
 
Abstract 

 
This study sought to address the critical need for high-

quality datasets to advance deep learning (DL) models for 
non-invasive profiling of brain tumor molecular markers. 
We curated a comprehensive brain tumor dataset from 
patients diagnosed at University of Texas at Southwestern 
Medical Center (UTSW) between 2012 and 2020. The 
study curated 1740 MRI sessions from 709 subjects, 
emphasizing pre-operative cases. Molecular analyses were 
conducted on tumor tissues as part of standard clinical 
care to identify key genetic alterations (MGMT, IDH, 
1p/19q co-deletion). Detailed demographic, histological, 
and molecular marker information were extracted from the 
clinical electronic medical record (EMR). An internal 
reporting system was created in XNAT to comprehensively 
catalogue and curate the imaging and associated clinical 
data. MR Images were pre-processed using the FeTS 
platform, and quality checked (QC) by expert 
neuroradiologists. Brain tumors were segmented into key 
components using FeTS and were manually corrected by 
experienced research staff and verified by expert 
neuroradiologists. Here we describe the critical 
challenges, approaches, and solutions for creating a high-
quality curated medical imaging dataset for use in deep 
learning studies. 

 

1. Introduction 
Genetic subtyping and molecular profiling of brain 

tumors are transforming therapeutic strategies to enhance 
prognostic accuracy. Compelling evidence supporting this 
paradigm is the 2021 revision of the World Health 

liomas [1]. The 
revision transformed the pathological diagnosis of gliomas 
from a purely histological to a multilayered integrated 
approach [1, 2]. Three important molecular markers have 
been extensively validated: O-6-methylguanine-DNA 
methyltransferase (MGMT), isocitrate dehydrogenase 
(IDH), and 1p/19q co-deletion status. The revision has 
underlined the importance of molecular markers, which are 
extensively studied for their critical role in tailoring 
patient-specific therapeutic approaches. 

Recent advances in radiomics and deep learning (DL) 
have shown great success in non-invasive profiling of 
molecular markers using MRI [3-9]. The ability of these 
DL models to learn from vast datasets carries substantial 
importance in determining therapy and predicting 
prognosis. However, the efficacy of these DL models is 
heavily contingent upon the size and quality of the data 
they are trained with. As data-driven entities, the DL 
models thrive on large, diverse, and high-quality datasets 
to refine their predictive accuracy and generalize across 
different clinical settings. 

Large datasets encompassing a wide range of tumor 
types, stages, and patient demographics allow DL models 
to learn the intricate patterns in brain tumors. This can lead 
to accurate predictions and diagnoses. Similarly, the 
quality of data, including the resolution of MR images, the 
accuracy of tumor annotations, and molecular profiling, are 
crucial for DL models to reliably identify and characterize 
tumors. Studies have shown that high-quality, large-scale 
datasets significantly improve the performance of DL 
models in brain tumor tasks [10, 11]. For example, the 
BraTS21 challenge provided a substantial dataset of brain 
tumor MRI with expert annotations and MGMT status[12]. 
This dataset, along with TCIA [13], has been instrumental 
in advancing the state of the art in tumor segmentation and 
molecular marker classification. This underscores the 
significance of rigorous data curation. It also highlights the 
need for datasets that span various imaging modalities and 
encapsulate rich, annotated information on molecular 
markers. It further emphasizes the role of data quality and 
size in harnessing the full potential of DL models in brain 
tumor analysis. 

Curating a large-scale brain tumor database imposes 
substantial challenges. The process of collecting and 
annotating brain tumor MRI, necessitating medical 
expertise, is both resource-intensive and crucial for 
maintaining data quality. However, the essentials of data 
quality are non-negotiable, as they emphasize the 
generalization of DL models. To facilitate further research 
on using DL models for brain tumor analysis, we have 
meticulously curated a comprehensive brain tumor 
database. The curated database, including MRI, molecular 
marker status, and clinical information, is a testament to 
data quality's critical role in advancing brain tumor 
research. By curating a dataset that meets these stringent 
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criteria, we aim to enhance the predictive modeling of 
molecular markers and the personalization of glioma 
treatment strategies.

