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Abstract

In recent years, generative models have been very pop-
ular in medical imaging applications because they gener-
ate realistic-looking synthetic images, which is crucial for
the medical domain. These generated images often comple-
ment the hard-to-obtain annotated authentic medical data
because acquiring such data requires expensive manual ef-
fort by clinical experts and raises privacy concerns. More-
over, with recent diffusion models, the generated data can
be controlled using a conditioning mechanism, simultane-
ously ensuring diversity within synthetic samples. This con-
trol can allow experts to generate data based on differ-
ent scenarios, which would otherwise be hard to obtain.
However, how well these models perform for colonoscopy
still needs to be explored. Do they preserve clinically sig-
nificant information in generated frames? Do they help
in downstream tasks such as polyp segmentation? There-
fore, in this work, we propose ControlPolypNet, a novel
stable diffusion based framework. We control the genera-
tion process (polyp size, shape and location) using a novel
custom-masked input control, which generates images pre-
serving important endoluminal information. Additionally,
our model comprises a detection module, which discards
some of the generated images that do not possess lesion-
characterizing features, ensuring clinically relevant data.
We further utilize the generated polyp frames to improve
performance in the downstream task of polyp segmenta-
tion. Using these generated images, we found an average
improvement of 6.84% and 1.3% (Jaccard index) on the
CVC-ClinicDB and Kvasir-SEG datasets, respectively. The
source code is available at https://github.com/
Vanshali/ControlPolypNet.

Non-polyp /
Negative Images

Input Control Images /
Source Images

Text Prompt = "Polyp"

Figure 1. Controlling polyp generation using custom masks
while leveraging largely accessible non-polyp/negative images.
We turned negative samples into positive ones with controlled
polyp shape, size and location.

1. Introduction

Colon polyps are abnormal growths with a high risk of de-
veloping into the third most common malignancy, colorec-
tal cancer (CRC). Early detection of these polyps is cru-
cial to reduce the associated mortality rate; hence, vari-
ous screening tests are used in clinical practices, among
which colonoscopy is the most widely used medical proce-
dure. It has been reported that colonoscopy can reduce CRC
incidence by about 30% [8]. However, despite this fact,
the inter-class similarities and intra-class variations among
polyps lead to increased miss-rate and make the process
largely operator-dependent [14]. To alleviate such issues
of misdetection, automated diagnosis systems are incorpo-
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Figure 2. Augmentation strategies; (a) Conventional augmentation
techniques present limited diversity among samples, (b) Conven-
tional generative approaches use all generated images irrespective
of their clinical relevance, and (c) Our approach has an additional
detection step that selects generated images which are detected
with a high confidence score, ensuring clinical relevance.

rated into the traditional colonoscopy process.

Several colonoscopy analysis tasks, including polyp de-
tection [29], segmentation [14], and classification [19] have
shown remarkable improvement using deep learning based
systems compared to conventional techniques. However,
the performance of these systems on unseen examples sig-
nificantly relies on the diversity and quantity of examples
in the training data. Acquiring a large amount of varied
data, especially with associated annotations, is challenging
in the medical domain. This procedure involves data pri-
vacy concerns, and manual labeling by clinical experts be-
comes a bottleneck. To overcome this issue, existing au-
tomated methods typically use conventional augmentation
techniques, such as rotation, vertical and horizontal flips,
etc. Simply relying on such techniques restricts the scale-up
of the dataset to a certain extent, depending on the dataset
size, and limits diversity among samples. This augmenta-
tion practice is illustrated in Fig. 2(a).

