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Abstract

Deep learning systems for medical image analysis have
shown remarkable performance. However, performance is
heavily dependent on the size and diversity of the training
data as small datasets might lead to overfitting. Unfortu-
nately, labeled data is often hard to acquire because of the
high cost and required medical expertise. Data augmenta-
tion is an effective strategy to combat this and has proven to
significantly improve model generalisability as it increases
the size and diversity of the dataset. However for ultrasound
images classic data transformations may not always be ap-
propriate. In this paper we focus on developing data aug-
mentations specifically designed for fan-shaped ultrasound
images by simulating artifacts, altering speckle patterns,
and adapting conventional techniques to make them fan-
shape preserving. We apply the suggested augmentations to
two segmentation tasks and demonstrate that the proposed
augmentation techniques can improve performance and can
remedy the harm caused by there conventional alternatives.

1. Introduction

It is widely known that deep learning system require a vast
amount of data to reach acceptable performance. However,
medical images are often hard to acquire due to the high
cost and the required medical expertise to create ground
truth data such as segmentations or classification labels.
Since training on small datasets often leads to overfitting,
data augmentation is crucial for achieving acceptable gen-
eralisability [37]. Conventional data augmentations (e.g.
affine transformations, flipping, cropping, zooming, blur-
ring, adding image noise, etc.) have shown to reduce over-

fitting by exposing the network each time to a slightly dif-
ferent version of the original image [4, 7]. However, for
ultrasound (US) images these augmentations may be sub-
optimal as inappropriate augmentation could result in im-
ages that deviate from clinical reality [10, 28]. Application
of conventional data techniques may therefore be limited.
Previous research involving US images limits data augmen-
tation to rotations [3, 9, 11, 14, 15, 25, 26, 29–32], hori-
zontal flipping [1, 3, 9, 11, 15, 26, 29–32], contrast adjust-
ment [3, 9, 14, 30, 31], cropping [1, 9, 15], elastic deforma-
tion [3, 23, 26, 31], grid distortion [3, 9], Gaussian smooth-
ing [9, 14, 31] and additive noise [9, 30, 31]. Unfortunately,
there is disagreement in whether these actually simulate
anatomical, operator and machine variability. Some argue
that rotation should be avoided, since this changes the origin
of the US beams [40], while others state that it simulates a
difference in pitch of the probe [39]. Furthermore, horizon-
tal flipping, which could be seen as a 180° rotation of the
probe [3], may violate probe orientation conventions [40].
Vertical flipping is often avoided as it changes the direc-
tion of the beams [40] and might result in unrealistic de-
piction of acoustic shadows [28]. Contrast and brightness
adjustment, which correspond to altering machine settings
related to contrast, brightness and time gain control [7, 39],
or probe pressure variability [3], are heavily used and show
to be highly useful for US [10]. Elastic deformation and
grid distortion, while not extensively used, are argued to
simulate anatomical variability [3], or patient motion (e.g.
due to breathing) [10]. Gaussian or bilateral smoothing
is also often used for simulating image degrading due to
noise [17] or for simulating bone response to different ori-
entations of the probe [39]. Lastly, additive noise is often
deemed less appropriate as noise in US images has a mul-
tiplicative nature [13]. Given these connections to anatomi-
cal, operator and machine variability, applying conventional

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

2422



data transformations should be handled with care and with
the anatomical area in mind.

Another way to artificially increase dataset size is to gen-
erate synthetic data. A popular approach is to use a gener-
ative adversarial network (GAN) [27, 35, 39]. However,
training a GAN typically requires large amounts of data,
which might not be available. Furthermore, the training
process of GANs is often difficult and unstable. In addi-
tion, the performance boost obtained from synthetic data is
often relatively small given the time and resources it con-
sumes [27, 35].