2. Materials and Methods

2.1 Patient Selection

The dataset included patients diagnosed with brain 
tumors at UTSW from 2012 to 2020. The electronic health 
records (EHR) were reviewed by a neuropathologist to 
identify eligible patients. Our study protocol, including the 
use of patient data, received approval from the Institutional 
Review Board (IRB), with consent requirements waived 
due to the retrospective nature of the patient data. We 
focused on patients older than 18 years and excluded 
patients with any history of prior brain tumor resection.

2.2 Demographic and Molecular Marker 
Information

Detailed patient demographics and clinical information 
were extracted from the EHR system, EPIC (Epic Systems 
Corporation, Verona, WI). An internal reporting system 
was created (using the imaging informatics platform 
XNAT) to comprehensively document the extracted 
information, as shown in Figure 1. This included 
demographics (age, sex, race, ethnicity), clinical details 
(dates of pathology, surgery, study), and results from 
histopathological exams.

Genetic and molecular testing were implemented on 
tumor tissues collected via biopsy or surgical resections, a 
standard part of the clinical care process. The choice 
between immunohistochemistry (IHC) and Next-
generation Genetic Sequencing (NGS) hinged on the 
quantity of tissue available. Brain tumors were assessed for 
type, grade, and the Mindbomb Homolog-1 (MIB-1) index. 
IDH mutations were detected using either IHC or NGS 
methods. Similarly, the presence of 1p/19q co-deletion was 
determined through NGS or fluorescence-in-situ-
hybridization (FISH) techniques. To assess the methylation 
status of the MGMT promoter, dual real-time polymerase 
chain reaction (PCR) assays were employed, utilizing both 
published and in-house developed primers specific to 
methylated and unmethylated sequences. These assays 
help quantify the methylation level in finely dissected, 
paraffin-embedded tissue samples.

NGS provided a comprehensive overview of various 
molecular alterations including ATRX, P53, TERT 
mutations, EGFR amplification, CDKN2A deletions, and 
alterations in chromosome numbers +7 and -10. Special 
attention was given to cases that deviated from the usual, 
such as IDH wildtype or ATRX mutated but 1p19q co-
deleted or any grade 1 tumors including pituitary adenoma, 
astrocytic neoplasm, were subjected to additional scrutiny. 
These outliers were removed from the dataset to ensure the 
integrity and consistency.

Figure 1: Tabular representation of XNAT.
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2.3 Imaging Parameter and Pre-processing

MRI scans for the patient list were reviewed in the 
Clinical Picture Archiving and Communication System 
(PACS) to identify pre-operative studies.  These were then 
sent via DICOM image transfer to the XNAT internal 
research platform. In-house automated pipelines launched 
through XNAT converted the DICOM images into the 
Neuroimaging Informatics Technology Initiative (NIfTI) 
format, enhancing their suitability for computational 
analysis. A meticulous selection process (Figure 2) was 
undertaken for the NIfTI images, ensuring the inclusion of 
pre-contrast T1-weighted, post-contrast T1-weighted, T2-
weighted, and T2w-FLAIR sequences from each patient. 
Axial and 3D acquisitions were prioritized for their 
superior detail and spatial resolution.

MR images were obtained from scanners manufactured
by various vendors (GE, SIEMENS, Hitachi, Toshiba, and 
Philips), with magnetic field strengths spanning from 0.3 
Tesla to 3 Tesla. The diversity of MRI data necessitated a 
standardized pre-processing routine to normalize image 
dimensions and voxel sizes, and to address the variations 
in scanner types, magnetic field strengths, and acquisition 
protocols. A substantial subset of patients, confirmed to 
have a complete series of the requisite MRI sequences, was 
processed further using the Federated Tumor Segmentation 
(FeTS) platform, version 007 [14]. The FeTS platform co-
registers multi-contrast MRI with the SRI24 brain atlas 

template (240x240x155) with isotropic resolution (1mm3),
removes non-brain structures (skull-stripping), and 
segments the brain tumor. The tumor is segmented into i) 

includes the ET and the necrotic part (NCR), and iii) the 

edematous/infiltrated tissue (ED). Additionally, all 
datasets were (a) N4 bias corrected to remove RF 
inhomogeneities, and (b) intensity normalized to zero-
mean and unit variance [15, 16]. This standardization and 
careful curation ensures consistency, inclusion of the 
highest quality scans and improves the reliability of 
subsequent analyses.