Considering the above-mentioned scenarios, one possi-
ble solution is to expand the training data by incorporat-
ing synthetic data. This solution is viable and offers var-
ious benefits: (1) It does not require the time-consuming
task of manual labeling. (2) It eliminates the long process
of obtaining data privacy informed consent, accelerating
dataset development. (3) It provides an opportunity to ob-
tain hard-to-find anomalies that are difficult to observe dur-
ing routine colonoscopy. To generate realistic-looking syn-
thetic data, in recent years, generative adversarial networks

(GANSs) have been widely used in various fields, including
medical imaging [9, 28]. Despite the improved performance
in the downstream tasks, the issue of convergence instabil-
ity of GANs and their limited contributions in such tasks
resulted in the development of currently trending diffusion
models [5, 10]. Diffusion models are expected to gener-
ate more realistic images and support text-to-image genera-
tion, thus facilitating automated systems with text prompts
for better control. These models have been explored in
many medical applications, such as image-to-image trans-
lation [18], reconstruction [20], image generation [6], seg-
mentation [2], and classification [33], especially using ra-
diology images. However, colonoscopy images have not
been explored much and require validations on the diffusion
models’ ability to learn and generate complex patterns. Be-
sides visually satisfactory image formations, these models
must be evaluated on their ability to retain clinically sig-
nificant information and the usefulness of generated data
for downstream tasks such as polyp segmentation. Conven-
tional generative approaches often skip such clinical rele-
vance validations, using all generated images for augmen-
tations, as shown in Fig. 2(b).

In this work, we propose ControlPolypNet, based on
ControlNet [34] architecture and diffusion concept to gen-
erate realistic-looking polyp frames. Our framework has a
novel input control map, which converts non-polyp frames
with normal mucosa (relatively easy to obtain) to polyp
frames (hard to obtain). This process is summarized in
Fig. 1. Additionally, we employ a detector module in Con-
trolPolypNet that discards frames that do not carry lesion-
characterizing features. This step prioritizes polyp-specific
characteristics, emphasizing them before proceeding with
augmentation, as shown in Fig. 2(c). Also, we evaluated
the impact of the generated data on the downstream task of
polyp segmentation. Our method offers a more practical ap-
proach to data augmentation, which is expected to represent
clinically relevant data with diverse characteristics. Using
the generated data, polyp segmentation shows an average
improvement of 6.84% and 1.3% Jaccard index on CVC-
ClincDB and Kvasir-SEG, respectively. The contributions
of our work can be summarised as follows:

* Framework with novel user-configurable input con-
trol map: We propose an approach using novel user-
configurable input control to generate polyps while lever-
aging the largely accessible non-polyp frames. This con-
trol map can control the endoluminal objects and polyp
generation (in terms of shape, size and location) using
customized masks and non-polyp frames.

* Additional examination to avoid irrelevant synthetic
information: We employ a detector module that verifies
the quality of generated polyps and selects clinically ap-
propriate synthetic polyps that carry lesion-characterizing
features. The detector eliminates the risk of adding noise
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and irrelevant information to the generated data.

* Improved polyp segmentation performance: We report
enhanced polyp segmentation performance by augment-
ing two publicly available datasets using our synthetic
images. This has been achieved without additional ex-
pensive manual annotation requirements.

2. Related Work

In recent years, various generative artificial intelligence
strategies have been adopted in the colonoscopy domain.
However, diffusion based models are still rarely explored
in the domain. One such work is reported in [16], where
Machacek et al. adopted a latent diffusion model to gener-
ate synthetic polyps using segmentation masks. Besides dif-
fusion models, various GAN-based architectures have been
employed to generate colon polyps to circumvent the issue
of limited labeled data. For example, Shin et al. [30] uti-
lized conditional adversarial networks and combined edge
map with polyp binary mask as a conditioned input image.
Further, they introduced dilated convolutions in the genera-
tor encoder. Sasmal et al. [26] adopted DCGAN to augment
the polyp dataset, boosting the classifier’s ability to differ-
entiate between hyperplastic and adenomatous polyps. To
expand the data distribution, He et al. [9] integrated a gen-
erator, a detector, and an attacker to produce false negative
samples. They reported that instead of merely using a gen-
erator to produce synthetic images, using adversarial sam-
ples can enhance the performance of a re-trained detector.