Further, popular techniques such as MixUp [41] or Cut-
Mix [38] aim to create new data by combining features from
two images. Even though Mixup has been successfully ap-
plied to US images [24, 33], it has been shown that combin-
ing it with conventional data techniques might negatively
impact performance [24]. CutMix creates a new image by
copying a small region from one image onto another and
adapting the labels appropriately. Given that this may cre-
ate highly unlikely images CutMix should be applied while
keeping the anatomy in mind [12].

Because of the limited applicability of conventional data
augmentation methods and complexities of synthetic data
generation, one might benefit from developing data aug-
mentations that are designed with the image modality in
mind. This allows to make certain assumptions about the
data, which enables the use of more powerful and complex
transformations. For example in magnetic resonance imag-
ing (MRI) several data augmentation techniques operate in
k-space allowing the simulation of motion and noise arti-
facts [21] or to perform under-sampling to simulate faster
MRI sequences [8].

Equivalently to MRI augmentations, augmenting US
data could also be performed in another space such as the
radio-frequency (RF) space [34]. However, RF data is
rarely accessible on commercial machines, therefore, aug-
mentation of the RF space is not possible in most scenarios.
A possible solution might be to estimate the RF data [19],
but converting it back to high quality B-mode images is a
non-trivial task.

Data augmentations specifically for B-mode US images
are far less widespread. Tirindelli et al. introduced data aug-
mentations specifically for US based on the simulation of
reverberations, deformation, and signal-to-noise ratio alter-
ation [28]. However, all techniques require a bone segmen-
tation, which might not be available in all US images, and is
time-consuming to curate. Furthermore, using the data aug-
mentations resulted in a negligible segmentation improve-
ment and a degrading classification accuracy. Singla et al.
proposed data augmentations based on simulating acoustic
shadows and different machine settings related to zoom and
time gain control [22]. Unfortunately, most augmentations
relied on statistical assumptions and did not result in realis-

tic images, nor did they add a significant performance boost.
Another approach, called Gaussian Shadow [23] simulates
shadows by darkening a Gaussian region that was randomly
sampled. While this significantly improved performance,
advertising this as a shadow seems rather farfetched as it’s
closer to a form of masking instead of simulating a shadow
given that the location and shape are not based on the de-
picted US image features. Xu et al. proposed to simulate
acoustic shadowing by copying the shadow of one image
to another one [36]. Even though this resulted in a signifi-
cant performance improvement, the application of this tech-
nique seems only valid if the anatomy of the US images is
somewhat aligned and depicts the same region. Otherwise,
this technique could introduce shadows in unrealistic places
within the US image.

More generative approaches such as GANs or variational
autoencoders (VAE) have simulated US specific features
such as speckle [2] or tissue deformation [6]. However,
these typically require large amounts of data to produce ac-
ceptable results.

Instead of simulating altered machine settings or arti-
facts, simulating different probes also seems an effective
augmentation technique. In [40] it is shown that by increas-
ing probe diversity, model generalisability can be improved.

In this paper, we propose the UltraAugment framework.
More specifically, UltraAugment consist of six new data
augmentation techniques for 2D fan-shaped US images.
We focus on achieving anatomically and physically plau-
sible results by simulating US artifacts, distorting speckle
and creating fan-shape preserving versions of conventional
cropping, elastic deformation and noise data augmentation
techniques. In addition, the proposed augmentations are
easily employable for any fan-shaped US images as they
do not rely on additional external segmentations or gen-
erative models. The impact of the augmentations is anal-
ysed by utilising them on a private dataset for 2D exter-
nal anal sphincter (EAS) segmentation and on the public
JNU-IFM [16] dataset for 2D fetal head (FH) and symph-
ysis pubis (SP) segmentation. All proposed data augmenta-
tion techniques are shown in Figure 1.

