu-
tion. Furthermore, when the resolution transition happens,
the new layers are smoothly faded to prevent the previous
ones from a sudden transition, as shown in Fig.1, where

α is the fading control parameter linearly interpolated over
multiple training iterations. Subsequently, the discrimina-
tor model reverse engineers how the generator network was
built. It starts with an RGB image that passes through
convolutional layers using average pooling as downsam-
pling. The current downsampled image and the previous are
weighted, starting with a full weighting for the downsam-
pled raw input and linearly transitioning to a full weight-
ing for the interpreted output of the new input layer block.
Downsampling convolutional layers are added until a sin-
gle output is reached, where a sigmoid function determines
whether the generated fundus image resembles a fake or real
one. Finally, the original ProGAN is modified to obtain its
lower-capacity ProGAN version: the convolution layer fea-
ture maps are halved at the 16 × 16 resolution and divided
by 4 in subsequent ones. In contrast, the target resolution is
set to 256× 256 considering computational constraints.

Loss function. We trained our ProGAN by minimizing
a generator and a discriminator loss. The adversarial loss
defines the generator loss as:

Ladv = Ez∼P (z) [logD (G (z))] , (1)

where D(G(z)) is the discriminator’s evaluation for the
noise z from the generator, and P (z) is the noise distribu-
tion. The discriminator loss is defined as the sum of an
adversarial loss, a gradient penalty loss, and a drift loss:

LD = Ladv + LGP + Ldrift . (2)

In particular, Ladv identifies the adversarial loss consisting
of the Wasserstein loss that measures the distance between
the distributions of the real and synthesized images:

Ladv = Ex∼Pact(x) [log (D (x))]

+ Ez∼P (z) [log (1−D (G (z)))] ,
(3)

where Ex∼Pact(x), and Ez∼P (z) are the expected values
over real data instances and random inputs to the genera-
tor, respectively. The LGP loss of Equation (2) allows for
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more stable training enforcing gradients of the discrimina-
tor output with respect to the inputs to have unitary norm:

LGP = λ · Ex̃∼P (x̃)

[
(∥∇x̃D (x̃)∥2 − 1)

2
]
, (4)

where x̃ is a random interpolation of the real x and a gen-
erated G(z) images, while λ is set to 1. Finally, the Ldrift

drift loss term of Equation (2) can be expressed as follows:

Ldrift = Ex∼Pact(x)

[
D (x)

2
]
+ Ez∼P (z)

[
D (G (z))

2
]
,

(5)
moves the discriminator output far from zero.

3.2. Evaluating GAN Generated Fundus Image
Quality

To meet the requirements of novelty and clinical plausibility
of the GAN-generated samples, a Visual Turing Test (VTT)
was designed, and the FID metric was extended for better
alignment with human decision-making mechanisms.

Visual Turing Test. We conducted a VTT to explore vi-
sually coherent synthetic images, which are difficult for ex-
perts to classify as synthetic without prior knowledge. Par-
ticipants, including five expert ophthalmologists and 15 dif-
ferent ophthalmology researchers with a minimum of five
and two years of clinical experience, respectively, and 32
laypeople, participated using a web-based quiz platform.
The platform presented images with a 50% chance of being
real or synthetic, and participants were classified as “Real”
or “Synthetic”. The dataset comprised images generated by
our ProGAN unconditionally trained on images represent-
ing all DR degrees. However, during the VTT, the partic-
ipants were not required to grade DR since it would have
introduced too much complexity.

To assess participant performance, we computed correct
and wrong classification percentages for images categorized
as real and synthetic, respectively. In particular, we ana-
lyzed the ability of each of the participants to correctly dis-
criminate between “Real” by the True Negative (TN) and
“Synthetic” by the True Positive (TP) rates. This analy-
sis provides insights into the perceptual realism of synthetic
images.

LLID: A Novel GAN Quality Evaluation Metric. The
FID is a widely used quality metric for evaluating the fi-
delity of GAN-generated images compared to real images.
It quantitatively measures the similarity between the two
distinct distributions of the inception embeddings of the real
r and generated g image sets, obtained as activations from
the penultimate layer of an Inception-V3 network. The two
image set distributions are mathematically represented as
multi-dimensional Gaussians characterized by mean m and
covariance C parameters. The FID is computed as the dis-

tance between these two Gaussian distributions:

FID = ∥mr −mg∥2 + Tr
(
Cr +Cg − 2

√
CrCg

)
.