Unlike the above methods that altogether generated a
new image, Qadir et al. [21] employed a simple conditional
GAN framework to convert polyp images into negative im-
ages initially and then used a controllable binary mask to
convert them into polyp images. Sams and Shomee [25]
produced random masks using StyleGAN2-ada and inte-
grated them with normal colon images to obtain a composite
image. This composite image then acts as the input for the
conditional GAN. Thomaz et al. [4] adopted an approach
to copy polyp regions to non-polyp images. Additionally,
they used a conditional GAN to synthesize new polyps. The
generated images are transferred to the target image using
an algorithm based on image processing techniques. Such
existing GAN-based techniques suffer from convergence is-
sues and produce less realistic images with limited diver-
sity. Also note that unlike Machacek et al. [16], our work
focuses on generating more realistic images by controlling
the background details, reducing the possibility of uninfor-
mative content and artifacts.

3. Proposed Method
3.1. Overview

The objective of the proposed method is to generate polyp
frames to increase the sample count for training and enhanc-

ing deep learning models’ performance. Given two sub-
sets of images, polyp/positive (P) and non-polyp/negative
(N), our goal is to utilize images in N to expand the sub-
set P. This is achieved by transforming images N =
{n1,na,...,ns} into P’ = {p}|p} is similar in distribution
to pj}, where p; € P. Moreover, during this transforma-
tion, polyp shape, location, and size are user-configurable
and integrating P’ with P should diversify the overall set.
This signifies that the synthetic polyp set P’ should be di-
verse and possess qualities similar to real images in set P.

3.2. Preliminaries

Stable Diffusion Models (SD): SD is a text-to-image
model built upon the basic functionality of latent diffusion
models (LDM) [23]. In this model, an encoder F encodes
a given image a € R *" >3 into a latent representation a;.
Like DPM [31], it gradually introduces Gaussian noise in
the image but is done in the latent space on a;, resulting in a
noisy image a;, at time step ¢. Subsequently, a U-Net with
ResNet blocks, incorporating the time step ¢, is employed
for denoising. ey (a4, t) acts as a sequence of denoising au-
toencoders to predict the denoised version. The final output
representation is reconstructed into a; using a decoder D.
The corresponding objective is given below:

Lipyv = Eg)etllle — Ee(altvt)Hg] ey

where € ~ A(0,1). The SD further utilizes a text encoder,
which is a pre-trained CLIP [22]. It allows encoding the text
prompts into embeddings. These text embeddings are then
fused with the encoder and decoder of U-Net using cross-
attention layers. This cross-attention mechanism helps con-
dition the model using a text prompt b after processing it
through an encoder Z. The objective can be defined as:

Lo, = Epaypellle — colan, t, Zo(b))[3] ()

ControlNet: ControlNet is designed to control the dif-
fusion models to enable them to perform a specific down-
stream task. It uses an input control map that provides an
opportunity to manipulate the generated output. Control-
Net, in its standard form, supports control maps with dif-
ferent conditions, such as edge maps, scribbles, segmenta-
tion maps, pose, etc. It preserves the weights of the SD by
making a locked copy of it. Simultaneously, it uses a train-
able copy with task-specific conditional control for a down-
stream task. These two copies are connected via 1 X 1 zero
convolution layers with both bias and weight initialized as
zero. The convolutional weights of these layers gradually
optimize, which gives the benefit of no extra added noise
with faster training at the same time. Let locked and train-
able copy parameters be denoted as o and a., respectively.
If zero convolution operation is C(.;.) which uses two in-
stances of parameters {1, a2}, then combining it into the

2327



Control Image
Input Image

| E H-
P
pi€P 4L

E
m; € M
my Enhanced
Diffusion] I Outcomes
t
Process l
l Prompt Segmentation
SO (U-Nety  Time Validation/ Dataset
> : augmentation
Prompt \ T
6 e Encoder \  Encoder /
Text Encoder [ +

Time

|
|
? Time Encoder

Prompt = "polyp" /

N Pre- /1
processing|

Informative/good
quality negative
images

Negative/non-
polyp images

Decoder «——
i Convolutions

Model
masked itive it

1)

Custom-masked ! |
negative images (N')  Polyp images (P')

\\\ . Generated
Real images

;\ Tpolyp images

Zero

\

ion on cus10m

Selected generated polyp
images (Detected with
confidence score >= 0.7)

Detector

Generated

Figure 3. The proposed framework uses custom-masked images as input control with a “polyp” text prompt. The pre-processing pipeline
shows the elimination of uninformative negative frames. Custom masks are used to generate polyps during the evaluation phase of Con-

trolPolypNet.