2. Methods

2.1. Eliminating Fan Shapes

Since the fan shape of the US images complicates most of
the image transformations involved in the data augmenta-
tion techniques, it is removed by warping the images onto a
rectangular grid. This is achieved by sampling all scanlines
through a polar sweep across the fan angle and arranging
them next to each other. After the image is transformed it
is warped back such that the original fan shape is restored.
For details on the warping operations, we refer to section 5
in the supplementary material. In what follows we denote
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Figure 1. The proposed data augmentations shown on an image of the JNU-IFM dataset.

the warping operation of an image X and its inverse with
Φ(X) and Φ(X)−1 respectively.

2.2. Speckle Distortion

Speckle can be defined as an interference pattern resulting
from interfering echoes of a transmitted waveform. While
speckle has a direct relationship to tissue composition, there
is no consensus regarding a standardized approach for using
this information as some consider it to be noise and others as
part of the signal [20]. Furthermore, since speckle is partly
random due to the unpredictability of scattered waves, it is
justifiable to alter the speckle composition of an US image
as a form of data augmentation.

To extract the speckle pattern from US images, it is as-
sumed that speckle corresponds to the high frequency com-
ponents of the US images and can consequently be altered
by changing these components. In what follows, Fhigh{X}
denotes the components of the Fourier transform of an im-
age X of frequencies higher than frequencies (ktx, kty) as-
sociated to the lowest spatial frequencies of speckle in the x
and y directions respectively. For simplicity, ktx and kty are
in reality provided as fractionmtx andmty respectively and
represent a normalized index of the image in Fourier space
that corresponds to the lowest speckle frequency. Note that
the Fourier transform is also applied to the warped image
Φ(X) as this allows to capture speckle patterns at different
depths using the same spatial frequency.

To distort the speckle that is present in an image, the high

frequency components are altered in two ways. The magni-
tude of the components is changed by randomly permuting
Fhigh{Φ(X)} such that the presence of certain frequencies
is reduced and others is increased. Second, the phase of
each component is altered by adding a randomly sampled
phase offset. This is achieved by expressing the Fourier
transform in polar form and adding a random phase com-
ponent:

F (kx, ky) =

{
|f(kx, ky)|ei(ϕ+ψ(kX ,ky)) if kx ≥ ktx and ky ≥ kty

f(kx, ky) otherwise,
(1)

where f is the Fourier transform of the warped im-
age, namely f = Fhigh{Φ(X)}, | · | denotes the mag-
nitude, ϕ is the angle of the Fourier transform and
ψ(kx, ky) ∼ Uniform(ψmin, ψmax) denotes the phase off-
set.

2.3. Reverberation Simulation

Reverberations arise when an US beam bounces back
and forth between two parallel reflectors. The transducer
mistakenly interprets this as waves coming from deeper
structures, which results in visual repetitions of the same
anatomical region. Previous work already tried to simulate
reverberations based on replicating an image patch contain-
ing bone [28]. However, the need for a bone segmentation
makes this approach less widely applicable. As a result, we
propose to sample a patch close to the US probe and repli-
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cate this patch n times in opposite direction from the probe.
The patch location (px ∈ [xmin, xmax], py ∈ [ymin, ymax])
and size (pw ∈ [wmin, wmax], ph ∈ [hmin, hmax]), speci-
fied in normalized coordinates, are randomly sampled ac-
cording to the provided ranges. To mask the obvious tran-
sitions between the replicated patches and the image, the
image is linearly mixed in using a sinusoidal pattern λ with
a period equal to the width of the replicated patch and that
decays to zero near the border. The augmented image is
obtained by

Xpatch(u, v) = λ(u, v)R(u, v) + (1− λ(u, v)) Φ(X)(u, v),
(2)

where (u, v) is a coordinate in the image space,R the rever-
beration patch and λ(u, v) the smoothed sinusoidal pattern.
The pattern λ(u, v) consists of two parts:

λ(u, v) =

(
1

2
sin

(
2π

H

)
+

1

2

)
(GK,σ ∗ Zm)(u, v). (3)

In this equation GK,σ is a K × K Gaussian kernel with
standard deviation σ and Zm is defined as

Zm(u, v) =


1 if x+m < u ≤ x+W −m

and y +m < v ≤ y + nH −m

0 otherwise,
(4)

wherem ∈ N, and (x, y,W,H) defines the bounding box of
the replicated patch. We take K = 11, σ = 2.0 and m = 2
as this visually results in the most realistic reverberations.