(6)
To enhance the capacity of generative models to replicate
human decision-making processes that consist of compar-
ing a new single image with the prior knowledge of a set of
known samples, we propose the Log-Likelihood Inception
Distance (LLID) metric. Indeed, unlike FID, which repli-
cates an operator struggling to discern differences between
two sets of images, LLID allows for comparing an individ-
ual image with a reference image collection. This aligns
more closely with real-world scenarios where an operator is
more easily tasked when distinguishing between an actual
or synthesized image presented during a VTT with the prior
knowledge of a set of images than between a set of actual or
synthesized images and the set of images constituting their
prior knowledge. The LLID metric quantifies the logarithm
of the likelihood of a given sample under the distribution
of inception-extracted features within the reference image
collection:

LLID = −log (N (mr,Cr) · f (G (z))) , (7)

where N (mr,Cr) is the multivariate normal distribution
with mean m and covariance matrix C, while f (G (z)) is
the feature representation of the generated sample obtained
by passing it through the Inception-V3 network. The LLID
scores are computed for each sample from the VTT using
a reference real distribution estimated from 10k fundus im-
ages used to train the proposed ProGAN. After normaliz-
ing the LLID scores between 0 and 1, real samples are ex-
pected to have higher likelihoods under the real distribution
than fake samples. However, it should be noted that a low
LLID score under the real distribution does not necessar-
ily indicate a bad or unrealistic image. For this reason, the
LLID scores were used to create an Inception-based clas-
sifier using a threshold of 0.5. Samples with scores above
the threshold were classified as real, while those below the
threshold were classified as fake. Finally, FID represents
a distance metric, while LLID is a likelihood one. There-
fore, lower FID but higher LLID scores indicate better im-
age quality and closer resemblance to real images regarding
visual quality, diversity, and realism.

3.3. Discriminator Repurposing for DR Grading

Our premise is based on the observation that GANs can gen-
erate meaningful intermediate images by interpolating dif-
ferent classes, suggesting that the learned image features
exist on a manifold where new classes can also reside [12].
Therefore, if the discriminator learns these features while
classifying real and synthesized images, it can transfer this
knowledge for grading real DR images. To leverage this, we
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repurpose the pre-trained ProGAN discriminator (ProGAN-
d) for binary and five-ary DR fundus image classification
in small-data regimes. Moreover, we employ an ensemble
learning strategy to enhance model performance.

DL model architecture. The DR classifier employs the
same network architecture as ProGAN-d (Section 3.1). In
the case of binary classification tasks and image generation,
no further modifications are required for the last classifier
layer. However, during five-ary DR classification, the final
ProGAN-d sigmoid layer is replaced with a softmax layer
capable of handling multi-class classification tasks. Dur-
ing the fine-tuning step, the weights of the ProGAN-d are
frozen, and only the final linear layer classifier is trained
using the pre-trained backbone parameters.

Loss function. Unlike the original ProGAN training, we
let our ProGAN-d learn by minimizing the Cross-Entropy
(CE) loss function due to its better suitability for learning a
pure classification task instead of an adversarial one. In par-
ticular, we define it as CE(P ∗|P ) =

∑n
i=1 P

∗(i)·log P (i),
where P ∗ and P are the predicted and true class distribu-
tion, while i refers to the image class, and n = 2 or n = 5
in the case of binary or five-ary image classification.

Model Learning Strategy. An ensemble learning strat-
egy combining predictions from multiple models was used
to allow the end-user to take advantage of the low-capacity
ProGAN-d even in high-data regimes, whether required.
Firstly, the ProGAN discriminator was repurposed, and the
pre-trained ResNet18 and SqueezeNet models, trained on
ImageNet, were fine-tuned. Secondly, the output proba-
bilities predicted by each model were combined using the
ȳ = 1

3

∑2
i=0 yi unweighted pooling function, where i rep-

resents the ProGAN-d, SqueezeNet, and ResNet18 models
(i ∈ [0, 2]), yi denote their respective output probabilities.
At the same time, equal weight was given to each predic-
tion. The selection of SqueezeNet and ResNet18 was based
on their comparable and lower number of learnable param-
eters to the ProGAN-d one and baselines.

