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Abstract

Multiparametric magnetic resonance imaging (mpMRI)
plays an essential role in prostate cancer diagnosis as it
can noninvasively localize and grade lesions based on their
suspicion of representing clinically significant prostate can-
cer (csPCa). With the development of deep learning, au-
tomatic solutions for csPCa detection based on mpMRI
have been developed; however, mpMRI data introduces
several difficulties, including data scarcity, heterogeneity
in image quality across institutions, and missing modal-
ities. This work addresses these difficulties by building
a radiology-based foundational model for prostate cancer
mpMRI. Foundation models are deep learning models pre-
trained on a large-scale dataset and they have recently
gained significant interest in computer vision and natu-
ral language applications. After pretraining, these models
are often adapted for a variety of downstream tasks using
smaller datasets from within the same domain. In this work,
a large prostate multiparametric MRI (mpMRI) dataset was
collected by combining data from our institution with two
publicly available datasets. Joint modeling of all mpMRI
modalities is essential for accurate prostate cancer diag-
nosis; however, some of these modalities may be miss-
ing. Using unsupervised learning, we pretrained modality-
specific vector quantized variational autoencoders (VQ-
VAE) to form a radiology foundational model. The learned
codebook from VQ-VAE was then used to train a multi-

modal transformer to perform the diagnosis of clinically
significant prostate cancer (csPCa). The proposed mul-
timodal transformer models long-range dependencies be-
tween latent representations of input modalities and is aug-
mented with modality-level dropout to increase the model
robustness to incomplete modalities. Our framework out-
performs previously published work and achieves an aver-
age AUC/sensitivity/specificity of 0.764/0.690/0.781. Our
results show that pretraining on a larger dataset in combi-
nation with the power of transformer architecture can im-
prove the accuracy of automatic prostate cancer detection.

1. Introduction

Prostate cancer (PCa) was the second most deadly and the
most frequently diagnosed cancer among American men
in 2023 [28]. Traditional prostate cancer screening is pri-
marily based on prostate-specific antigen (PSA) testing and
digital rectal examination. Transrectal ultrasound-guided
(TRUS) prostate tissue biopsy procedure is typically per-
formed for men with high PSA and/or palpable lesions.
The presence of cancer and its aggressiveness is quanti-
fied by pathologists with the ISUP Grade Group system
(GG) [10, 12]. GG ranges from 1 to 5, with an increas-
ing risk of cancer mortality with increasing GG. Typical
ultrasound-guided biopsy is performed by uniform prostate

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

2365



sampling using a predefined grid. However, the ability of
this approach to localize lesions is limited by what the oper-
ator may see during the procedure. To improve the diagnos-
tic accuracy of prostate biopsy, multiparametric magnetic
resonance imaging (mpMRI) can be used as a diagnostic
tool for evaluating and grading lesions based on their sus-
picion of representing clinically significant prostate cancer
(csPCa) (with GG ≥ 2).

Recent advancements in deep learning have led to the de-
velopment of numerous computer-aided diagnoses (CADs)
for csPCa detection, achieving high predictive accuracy.
For example, Zhuang et al. [35] proposed a radiomics-based
approach for determining the presence of csPCa on mpMRI.
The method achieved 73.96% accuracy on the dataset con-
sisting of 26 patients; however, their proposed solution re-
lies on tumor segmentation masks manually drawn by ex-
pert radiologists. Obtaining pixel-level annotations is time-
consuming and a subjective task.

Another recent work by Zhao et al. [34] developed a deep
learning-based algorithm utilizing ShuffleNet3D to detect
the presence of csPCa based on mpMRI, which was trained
and evaluated on a large cohort of 1,861 patients and re-
sulted in an AUC of 0.896. Similar to the work of Zhuang
et al., the model relied on expert-annotated 3D ROIs con-
taining intratumoral and peritumoral tissues extracted from
mpMRI for training.

Redekop et al. [24] developed a weakly supervised
biopsy target detection and prostate cancer diagnosis tool
using mpMRI. The model was trained only on image-level
annotations and achieved an average 0.75 AUC in csPCa de-
tection. The main limitation was that the model was trained
and evaluated on a dataset from a single institution without
utilizing any other publicly available dataset. Additionally,
the proposed solution does not account for missing modali-
ties, and performance may degrade if one of the modalities
is missing.