Since reverberations typically cause shadowing behind
them, the intensities of the pixels located behind the patch
are reduced according to:

Xnew(u, v) = Xpatch(u, v)− βκ(u, v)Xpatch(u, v), (5)

where β < 1 is the reduction factor and κ(u, v) a mask that
defines the region affected by the shadow. This affected
region has the same width as the replicated patches and has
a height expressed as a fraction d of the scan line length. To
make sure the shadow blends well with the image, κ(u, v)
decays to zero near the border of the shadow. Similarly for
the smoothing of the shadow caused by the reverberations,
we define κ(u, v) as

κ(u, v) = (GK′,σ′ ∗ Zm′)(u, v), (6)

with K ′ = 51, σ′ = 25 and m′ = 20, as this results in
shadows that look similar to real examples.

The entire algorithm is visualized in Figure 2. Note that
due to differences in fan shapes across training images, all
operations are carried out on the warped version of the im-
age. This has the additional benefit that introduced image
features follow the polar directions of the fan shape which
results in more realistic image alterations.

2.4. Shadows

Shadows are often the result of US waves not reaching the
affected regions. This can be due to bony structure attenuat-
ing some of the signal, resulting in acoustic shadows, or due
to smooth curved objects reflecting beams in a non-intended
direction, creating refraction artifacts. It is hypothesized
that further reducing the pixel intensities of these regions, is
an effective data augmentation strategy. To retain the same
amount of energy in the US signal, the pixel intensities of
other regions are increased. To achieve this Otsu’s method
is used to determine a threshold τo that indicates the maxi-
mum intensity of a pixel belonging to a shadow. Since bi-
nary masking would introduce noticeable transitions at the
edges of the segmentation, a soft thresholding function is
used based on [36] to obtain a smoothed mask S:

S(u, v) =

{
1
2 + 1

2 cos
(
πX(u,v)

τo

)
ifX(u, v) ≤ τo

0 otherwise
(7)

In this equation τo is the threshold obtained by applying
Otsu’s method. Next, the new image is obtained by scaling
the regions according to S:

Xnew(u, v) = γS(u, v)X(u, v) + v(1− S(u, v))X(u, v),
(8)

where γ ∈ [0, 1) is the energy reduction factor and v a
normalization factor such that the total energy in Xnew is
the same as the original image X . To obtain the energy of
a region of an image X , all intensities in that region are
summed.

2.5. Fan-Preserving Cropping

Although cropping is a widely used data transformation, ex-
tensive use may result in illogical US images due to corrup-
tion of the fan shape. To combat this, we propose to re-
duce the fan angle and acquisition depth by a factor fa and
fd respectively such that the result still has a well defined
fan shape. This is achieved by using warping operations
Φ(X) and an adapted version of its inverse Φ(X)−1. Dur-
ing unwarping, outer left, right and bottom sides are sim-
ply ignored and are replaced by zero-valued pixels. This
corresponds to making all scan lines shorter and deleting
the outer ones, which results in the desired cropping effect.
Note that this transform never crops the side of the image
close to the US probe since this would result in anatomi-
cally implausible results.