4. Experiments
This Section presents the datasets employed and the results
from the generation and classification experiments. The ex-
periments employ PyTorch (1.12.1). The training was run
on a 48 GB RAM PNY NVIDIA Quadro RTX 6000 GPU,
with Adam and a learning rate of 3 · 10−3. A decay rate
from 0 to 0.99 for averaging gradients leads the learning
rate to 1 · 10−8 as an asymptotic value. The ProGAN was
trained with mini-batch discrimination, equalized learning
rate, random image cropping, and horizontal flip as data
augmentation.

4.1. Datasets Description and Pre-processing

Our method utilizes three public fundus image datasets:
EyePACS [8], APTOS 2019 (APTOS19) [19], and

Figure 2. False Negative (FN), False Positive (FP), True Negative
(TN), and True Positive (TP) for each of the laypeople, researcher,
and expert ophthalmologist VTT participants.

DDR [21]. All dataset images have been graded by a clin-
ician on a 0-4 scale based on the Early Treatment Diabetic
Retinopathy Study scale [28]. However, they have diverse
sizes and suffer from class imbalance issues. In particular,
EyePACS, consisting of 88,702 RGB fundus images, shows
that the first less severe DR degrees account for the higher
number of images being the 73.48%, 6.96%, and 15.07%
of the dataset, while the most severe remaining classes are
the less frequent being the 2.48% and 2.01% of the total
dataset. On the other hand, APTOS19 and DDR, account-
ing for 3,662 and 12,522 RGB fundus images, show as the
most populated DR severity classes the first and the third,
followed by the mild and PDR, respectively, with the two
remaining classes covering 13.3% and 6.91% of the two
datasets, respectively. We leverage EyePACS to train the
generation and classification models, while the APTOS19
and DDR prove our strategy’s generalizability during im-
age classification. We utilize 35,126 EyePACS samples
for GAN training. 70/20/10 images were picked randomly
from all the datasets for training/validation/testing during
ProGAN and DR grading tasks, maintaining the original la-
bel imbalance during training while balancing the test sets.
Furthermore, since the images come from various sources,
resulting in variations in lighting conditions and resolutions,
we normalize each channel by subtracting the 0.5 mean and
dividing by the 0.5 standard deviation and resize them into
256 × 256 given the 48GB GPU memory, accelerating the
model convergence.

4.2. GAN Fundus Image Generation Results

We evaluated our ProGAN fundus image generation on
EyePACS using the VTT in Section 3.2. We then compared
the results with five other generative methods using the FID.

Visual Turing Test Evaluation. The results in Figure 2
show the participants’ accuracy in correctly discerning real
from synthesized images using 50 samples during VTT. Our
real and ProGAN-generated images achieved a recognition
rate of 51.1%, confirming their remarkable fidelity, consid-
ering the theoretical random guess of ∼ 50%. However, the
classification performance varied among real and synthetic
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Figure 3. Comparison between ROC curve and VTT results.

images (Figure 3). The average sensitivity and specificity
were 45.77% and 57.38%, respectively. In this context, it
is visible that expert and researchers ophthalmologists had
significantly higher correct response rates than laypeople,
indicating better sensitivity and specificity.

Baselines Performance Comparison. Table 1 presents
a comparative performance analysis of our proposed Pro-
GAN model against CGAN [23], Pix2Pix [17], Tub-
sGAN [36], RF-GAN2 [4], and DR-GAN [39]. The
FID values respectively denote the [4], [39] results since
Tub-sGAN, RF-GAN2, and DR-GAN come close-source,
while the LLID metric has been computed training CGAN,
Pix2Pix, and our ProGAN. Specifically, our ProGAN
demonstrates superior performance, achieving a FID score
of 4.06, 5× lower than the FID score of 19.45 obtained by
the CGAN model. The CGAN’s lower performance can
be attributed to the imbalance in conditioned information,
which results in the generator prioritizing dominant condi-
tions while neglecting minority ones. In contrast, our Pro-
GAN exhibits a marginal improvement of only 0.47 FID
compared to DR-GAN. This slight enhancement can be
attributed to the improved control and preservation of in-
put information offered by DR-GAN reconstruction loss
with respect to the CGAN. These findings indicate that the
high-resolution image regime in which our ProGAN ap-
proach lives allows for generating highly accurate retinal
fundus images with FID scores comparable to state-of-the-
art methods. Although the FID measurement provides valu-
able insights into the visual quality of the generated images,
it is questionable how it aligns with human judgment since
it compares two sets of images rather than one with respect
to a set. For this reason, we decorated the FID results of
our ProGAN with the LLID ones first to demonstrate the
LLID ability to measure image quality. More in detail, it

Table 1. FID and LLID comparing our method and baselines. ‘†’
and ‘‡’ respectively denote the [4], [39] results.