All the prior solutions are based on the conventional fully
supervised deep learning paradigm, where model training
relies on large, task-specific, and manually labeled datasets
to train individual CADs [4]. A more efficient alternative
can be a foundational model (FM) [4], which is a deep
learning model pretrained on a large-scale, diverse dataset.
Following the initial pretraining, FMs are adapted for a wide
range of downstream tasks through fine-tuning. Founda-
tional models are useful when labeled data is scarce, as they
learn a more general feature set that can be fine-tuned using
a smaller dataset for a specific task. Additionally, founda-
tional models can help address issues with generalizability
as they are not fully supervised models trained on only one
institution’s dataset.

To learn useful representations from a large pretraining
dataset, various self-supervised learning techniques have
been proposed [6, 9, 16], which can be summarized into

three main categories: contrastive, generative, or a combi-
nation of both [21]. This work utilizes the Vector Quan-
tised Variational AutoEncoder (VQ-VAE) – a generative
model that learns discrete representations [30]. A discrete
representation provides a more logical fit for the reasoning
of imaging data, as images are often described using dis-
crete language. Additionally, learning a discrete represen-
tation allows larger images to be converted to sequences, al-
lowing for the use of established transformer architectures.
The VQ-VAE architecture has been previously applied to
mpMRI data in the field of brain anomaly detection where
the goal is to learn a compact and expressive representation
of normal brain [15, 23] that can be used to detect anoma-
lies.

In medical imaging, pretraining has been widely uti-
lized in digital pathology, where extensive collections of
digitized slides are publicly available [7, 20]. Due to the
availability of large data collections, pan-cancer pretraining
leads to better performance in organ-specific downstream
tasks [7, 31]. On the other hand, a similar collection doesn’t
exist in radiology. To our knowledge, the effect of pre-
training a vector-quantized multiple modality foundational
model for task-specific downstream tasks has not been stud-
ied in radiology.

mpMRI typically consists of three modalities, includ-
ing T2-weighted (T2W), apparent diffusion coefficient
(ADC), and high-b value diffusion-weighted images (high-
b). High-b value diffusion-weighted image is integral to
mpMRI-based prostate cancer diagnosis [3, 5]. It has been
shown that ADC maps derived from diffusion-weighted im-
ages are able to detect prostate cancer, and ADC values are
highly correlated with GG. [14, 18, 32]. However, lesions
on ADC maps can be subtle, and it has been observed that
incorporating high-b value images enhances the visibility
of PCa [13, 25]. It is not always possible to collect all three
modalities in clinical practice due to various scanning pro-
tocols. For example, due to little agreement on the optimal
b-value, data from different institutions could be acquired
with different parameters, leading to various image quality
and quantitative contrast ratios of lesion to background [3].
In this case, existing solutions may fail to handle an incom-
plete set of modalities.

Given the benefit of foundational models for small
datasets and their expressive power to learn a useful latent
representation of the domain [8], we believe training a foun-
dational model for the three radiology modalities could help
in instances where data is missing. We trained three VQ-
VAE models on each modality - T2W, ADC, and high-b.
We then trained a transformer architecture to learn long-
range dependencies between the three input modalities on
the learned codebooks.

Our main contributions can be summarized as follows:
• We take the first step towards building a radiology-based
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Figure 1. Multimodal VQ-VAE. The encoder output is mapped to the nearest point in the learned codebook.

FM by making a prostate cancer-specific FM. Our FM
consists of three modality-specific VQ-VAE models pre-
trained in an unsupervised manner on a large collection of
prostate mpMRI studies. To our knowledge, a large pre-
training model has yet to be developed for prostate cancer
radiology.

• After VQ-VAE models are pretrained, we train a trans-
former for the downstream task of predicting clinically
significant prostate cancer. The transformer allows us to
model long-range dependencies between latent represen-
tations of input modalities to achieve better results on the
downstream task of csPCa detection.

• Based on the prior work presented in [33], we incorpo-
rate a modality-level dropout strategy to the transformer
training for the downstream task. We show that utiliz-
ing this strategy helps to achieve comparable results when
modalities are missing. To our knowledge, the influence
of missing modalities on csPCa detection accuracy has
not been studied previously.