2.6. Fan-Preserving Elastic Deformation

Elastic deformation is a popular data augmentation tech-
nique in medical imaging as it can simulate anatomical vari-
ability [7]. It works by constructing a rectangular grid con-
sisting of grid points spaced ∆x and ∆y pixels apart in the x
and y direction respectively. By randomly perturbing these
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Figure 2. Schematic overview of the reverberation simulation. The reverberation patch is linearly blended with the warped image according
to smoothing mask λ. Next, the result is masked according to smoothing mask κ and multiplied with factor β to obtain a shadow. This
shadow is subtracted from the image. To obtain the final result the image is unwarped.

points and resampling according to the perturbed grid, the
image is elastically deformed. Typically, a grid point p is
perturbed by adding a random offset δp ∈ R2 with

δp = (sp,x, sp,y), sp,x, sp,y ∼ N (0, C2) (9)

where C ∼ Uniform(Cmin, Cmax) is equal for every point
p. However, in its typical implementation the applicability
of elastic deformation in US augmentation is rather limited
since it also deforms the shape of the fan. To alleviate this
problem, we propose to perform elastic deformation in the
warped image space instead. By doing this the fan-shape
of the image is not affected since after unwarping the orig-
inal fan shape is restored. In a typical elastic deformation
transform, the grid can be further altered by an affine trans-
formation. This is not incorporated as affine transforma-
tions typically use padding (using for example zero-valued
pixels) and would therefore introduce padding pixels inside
the fan shape of the unwarped image.

2.7. Fan-Preserving Multiplicative Noise

Additive Gaussian noise is another popular data augmen-
tation technique. However, its application on US images
should be avoided as noise in US images has a multiplica-
tive nature. As a result, US images augmented with additive
noise might therefore not depict a realistic signal. To com-
bat this, we propose a fan-shape preserving multiplicative
noise augmentation that more closely adheres to the nature

of US signals. This is achieved in the following way:

Xnew(u, v) = Φ(X)(u, v)N(u, v), (10)

Where N(u, v) a normalized noise mask sampled from the
gamma distribution parameterized by shape k and scaling
θ. More specifically,

N(u, v) =
g

µN
, (11)

where g ∼ Gamma(k, θ) and µN is the mean of N(u, v).
Note that we first warp the imageX , such that after unwarp-
ing the fan-mask is unaltered.

3. Experiments & Results
3.1. Data

To analyze the impact of the proposed data augmentation
techniques, each technique is utilized in two segmentation
tasks on transperineal ultrasound images. The first task is
2D external anal sphincter (EAS) segmentation on a private
dataset referred to as UZ-EAS. The second task is 2D fetal
head (FH) and symphysis pubis (SP) segmentation on the
public JNU-IFM dataset [16]. For more robust evaluation,
all models are trained using 5-fold cross-validation.

The UZ-EAS dataset consists of 115 transperineal ultra-
sound (TPUS) volumes acquired in the UZ Leuven pelvic
floor dysfunction clinic between October 2019 and March
2021. All volumes were acquired with a Voluson E10 BT16
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ultrasound system (GE Healthcare; Zipf, Austria) equipped
with a 3D 4-8 MHz convex probe placed transperineally
with an average voxel resolution of 0.3mm by 0.3mm by
0.3mm. Ground truth labels for the EAS were created in 4D
View VOCAL (GE Healthcare; Zipf, Austria) by a clinical
expert with over five years of experience in anal sphincter
US imaging and organ segmentation. This dataset was split
on patient level into five parts of similar size. For each fold
one part was taken as test set, another part as validation set
and the other parts were combined to form the training set,
resulting in a train-test-validation split of 0.6-0.2-0.2. Since
the data augmentation techniques were implemented in 2D,
2D axial planes at the centre of the EAS were extracted.

The JNU-IFM dataset consists of 2D US clips from
which certain frames are extracted. However, not all frames
have a FH and SP segmentation, so for this experiment only
the images which have both were selected. A similar tech-
nique as with the UZ-EAS dataset was followed to obtain
the folds. However, to simulate a scenario where there is
limited data, only two images per patient were retained for
training and validation. For the test set all the images of
each test patient were used.