The best performances are underlined.
Model FID LLID

baseline CGAN [23] 19.45† 0.72
baseline Pix2Pix [17] 15.24† 0.83
baseline Tub-sGAN [36] 9.67† -
baseline RF-GAN2 [4] 7.03† -
baseline DR-GAN[39] 4.53‡ -
ours ProGAN 4.06 0.92

is visible how the resulting LLID trend aligns with the FID
one since both Pix2Pix and our ProGAN show higher LLID
performances than the CGAN, while our model confirms
the most accurate in the generation process with 0.92 as
LLID. Subsequently, to evaluate the LLID capability of re-
sembling human judgment, we implemented and exploited
an Inception-based classifier, as described in Section 3.2.
Figure 3 shows this classification method’s Receiver Op-
erator Characteristic (ROC) curve compared to the perfor-
mance of the VTT participants. The Area Under the Curve
(AUC) of the LLID classifier equals 82.88%, which is sig-
nificantly higher than random guessing. Also, it is clear
how our LLID classifier outperformed most of the laypeo-
ple participants and the ophthalmology researchers. Con-
versely, all the expert ophthalmologists matched or outper-
formed the LLID classifier. This significant result demon-
strates how the novel-implemented quality distance metric
can reproduce the comprehension ability of most partici-
pants to distinguish a synthesized image from a set of real
images. Therefore, it could help physicians or researchers
to gain more precise insights into the generation quality of
individual images rather than being constrained to the qual-
ity of two sets of images. Finally, the Inception-based clas-
sifier further confirms how our ProGAN can generate ac-
curate images since they are enough to trick a person with
some experience with retinal fundus imaging and be consid-
ered a resource for training ophthalmologists in the fundus
image analysis practice.

4.3. DR Grading Results

We evaluate whether using the proposed LLID metric to as-
sess the ProGAN in subsequent classification tasks yields
better classification results. Then, we evaluate the efficacy
of the repurposing strategy by computing the accuracy of
our ProGAN-d to binary and five-ary classify the differ-
ent DR degrees and by comparing its performances with
four shallow and deep state-of-the-art networks, namely
SqueezeNet, ResNet18, InceptionV3, and VGG11. In par-
ticular, we combined the lowest (0, 1) and the severer (2,
3, 4) DR degrees for the binary task, while for the mul-
ticlass case, we consider the five classes singularly. Fi-
nally, we show the ensemble learning strategy results de-
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Table 2. Ablation Study: LLID values at different training epochs
and relative best binary and five-ary classification results. Best
results underlined.

#Epochs LLID
Best Binary
Accuracy

Best Five-ary
Accuracy

100k 0.74 0.56 0.23
250k 0.83 0.58 0.21
400k 0.87 0.58 0.41
550k 0.89 0.59 0.41
700k 0.92 0.61 0.46

scribed in Section 3.3, referring to Ei where i ∈ [1, 4] when
weighting together the output probabilities of the ProGAN-
d and ResNet (i = 1), ProGAN-d and SqueezeNet (i = 2),
ResNet and SqueezeNet (i = 3), and all the three models
(i = 4). We discarded the VGG11 and the InceptionV3
models from the ensembling due to the higher number of
training parameters than our ProGAN-d, which could have
led them to hide our ProGAN-d model contribution. All
classification experiments have been performed retraining
all the models on small-data (100, 300 images) and high-
data (1k, 3k and 10k images) regimes considering the ran-
dom and ImageNet weights initialization for the baselines,
the random and EyePACS weights initialization for the
ProGAN-d, while just the ImageNet and EyePACS weights
initialization for the ensembles models.

LLID-based Ablation Study. Table 2 demonstrates
how the proposed LLID correlates with the repurposed clas-
sifier. In particular, the accuracy and LLID results reported
show how letting our ProGAN generate progressively real-
quality images as the training progresses from the 100kth

to the last 700kth epoch (Figure 4) brings our ProGAN-
d models to more accurately classify real fundus images.
Indeed, it is visible how the LLID of the generated im-
ages increases from 0.74 to 0.92 as the ProGAN training
progresses from 100k to 700k epochs. The image quality
improvement is reflected in the DR classification perfor-
mances, which show 5% and 23% accuracy improvements,
respectively, considering the best binary and five-ary clas-
sification results achieved through all the training image set
sizes. Given that the model with higher LLID is also the one
achieving the best classification performance when repur-
posed, our study supports the possibility of employing the
novel LLID not only as a metric for generation goodness but
also as a metric to identify the best model for repurposing.