2.4 Image Quality Assessment

All imaging data were carefully checked for quality 
(QC) by trained research personnel and then validated by 
expert neuroradiologists. The review focused on the 
overall image quality, the effectiveness of skull-stripping, 
the op-status, and biopsies. MRI with significant image 
artifacts (patient movement or hardware anomalies) were 
excluded. MRI depicting post-surgical cavities were 
classified as post-operative (post-op) cases. Images with 
small skull defects (burr holes) without substantial 
resection were categorized as biopsy cases, while those 
with ambiguous features were labeled as unknown (Fig. 3).

Figure 2: XNAT Interface for the MRI contrast selection process.
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2.5 Tumor Segmentation and manual corrections

MR images were segmented into three key tumor areas 
(ET, NCR & ED) using a multi-contrast MRI approach. 
This approach assisted in accurately delineating complex 
tumor regions, including infiltrated tissues. The initial step 
involved leveraging an ensemble of FeTS deep-learning 
models for automated segmentation, creating a preliminary 
map of the tumor compartments. Following the automated 
process, an expert team of annotators undertook manual 
refinement of these segmentations to ensure accuracy using 
3D Slicer [17]. The manual refinement was further 
subjected to a rigorous review by experienced neuro-
radiologists, assessing each segmentation as either 
acceptable or in need of further correction (Fig 4).
Annotators and expert neuroradiologists engaged in an 
iterative review cycle, meticulously analyzing, and 
refining these unsatisfactory segmentations. This approach 
facilitated comprehensive discussions on challenging 
cases, allowing the team to address and minimize 
subjective discrepancies effectively. The neuroradiologists 
conducted a final review to ensure all segmentations met 
the high standards required for inclusion in the dataset. 
This multi-stage review ensures the integrity and reliability 
of tumor segmentation (Fig 5).

Figure 3: Interface for Image Quality Assessment To note 
motion artifacts, op-status, and skull stripping quality.

Figure 4: An XNAT QC interface to obtain Neuro-

Figure 5: Tumor Segmentation Process: A. Automated Segmentation, B. Manual Correction, C. (to include ET), 
D. Acceptable Segmentation. Tumor Regions: Enhancing tumor (Red), Necrosis (Green) and Edema and NET (Yellow).
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3. Results

Our study rigorously curated 1,740 MRI sessions from a 
cohort of 709 subjects, focusing primarily on the pre-
operative cases. Figure 6(A) provides an overview of MRI 
sessions, including pre-operative (812), postoperative 
(766), biopsy (5), and sessions with undetermined status 
(157). The pre-op cases were further examined and 
repeated MRI sessions from the same patient were 
excluded. Figure 6(B) summarizes the MRI and pre-
operative sessions. Only the unique pre-op sessions (642) 
were used for further evaluations.

3.1 Subject Demographics

A demographic analysis of the subset of pre-operative 
cases revealed a distribution of 348 males (54.2%), 251 
females (39.1%), and 43 subjects (6.7%) with unspecified 
gender.

3.2 Histological Classification and Tumor Grade

Histological examination of pre-operative cases 
indicated a dominance of glioblastoma (377 subjects), 
underscoring the aggressive nature of brain tumors within 
our cohort. The prevalence of other glioma subtypes also 
provides a comprehensive landscape for comparison, as 
demonstrated in Figure 8(a). Figure 8(b) depicts the 
percentage of tumor grades in our dataset.

3.3 Molecular Profiling

The molecular characterization of the cohort is 
summarized in Figure 9. It displays the distribution of IDH 
mutations, 1p19q co-deletion, and MGMT methylation 
status. The intersection of these molecular markers is 
critical for understanding the composite molecular 
landscape of gliomas. 