2. Materials and Methods

2.1. Dataset

Foundational models require a diverse dataset to learn
valuable representations; we combined two public and
one private dataset to create a robust, multi-institutional
dataset. The first public dataset is the PI-CAI challenge
dataset, which is comprised of 1,500 studies, including
T2W, ADC, and high-b value DWI images acquired using
two MRI scanners (Siemens Healthineers and Philips Med-
ical Systems-based scanners with surface coils) [26]. Pa-
tients are included only if they do not have a history of
treatment or prior GG ≥ 2 findings. Out of the 1,500
available cases, 1,075 have benign tissue or indolent PCa,

and 425 cases have csPCa. The median voxel spacing is
0.5× 0.5× 3.0.

The second public dataset was collected and released by
Adams et al. [1, 2]. The dataset comprises 158 studies,
including T2W, ADC, and high-b value DWI images ac-
quired using two 3.0 Tesla MRI scanners (Siemens VIDA
and Skyra, Siemens Healthineers). The dataset contains
102 patients with histologically verified PCa and 56 who
served as controls. The median voxel spacing is 0.47mm×
0.47mm× 3.0mm.

Our internal dataset consists of 2,308 studies collected
from patients who underwent transrectal ultrasound - MRI
fusion biopsy (TRUS biopsy) using the Artemis guided
biopsy system (Eigen Systems) between 2010 and 2023 at
our institution using a standardized protocol and 3T scan-
ner (Trio, Verio, or Skyra, Siemens Healthineers). The
dataset was split on the patient level, and 1,322 studies were
held out from task-specific training to train the FM. The re-
maining 986 studies were used for downstream cancer di-
agnosis tasks. As part of this clinical process, a radiolo-
gist contoured a prostate and any regions of interest (ROIs)
for targeted biopsy sampling. Based on pathology exami-
nation of biopsied tissue, 494 cases had csPCa. 3D T2W
images, ADC maps, and high b-value DWI were available
for all studies in the dataset. The median voxel spacing is
0.66mm× 0.66mm× 1.5mm.

Our mpMRI preprocessing pipeline included bias field
correction and interquartile range (IQR)-based intra-image
normalization to address the relative nature of MRI inten-
sity values [27]. All images from each dataset were resam-
pled to the median voxel spacing of data from our institution
(0.66mm× 0.66mm× 1.5mm).
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Figure 2. Multimodal transformer to model long-range dependen-
cies between codebook encodings with modality dropout (δk, k ∈
{ADC, high−b}). FFN - Feed Forward Network, PE - positional
encoding.

2.2. VQ-VAE Multimodal Transformer

Our proposed approach consists of two steps. In the
first step, three modality-specific VQ-VAE models are pre-
trained on a large pretraining dataset (see Fig. 1, Sec. 2.2.1).
In the second step, the multimodal transformer is trained to
predict the presence of csPCa based on encodings learned
by the VQ-VAE models (see Fig. 2, Sec. 2.2.2 ). We com-
pared our approach to several previously published baseline
models (described in section Sec. 2.2.3).

2.2.1 Vector quantized variational autoencoder

The VQ-VAE model comprises an encoder E and decoder
D, such that together they are trained to represent input
as a set of codes from a learned discrete codebook Z =
{Zk}Kk=1, where K is the vocabulary size [30]. First, E
projects input x ∈ RH×W×D onto a latent embedding
space ẑ ∈ Rh×w×d×nz , where nz is the dimensionality of
latent codes. zq is obtained using element-wise quantization
q(·) of each latent code ẑijk onto its closest codebook ele-
ment zk. Decoder D then reconstructs x̂ ∈ RH×W×D from
the quantized latent space. According to [30], the overall
loss function consists of three components: VQ objective,
commitment loss, and reconstruction loss. Following the
later work [11], we replace L2 reconstruction loss with per-
ceptual loss [19].

In this work, three VQ-VAE models were separately
trained on each modality (T2, ADC, and high-b), which re-
sulted in three modality-specific codebooks.

2.2.2 Multimodal Transformer

Following ideas presented in the work [33], we utilize the
transformer model to learn long-range dependencies be-
tween modality-specific latent encodings.