Binary Fundus Image Classification. Table 3 (a)
presents a comparative analysis of the performance ob-
tained in binary fundus image classification while progres-
sively increasing the size of the fine-tuning dataset. Upon
initial observation, it shows that utilizing an ImageNet and
EyePACS pre-trained network positively impacts all mod-
els. It should be noted that the ImageNet weights were
obtained by training the state-of-the-art models in a su-

Figure 4. Examples of 700kth epoch generated and real images.

pervised manner, whereas the EyePACS weights were ob-
tained through unsupervised training of the ProGAN net-
work, eliminating the need for labeled data during train-
ing. Another noteworthy trend emerges when the training
dataset size is increased from 100 to 10k images. In partic-
ular, our ProGAN-d model is the reference model between
depth comparable state-of-the-art models when the number
of available training images is between 100 and 300, given
the highest 0.61 when fine-tuning our model on the Eye-
PACS datasets. This result is confirmed when generaliz-
ing our model training to the DDR and APTOS19 datasets,
which brings the highest accuracy of 0.77 and 0.67, respec-
tively. While the training size increases, our ProGAN-d
shows the slowest improvement rate when both pre-trained
and fine-tuned on EyePACS. Indeed, when fine-tuning our
model on the APTOS19 and DDR datasets, our EyePACS
pre-trained weights find novel and different patterns of
DR features to learn from rather than being stacked with
already-embedded EyePACS DR global features. Further-
more, compared to state-of-the-art models, the smaller and
domain-different EyePACS dataset than the ImageNet leads
the EyePACS pre-trained weights to struggle while updating
if the fine-tuning datasets show the same distribution of fea-
tures and their size increase. Differently, the ImageNet pre-
trained weights perform better when fine-tuned on a very
large and domain-different dataset, given their better abil-
ity to generalize. This aspect is further highlighted when
considering more complex baselines such as ResNet18 and
VGG11. However, if higher performance would be needed
while exploiting our ProGAN-d on high-data regimes, this
issue can be mitigated by combining the prediction proba-
bilities in the E4 ensemble model. As a result, up to 4.67%,
4%, and 2.33% accuracy improvements average between
the three individual models are achieved respectively with
1k, 3k, and 10k fine-tuning images. Table 4 further con-
firms the robustness of the proposed method. The ProGAN-
d model acts as a good contributor to the baseline ensemble,
and each ensemble method consistently outperforms its ab-
lated versions and original components across all training
dataset sizes.

Five-ary Fundus Image Classification. The classifica-
tion performance of the five degrees of DR is presented in
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Table 3. Fundus image classification results for our methods and baselines on the pre-training and training datasets. R = Random, E =
EyePACS, I = ImageNet, A = APTOS19, D = DDR, and “-”are due to the A and D low dimension. The best performances are underlined.

(a) Binary DR Grading Accuracy (b) Five-ary DR Grading Accuracy
Model Pre-Tr Tr 100 300 1k 3k 10k 100 300 1k 3k 10k

ResNet18 R E baseline 0.49 0.52 0.56 0.57 0.58 0.28 0.31 0.35 0.36 0.38
SqueezeNet R E baseline 0.51 0.54 0.58 0.60 0.61 0.30 0.40 0.42 0.44 0.45
InceptionV3 R E baseline 0.48 0.50 0.50 0.51 0.53 0.31 0.33 0.34 0.38 0.41
VGG11 R E baseline 0.56 0.58 0.59 0.61 0.69 0.34 0.32 0.37 0.43 0.45
ProGAN-d R E ours 0.44 0.54 0.54 0.58 0.68 0.28 0.33 0.35 0.37 0.41

ResNet18 I E baseline 0.56 0.59 0.61 0.69 0.72 0.37 0.40 0.43 0.45 0.50
SqueezeNet I E baseline 0.60 0.61 0.65 0.70 0.70 0.39 0.41 0.40 0.48 0.53
InceptionV3 I E baseline 0.50 0.51 0.53 0.56 0.59 0.31 0.32 0.36 0.40 0.44
VGG11 I E baseline 0.58 0.63 0.68 0.70 0.74 0.36 0.40 0.44 0.48 0.55
ProGAN-d E E ours 0.61 0.61 0.61 0.61 0.61 0.46 0.46 0.46 0.46 0.46