3.4 MRI Data Availability and Usability

Figure 10 showcases the outcome of the QC process 
applied to MRI data. This QC initiative is pivotal for 
ensuring that subsequent analyses are grounded on reliable 
and high-quality imaging data, with a clear distinction 
between usable and non-usable cases highlighted for each 
MRI sequence. The QC process of MRI data checks the 
image quality and marks them as usable or unusable. 
Figure 10(a) presents the summary of the number of usable 
cases for each MRI sequence, while Figure 10(b) depicts 
the number of cases before and after the QC process for 
each molecular marker.

Figure 6: Overview of MRI Sessions with op-status.

Figure 7: Gender Distribution on pre-op cases.
Figure 9: Summary of molecular status.

Figure 8: Tumor grade and histological distribution.
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4. Discussion
This study underscores the importance of high quality 

datasets in enhancing non-invasive profiling of molecular 
markers using MRI. It also aligns with the evolving 
paradigms of genetic subtyping and molecular profiling in 
brain tumor diagnostics and therapeutics. The 2021 WHO 
revision, by integrating molecular markers with traditional 
histological analysis, has set a new standard in glioma 
classification, emphasizing the necessity for high-quality, 
comprehensive datasets in the advancement of DL models.

This curated brain tumor dataset comprises detailed 
MRI, molecular marker status, and clinical information. It 
represents a significant step in addressing the critical 
challenge of data scarcity and variability in brain tumor 
research. This dataset encapsulates a wide range of tumor 

types, grades, and patient demographics to facilitate the 
refinement of DL models and ensures their applicability 
across diverse clinical settings. The meticulous data 
curation process, emphasizing the quality and size of data, 
enables the development of DL models for reliably 
identifying and characterizing brain tumors.

The adoption of the Federated Tumor Segmentation 
(FeTS) platform for image preprocessing and segmentation 
demonstrates the integration of advanced computational 
tools in managing and analyzing complex imaging data. 
This approach ensures consistency and reliability in the 
data preparation phase, which is crucial for subsequent 
application of DL models in tumor segmentation and 
molecular marker prediction.

The process of manual correction to the FeTS output 
adds a valuable layer of precision and accuracy to the 
automated segmentation. By incorporating expert 
neuroradiological review, these manual adjustments 
significantly enhance the quality of the data availale for DL 
algorithms. This synergy between automated processes and 
human expertise not only improves the reliability of the 
segmentation results but also provides rich, annotated 
datasets that are more conducive to the training and 
refinement of DL models. The meticulous manual 
corrections ensure that the DL algorithms can learn from 
the most accurate representations of tumor characteristics, 
thereby enhancing their performance in real-world 
diagnostic applications.

5. Limitations and Future Directions
The retrospective collection of MRI data and the 

inherent variability in imaging protocols across different 
clinical settings pose challenges to standardization and 
generalization procedures. Moreover, upon examination of 
the detailed steps outlined in this paper regarding dataset 
collection and curation, it becomes evident that the process 
is significantly time-consuming. Therefore, the potential 
for automating both the standardization and entire curation 
processes using deep-learning algorithms in future 
endeavors holds considerable promise and practical utility.

Future research will also focus on expanding the dataset 
to include a broader spectrum of both benign and malignant 
tumor types and their respective molecular markers, further 
enhancing the robustness and applicability of DL models. 
The exploration of federated learning approaches can 
address privacy concerns and facilitate multi-institutional 
collaborations, potentially leading to a more generalized 
and comprehensive understanding of brain tumors. 

Figure 10: Summary of the data curation process.
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6. Conclusion 
This study provides a valuable approach for the 

advancement of DL applications in brain tumor analysis, 
reflecting the critical importance of high-quality data 
curation. The curated database bridges the gap between 
complex molecular data and advanced imaging techniques. 
It paves the way for innovative approaches in tumor 
characterization, and treatment of gliomas, indicating new 
data-driven insights in neuro-oncology. 
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