With E and D pretrained, images can now be repre-
sented in terms of the codebook indices and their embed-
dings. Specifically, quantized encodings of input image x
are given by zq = q(E(x)) ∈ Rh×w×d×nz . Our Mul-
timodal transformer consists of a Multi-head Self Atten-
tion (MSA) and a FeedForward Network (FFN). The en-
codings are processed sequentially by flattennig into a 1D
sequence and transforming into token space by a linear pro-
jection with matrix W . A learnable positional embedding
P is added to the input sequence to preserve location infor-
mation. Modality level dropout is performed by randomly
setting δn to 0 during training. δn ∈ {0, 1} is a Bernoulli
indicator to add robustness while modeling long-range de-
pendencies, even when some modalities are missing. Dur-
ing evaluation, the encoding vector corresponding to miss-
ing modalities was replaced with a zero vector.

z = [δizq,i]W + P, i ∈ T2, ADC, high− b (1)

where W - weights of linear projection and P - learnable
positional embedding, [·,·] -concatenation operation. The
sequence z is processed by MSA and FFN as follows:

zglobal = FFN(LN(p))+p, p = MSA(LN(z))+z, (2)

The MSA is formulated as follows:

headim = softmax(
Qi

mKiT
m√

dk
)V i

m, (3)

MSA = [head1m, ..., headNm]W o
m, (4)

where Qi
m = LN(z)WQi

m , Ki
m = LN(z)WKi

m , V i
m =

LN(z)W vi

m , LN(·) - layer normalization, dk - dimension-
ality of Km, N = 8 - number of attention heads. FFN -
two-layer perceptron with GELU activation [17].

2.2.3 Baseline solutions

We used two baselines LoGo MIL proposed by [24] and 3D
ViT proposed by [22]. LoGo MIL, is a model consisting of
two branches: an attention-based multiple-instance learning
framework in the local branch and a CNN feature extractor
in the global branch. The local branch operates on the over-
lapping 3D patches extracted from the input image, and the
global branch operates on the entire image. 3D ViT is a 3D
Vision Transformer model that operates on 3D patches and
uses a self-attention mechanism to learn dependencies.
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2.3. Implementation Details

The input image size to the VQ-VAE model is 64× 64× 32
voxels, the median size of images across utilized datasets.
Random flip, rotation, and intensity shifts are employed for
data augmentation. Our VQ-VAE implementation is similar
to the one reported in the work by Pinaya et al. [23]. The en-
coder consists of three strided 3D convolutional layers with
stride 2 and 256 hidden units. Resulted latent representa-
tions have size 8 × 8 × 4. We used a codebook with 256
unique codes.

The multimodal transformer consists of 16 layers with an
embedding size of 256. MSA block consists of 8 attention
heads. To train these models, we used the Adam optimizer
with an initial learning rate of 1e− 4, which was decreased
by a factor of 10 if the validation loss did not improve in
the last five epochs. Implementation details of the baseline
solutions were taken from the original papers.

To evaluate model performance in detecting csPCa, we
utilize sensitivity, specificity, F1 Score, and the area under
the receiving operator characteristic curve (AUC). Models
were compared using the Wilcoxon signed-rank test at a
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AUC Sensitivity Specificity F1 Score
3D ViT 0.726±0.01 0.719±0.051 0.653±0.046 0.705±0.041

LoGo MIL 0.751±0.035 0.712±0.046 0.682±0.073 0.720±0.043
Ours 0.764±0.019 0.690±0.016 0.781±0.013 0.751±0.017

Table 1. Performance of prostate GG ≥ 2 vs. GG < 2 classification. 3D ViT - visual transformer model, LoGo MIL - CNN-based model
incorporating attention-based multiple instance learning framework.

0.05 significance level.

3. Results
In this work, we utilized encodings learned by an VQ-
VAE model to perform downstream analysis of csPCa de-
tection and compared our method to two baseline solu-
tions described in Sec. 2.2.3. The results are presented in
Tab. 1. Our solution achieved 0.764±0.019 AUC, which
significantly outperformed the CNN (LoGo MIL) (AUC =
0.751±0.035, p < 0.001) and vision transformer (3D ViT)
(AUC = 0.726±0.01, p < 0.001) baselines. Our method
achieved the highest specificity, resulting in a lower sensi-
tivity than other solutions. The optimal threshold weighted
true positives and true negatives differently than in the base-
line solutions. Our method achieved a higher F1 Score, a
combined score that considers both sensitivity and speci-
ficity.