Other Datasets

ProGAN-d E A ours 0.73 0.77 0.73 0.74 - 0.49 0.53 0.51 0.52 -
ProGAN-d E D ours 0.60 0.67 0.72 0.74 0.80 0.48 0.49 0.50 0.45 0.44

Table 4. Ensemble results, where E4 = ProGAN-d + ResNet18 +
SqueezeNet, E3 = ResNet18 + SqueezeNet, E2 = ProGAN-d +
SqueezeNet, and E1 = ProGAN-d + ResNet18. The best perfor-
mances are underlined.

(a) Binary DR Grading Accuracy (b) Five-ary DR Grading Accuracy
Model 100 300 1k 3k 10k 100 300 1k 3k 10k

E4 0.62 0.68 0.72 0.74 0.75 0.40 0.55 0.45 0.49 0.52
E3 0.61 0.64 0.68 0.70 0.72 0.37 0.41 0.43 0.46 0.50
E2 0.61 0.65 0.68 0.71 0.74 0.46 0.46 0.48 0.50 0.55
E1 0.63 0.66 0.66 0.69 0.72 0.41 0.43 0.44 0.46 0.48

Table 3 (b). The results show similar trends to those of
binary classification. Specifically, pre-trained weights im-
prove classification accuracies compared to random weight
initialization. Notably, our EyePACS fine-tuned ProGAN-d
model consistently achieves the highest classification per-
formance of 0.46 among all models when trained with
dataset sizes ranging from 100 to 1k images. Furthermore,
it demonstrates its compatibility even with the APTOS19
and DDR datasets since up to 0.53 and 0.50 average ac-
curacy have been obtained, respectively. However, analyz-
ing models’ performances when trained with larger training
datasets, our ProGAN-d model shows a constant or decreas-
ing performance, unlike the baseline models, whose accu-
racy improves and plateaus when the dataset size reaches
10k training images. Similar to the observations made in
binary DR grading, the constant behavior through all the
dataset sizes is attributable to the challenging generaliza-
tion ability during the fine-tuning of EyePACS pre-trained
models, while the decreasing one is due to the progressively
lower number and higher variance of the per-class images
in the five-ary classification scenario. To allow a possi-
ble end-user to benefit from our model even in higher-data
regimes, we combine the prediction probabilities of ResNet
and SqueezeNet with those of ProGAN-d. This strategy’s
effectiveness is demonstrated by the highest accuracy im-
provements of 2%, 4%, 9% across all the baselines when

fine-tuning E2 with 1k, 3k, and 10k images, respectively.
Furthermore, Table 4 shows that ProGAN-d consistently
improves all model predictions, as indicated by the superior
performance of E4, E2, and E1 compared to E3, where only
ResNet and SqueezeNet are used. Lastly, when comparing
the performances of binary and five-ary DR grading, com-
bining the DR degrees into two classes yields higher accu-
racy than individually classifying the five DR degrees. This
outcome can be attributed to the higher complexity in dis-
tinguishing multiple degrees with potentially fine-grained
differences compared to two classes with higher inter-class
variance.

5. Discussion and Conclusion

This paper shows how repurposing a ProGAN discriminator
allows for superiority over conventional DR grading meth-
ods, with 12.5% accuracy improvement averaged between
binary and five-ary results on smaller datasets. Further-
more, it benefits the end-user with large datasets through
ensembling, with 14.33% accuracy improvement averaged
between binary and five-ary results. Finally, introducing a
novel LLID metric correlates better with human visual qual-
ity perception than conventional metrics and classifiers.

Although such encouraging results and the potentiality
of repurposing GANs, some considerations should be made.
Indeed, during GAN training, the discriminator sees both
true and generated data, leading to possible unrealistic fea-
tures learning and bias introduction. However, we gener-
ated images nicely mimicking real data, suggesting they
do not negatively impact the discriminator. Moreover, dur-
ing repurposing, the discriminator only learns the pathology
signs from real data, limiting the impact of biases or less re-
alistic features. These results are not definitive, yet they
offer valuable insights for future work seeking to exploit
the ability of generative models in challenging classifica-
tion tasks while scaling it to different anatomical districts.
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