3.2. Data Augmentation Configurations

To compare the usability and preference of our techniques
over conventional methods, several baseline models with
different augmentation configurations are used for compar-
ison. All baselines with corresponding names are listed be-
low.
• None – This configuration uses no data augmentation.
• Conventional – This configuration uses only conven-

tional data techniques that are frequently used for US
images. Used augmentations include horizontal flipping,
contrast adjustments with a factor between 0.8 and 1.5,
random Gaussian smoothing with a uniform standard de-
viation between 0.5 and 1.0 and a random rotation be-
tween -30° and 30° and a translate range between -40 and
40. All augmentations are applied with a probability of
0.3.

• Conventional + Crop – This configuration includes the
conventional data techniques but also includes random
cropping for comparison with our fan-shape aware crop-
ping technique. Cropping is performed by selecting a
centered ROI that has a shape equal to fraction f of the
original image size. During training f is sampled from
Uniform(0.8; 0.99) and cropping is applied with a prob-
ability of 0.3.

• Conventional + Elastic – This configuration includes the
conventional data techniques but also includes random
elastic deformation with a uniform grid point spacing of
60px and magnitude range in [1, 3] for comparison with
our fan-shape preserving elastic deformation technique.
Elastic deformation is applied with a probability of 0.3.

parameters for US-EAS parameters for JNU-IFM
Speckle distort

mtx = mty = 0.5 mtx = mty = 0.6
ψmin = −π ψmin = −π
ψmax = π ψmax = π

Fan-preserving cropping
fa ∼ Uniform(0.8, 0.99) fa ∼ Uniform(0.8, 0.99)
fd ∼ Uniform(0.8, 0.99) fd ∼ Uniform(0.8, 0.99)

Fan-preserving elastic deformation
∆x = ∆y = 60 ∆x = ∆y = 60
Cmin = 1 Cmin = 1
Cmax = 3 Cmax = 3

Fan-preserving multiplicative noise
k ∼ Uniform(40, 100) k ∼ Uniform(40, 100)
θ = 1 θ = 1

Shadow
γ ∼ Uniform(0.5, 0.8) γ ∼ Uniform(0.5, 0.8)

Reverberation Simulation
xmin = 0 xmin = 0
xmax = 0.85 xmax = 0.85
ymin = 0 ymin = 0
ymax = 0 ymax = 0
wmin = 0.15 wmin = 0.15
wmax = 0.75 wmax = 0.75
hmin = 0.02 hmin = 0.02
hmax = 0.04 hmax = 0.04
β = 0.8 β = 0.95
d = 0.5 d = 0.5

Table 1. Parameter values used in experiments for the US-EAS
and JNU-IFM datasets. For the meaning of the symbols we refer
to section 2.

• Conventional + Noise – This configuration includes the
conventional data techniques but also includes random
zero-mean Gaussian noise with a standard deviation of
0.4 for comparison with our fan-shape aware multiplica-
tive noise technique. The noise is added with a probability
of 0.3 to the normalized image.
To test the impact of the proposed data augmentations

every technique is trained in a configuration where they are
added to the conventional data augmentations. Parameters
for each augmentation are specified in table 1. All values
were decided based on visual coherency with images of the
training set. All transformations are applied with a probabil-
ity of 0.3. The fan-aware cropping and elastic deformation
augmentations are also applied to the segmentation masks.

3.3. Model Architecture & Loss Function

The dynamic U-Net [18] implementation of MONAI [5]
was chosen as a network architecture. The network con-
tains five levels from which the upper three ones are trained
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using deep supervision. As a loss function a combination of
dice loss and cross entropy loss was used.

3.4. Implementation Details

The implementation of the data augmentations was done us-
ing PyTorch and MONAI packages. Training of all mod-
els was performed on a Linux system using a 80GB Nvidia
A100 GPU. The Adam optimizer was used with a learning
rate of 0.001 and weight decay of 0.001. Each model was
trained for a maximum of 100 epochs. Model selection was
performed based on the average Dice score of the validation
set.