ControlNet network blocks #(.; .) could be represented as:

Yo = H(z,a) + C(H(z + C(c, ac1); c); 1) (3)

where y. is the output and x is the input feature map. The
overall objective after including the downstream task can be
modified as shown below:

Lon = Brgay s eclle = cola, t. Zo(0),69)[5] @)

where b’f is the intermediate representation of the task-
specific condition.

3.3. ControlPolypNet

The architectural details of the proposed approach are
shown in Fig. 3. ControlPolypNet consists of three main
parts: (a) an SD U-Net architecture loaded with pre-trained
weights of SD v1-5, (b) ControlNet, and (c) YOLOvVS [32],
a detector pre-trained on the polyp images. The decoder
part of the SD U-Net is kept unlocked, and only its encoder
part is left locked during the complete training process. This
unlocking is done to obtain better performance on medical
imaging tasks like ours, as the initial weights are more in-
clined toward general images. Instead of adopting standard
control map options presented by ControlNet, we tailored
the input condition map to fit the necessary requirements.
We utilized the negative colonoscopy frames /N, which
are relatively easily accessible in sufficiently large amounts.

We overlapped these frames with random custom masks to
obtain N, which are the regions targeted for polyp gener-
ation to obtain P’. To make the model learn the mapping
N’ — P’, we prepared our training set such that initially,
it learns M — P, where M is obtained by overlapping P
with its binary mask ground truth. By providing P as the
target image and M as the source image (control image),
the model learns the mapping M — P. While learning
this mapping, the model learns the complex patterns in data,
and when given a random mask over non-polyp image n.,
it transforms it into p when given the text prompt “polyp”.
This mapping allows the usage of custom masks with con-
trollable positions and shapes of polyps. Also, this reduces
the probability of obtaining unwanted structures or noise in
the background/endoluminal scene.

When given a polyp image p;, the standard diffusion pro-
cess progressively adds noise to the image in its latent rep-
resentation p; to obtain a noisy version p;,. This input is
combined with conditions in the form of mask-overlapped
image m; € M and text prompt b, i.e., “polyp”. m; is
further converted into an intermediate representation m s by
performing encoding on m; to match the input size of SD.
The objective of ControlPolypNet can be defined as:

ée(Plt, t, Z@(b)7 mf)”g]
(5)

Lopn = Epp)bms.ellle —
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Figure 4. Epoch-wise sample images along with their corresponding negative images and input control images (custom-masked negative

samples). E stands for epochs.

The proposed input control ensures that the other endo-
luminal scene remains intact, which could be beneficial to
capturing and differentiating polyp regions during down-
stream tasks. As stated in [19], considering some regions
from background aids in improving classification results.
This outcome could be attributed to polyps exhibiting a dis-
tinct color and texture, setting them apart from the normal
mucosal regions. Unwanted noise and irrelevant objects in
the generated outputs’ background create unrealistic data,
deviating a model from the intended task. Therefore, we
utilized the negative frames instead of relying on the stan-
dard binary masks. However, these negative frames can
have some artifacts, as colonoscopy videos are prone to mo-
tion blur, interlacing, ghost colors, etc. Hence, we used an
approach given by Sharma et al. [27] to filter out uninfor-
mative negative frames before their use in the translation.

Pathological Validation Setup:  Although generative
models are now common in the medical imaging domain,
various studies [3, 7] show that they are liable to generate
unrealistic medical conditions or structures. As pathologi-
cal patterns are significantly crucial, we performed an elim-
ination step instead of directly integrating them into the seg-
mentation task training. This elimination step validates the
presence of lesion-characterizing features in the synthetic
images and simultaneously prepares a clinically valid set of
images appropriate for data augmentation. We integrated
a polyp detector, YOLOVS, in the proposed framework for
this process. This detector is pre-trained on polyp images
with a confidence score set in the range of 0.7 and 0.8 for
inference. This integration helps choose only valid, visually
appealing frames with lesion-characterizing features. We
used these selected synthetic polyp frames to augment the
training set for the segmentation task.