We evaluated the performance of our model on incom-
plete multimodal classification by setting δi to zero dur-
ing inference for ADC, high-b, and a combination of both
modalities. The dropout in the T2 modality was not ap-
plied as it was presumed to be available due to a more stan-
dard protocol. According to the results presented in Tab. 2,
dropping ADC modality during evaluation results in a slight
drop in AUC value (0.757±0.025 vs. 0.764±0.019), simi-
lar average sensitivity (0.690), a5.2% drop in average speci-
ficity (0.740±0.048 vs. 0.781±0.013) and a 6.4% drop in
F1 score. High-b modality dropout leads to a larger drop in
AUC by 6%, 9.7% drop in sensitivity, 6.7% drop in speci-
ficity, and F1 score. Dropping ADC and high-b modalities
simultaneously leads to AUC, sensitivity, and specificity
similar to the ones obtained by dropping high-b only.

4. Discussion
For a multimodal transformer trained to predict the pres-
ence of csPCa, we visualize the different attention heads
from MSA modules and reveal that the proposed approach
can localize regions suspicious of cancer in line with ROIs
drawn by the radiologist. Similar observations appeared in
previous research that showed that MSA blocks can be used
as a method for object localization [6, 29]. In Fig. 3, we
provide two examples of localization maps for each GG 1-
5. Based on the visual assessment, the proposed multimodal
transformer localized ROIs areas for most cases. However,

we noticed that localization quality varies between modal-
ities and between attention head numbers. Provided exam-
ples include the best localization results among all 8 heads
and it can be noticed that the head number varies. While
high-b modality leads to a better localization in most of the
examples, ADC and T2 provide better results when high-b
localization fails. Therefore, future work is needed to opti-
mize the choice of head and modality to provide unsuper-
vised localization results along with the prediction of the
csPCa presence.

A strength of our approach is that our model is trained
solely based on image-level labels, providing a more gen-
eralizable approach than methods requiring pixel-level an-
notations, allowing us to easily accommodate clinically-
generated data. However, given that our target population
for this study was all patients with biopsy and mpMRI, we
do not have surgical specimens to provide a ground truth
for csPCa prediction. Future work could include a dataset
with matched radical prostatectomy specimens to identify a
stronger ground truth of csPCa.

While modality-level dropout incorporated into our
model architecture leads to robust model performance when
ADC modality is missing, the absence of high-b modality
leads to decreased model performance. This can be ex-
plained by the fact that lesions are typically visible on high-
b images when ADC and T2 signal is subtle [13, 25]. In our
future work, we will improve the technique to handle miss-
ing modalities and increase robustness to address scenarios
when high-b is missing.

Lastly, although three datasets were combined for the
pretraining dataset, resulting in a total of 2,980 studies used
to pretrain FM, a pretraining dataset with more institutions
could further benefit the training.

5. Conclusions
In this work, we presented a novel csPCa diagnosis frame-
work which consists of a novel prostate radiology foun-
dational model based on a multimodal VQ-VAE. Our FM
was pretrained on a large set of mpMRI images from two
public and one private dataset. After the multimodal VQ-
VAE was pretrained, we finetuned the model for csPCa pre-
diction utilizing a multimodal transformer with modality
dropout to account for the possibility of missing modal-
ities. The proposed solution significantly outperformed
two baselines: 3D ViT and attention-based LoGo-MIL.
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Included modality AUC Sensitivity Specificity F1 Score
T2, high-b 0.757±0.025 0.690±0.035 0.740±0.048 0.703±0.038
T2, ADC 0.713±0.023 0.623±0.051 0.732±0.076 0.700±0.038

T2 0.712±0.02 0.626±0.045 0.724±0.057 0.701±0.039

Table 2. Evaluation of our model performance for various modality dropout settings. T2 is always included

Modality dropout showed the robustness of the model to
incomplete modality input. Our results show that auto-
matic prostate cancer detection can be improved by utiliz-
ing a large dataset for pretraining modality-specific FM.
Additionally, we found potential in using a VQ-VAE as
the base for a non-prostate cancer-specific radiology FM
model.
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mr guidelines 2012. European radiology, 22:746–757, 2012.
2

[6] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
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