3.5. Results

Table 2 shows the results for both the UZ-EAS and JNU-
IFM datasets for all trained configurations. Performance is
analyzed using Dice score and the 95th percentile Hausdorff
distance, averaged over all five folds. Since some patients
have more images than others, metrics were first averaged
per patient. Arrows indicate whether a higher (↑) or lower
(↓) value is desired. The best-performing values are marked
in bold.

4. Discussion & Conclusion
In this paper we proposed six data augmentation techniques
to simulate US specific artifacts and solve potential issues
with conventional data augmentations. All techniques are
easily applicable for any fan-shaped US images as they
do not rely on any additional external segmentations or
separately trained generative models. Results in table 2
for different augmentation configurations on two datasets
showed the possible harm that conventional data augmenta-
tions may cause. Even though the conventional data aug-
mentations improve drastically on the ”None” configura-
tion, it shows that standard cropping, elastic deformation
and additive noise can degrade performance. Preserving a
plausible fan-shape is therefore an important factor to keep
in mind when augmenting US data.

For segmentation of the EAS and SP, fan-aware crop-
ping seems to remedy the performance drop caused by con-
ventional cropping as it reaches similar performance as the
”Conventional” baseline. However, given the similarity to
this baseline, one might not benefit from cropping at all. For
the segmentation of the FH, conventional cropping seems
less harmful as it reaches similar performance as the con-
ventional methods. This might be explained by the fact that
the FH is relatively centered on each image such that con-
ventional cropping does not affect the FH in a significant
way. Fan-aware cropping might crop the FH more harsher
as it’s often more located to the sides of the fan.

Elastic deformation of the fan-shape seems less prob-
lematic. For the JNU-IFM dataset it often degraded perfor-
mance but the fan-aware variant was not able to remedy it,

implying that elastic deformation might not be appropriate
for that dataset. This might be because the SP and FH are
rather rigid structures which have a more consistent shape.
Elastic deformation might warp these structures to a shape
that is anatomically less plausible, which might not be use-
ful since the model will not see such cases during testing.
For the UZ-EAS this is different as the visualized area con-
sists mostly of soft tissue and circular striated muscle which
are more likely to be deformed by for example probe pres-
sure. However, warping of the fan-mask does not seem to
harm performance as the conventional elastic deformation
reaches similar performance in both Dice score and Haus-
dorff distance.

Further, we compare whether it is beneficial to use
gamma distributed multiplicative noise instead of additive
Gaussian noise. As stated before, additive Gaussian noise
was not deemed appropriate since noise in US images typ-
ically has a more multiplicative nature. As seen in table 2,
this hypothesis is partly true. For the EAS, a slight drop in
performance is seen compared to the ”Conventional” con-
figuration. There is however a slight decrease in Hausdorff
distance but this is only marginal and does not outweigh
the Dice score drop. Using multiplicative noise seems to
be a better solution as it improves Hausdorff distance and
achieves better Dice score. However, a trade-off between
Dice score and Hausdorff distance has to be made to de-
cide whether adding noise is beneficial. The same holds for
the SP, where the multiplicative noise outperforms the addi-
tive noise but comes at a small dice score drop compared to
the ”Conventional” baseline. For the FH, however, additive
noise seems beneficial as both Dice score and Hausdorff
distance both improve and even beat the performance of its
fan-shape aware variant.

The shadow alteration augmentation does not seem ap-
propriate for both datasets. Performance based on both Dice
score and Hausdorff distance is always lower compared
to the ”Conventional” baseline. The assumption that the
shadow augmentation makes, namely that shadows can be
relatively easily segmented based on Otsu’s method, might
therefore not hold in every image.

The same holds for the speckle distort augmentation.
The speckle distort augmentation assumes that speckle can
be captured by the high frequency components. While this
visually holds up, setting the frequency threshold might re-
quire more extensive tuning or should be image-specific.
Alternatively, there might be information inside the speckle
that the model uses. Distorting it could then potentially hurt
performance.

The reverberation simulation augmentation proved to be
more successful. For the JNU-IFM dataset, a performance
improvement is observed in all metrics, except for the Dice
score of the SP, where there is a slight drop. For the EAS,
however, it does not seem to improve the quality of the seg-
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UZ-EAS JNU-IFM
Configuration DSC EAS (↑) HD95 EAS (↓) DSC SP (↑) DSC FH (↑) HD95 SP (↓) HD95 FH (↓)

None 0.8109 ± 0.10 15.80 ± 12.85 0.7231 ± 0.10 0.8274 ± 0.08 21.98 ± 14.02 26.32 ± 16.83
Conventional 0.8531 ± 0.08 12.67 ± 10.84 0.7890 ± 0.10 0.8615 ± 0.05 12.53 ± 09.71 22.69 ± 10.25

Conventional + Crop 0.8375 ± 0.09 12.83 ± 09.27 0.7650 ± 0.12 0.8655 ± 0.05 12.52 ± 08.88 22.41 ± 10.46
Conventional + Elastic 0.8530 ± 0.07 11.95 ± 09.50 0.7676 ± 0.11 0.8474 ± 0.06 13.83 ± 12.33 23.41 ± 09.56
Conventional + Noise 0.8400 ± 0.08 12.55 ± 09.79 0.7759 ± 0.11 0.8658 ± 0.06 14.04 ± 10.28 20.58 ± 09.76

Speckle Distort 0.8348 ± 0.09 13.53 ± 11.55 0.7677 ± 0.11 0.8446 ± 0.07 15.12 ± 13.17 25.42 ± 09.33
Shadow 0.8486 ± 0.08 12.08 ± 09.38 0.7765 ± 0.10 0.8532 ± 0.06 12.67 ± 09.87 23.57 ± 10.48

Reverberation 0.8418 ± 0.10 13.58 ± 14.70 0.7722 ± 0.10 0.8691 ± 0.06 10.82 ± 07.32 21.26 ± 09.63
Fan Crop 0.8576 ± 0.06 12.95 ± 10.63 0.7851 ± 0.09 0.8618 ± 0.06 14.79 ± 13.41 21.72 ± 09.97

Fan Elastic 0.8529 ± 0.07 11.80 ± 08.11 0.7647 ± 0.12 0.8484 ± 0.07 16.17 ± 12.84 26.96 ± 12.24
Multiplicative Noise 0.8486 ± 0.08 11.55 ± 09.47 0.7827 ± 0.11 0.8427 ± 0.08 11.63 ± 14.56 24.40 ± 14.54

All 0.8255 ± 0.09 15.51 ± 12.40 0.7856 ± 0.09 0.8541 ± 0.05 12.13 ± 09.67 24.05 ± 09.94

Table 2. Dice scores (DSC) and 95th percentile Hausdorff distancse (HD95) for 5-fold cross-validation for the segmentation of the external
anal sphincter (EAS) on the UZ-EAS dataset and the segmentation of the fetal head (FH) and symphysis pubis (SP) on the JNU-IFM dataset.
Best values are indicated in bold.

mentations. This might be because the EAS is often lo-
cated near the probe. When a reverberation is added above
the EAS its shadow might obscure important features which
might negatively impact the learning process.

Lastly, combining all augmentations does not seem to el-
evate performance. This might be because of less perform-
ing augmentations that have a destructive impact, or by the
incompatibility of certain techniques. In future work, in-
compatibility should be further investigated to identify if
this behaviour could be eliminated.

In conclusion, US augmentation is a complex process,
where it seems that more does not always mean better. We
proved that certain conventional techniques might corrupt
important features but can sometimes be remedied by their
fan-aware variants. Further, augmenting by simulation of
artifacts could be beneficial but should be cautiously ap-
proached and evaluated for each dataset and each structure
individually, while keeping anatomical properties in mind.
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