4. Experiments and Results
4.1. Dataset Details and Training Settings

We used three publicly available datasets, namely, SUN
Database [17] (49,136 polyp frames and 109,554 non-polyp
frames), CVC-ClinicDB [1] (612 polyp images) and Kvasir-
SEG [12] (1000 polyp images), to validate the performance
of our framework. The segmentation ground truth of the
SUN Database, released in the form of SUN-SEG [15], is
also used. The SUN Database and SUN-SEG are used in the
training of ControlPolypNet, whereas CVC-ClinicDB and
Kvasir-SEG are used to validate generated image quality in
the downstream task of polyp segmentation.

During ControlPolypNet training, we used 38,284 polyp
images; the rest were used for validation. To translate non-
polyp images into polyp images, we custom-masked 10,000
negative images after pre-processing non-polyp video se-
quence cases with the informative/uninformative frame de-
tector given by Sharma et al. [27]. The official split of
CVC-ClinicDB and Kvasir-SEG is used. The implemen-
tation is done using PyTorch and PyTorch lightning frame-
works. ControlPolypNet and downstream task training are
executed using NVIDIA A100 and NVIDIA Titan-Xp GPU,
respectively. ControlPolypNet is trained for 55 epochs with
a batch size of 32 and a learning rate of 2¢ 5.

4.2. Evaluation Metrics

The quality of the generated images is accessed using three
metrics: Frechet inception distance (FID), peak signal-to-
noise ratio (PSNR), and structural similarity index measure
(SSIM). FID quantifies the quality of synthetic data for re-
alism and diversity. PSNR is focused on the reconstruction
quality of images, and SSIM quantifies the similarity be-
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Figure 5. (a) Two-dimensional t-SNE embedding pertaining to
real polyp images, and images generated by Pix2Pix and Con-
trolPolypNet, (b)-(e) show negative images, masked negative im-
ages, synthetic images obtained using Pix2Pix and ControlPolyp-
Net, respectively.

Table 1. Quantitative comparison of synthetic polyp images with
different sets of real images over different epochs. Bold values
represent the ‘best’ metrics score, and E, P, NP stand for ‘epoch’,
‘polyp’, and ‘non-polyp’, respectively. | and 1 denote ‘lower is
best’ and ‘higher is best’, respectively.

‘ Metrics Trend | Comparsion (with) | E-15 E-25 E-35 E-45 E-55 ‘
FID 1 Real P images 10452 106.70 10246 9935  94.07
Real NP images 92.10 93.77  91.16 89.22 8295
PSNR T Masked NP images | 67.70  67.22  67.66 67.57  68.39
SSIM 1 Masked NP images | 0.9987 0.9984 0.9986 0.9986 0.9988

tween two images. Additionally, we used task-specific seg-
mentation metrics, including precision, recall, F1-score and
Jaccard index. The Jaccard index determines the overlap
between the ground truth and prediction masks.

4.3. Performance Evaluation

We evaluated our model on different epochs and examined
the quality of the generated images using the quality assess-
ment metrics (see Table 1). While using FID, we consid-
ered two scenarios: synthetic vs. real polyp images and
synthetic vs. real non-polyp images. As expected, the latter
case presented a better score because the related non-polyp
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Figure 6. Analyzing the average Jaccard index across three seg-
mentation models in various scenarios. (a) Impact of different data
augmentation ratios. (b) Comparing the average Jaccard index us-
ing conventional augmentations with and without images gener-
ated by our approach.

images are translated into synthetic polyp with background
details substantially preserved. It can be observed that the
quality of images in both cases gradually increased with the
epoch counts. Due to the high computational requirements
of diffusion models, we considered training till the point
where visually appealing results were obtained. We further
explored the structure and information-preserving ability of
our approach using PSNR and SSIM. We masked the gen-
erated images’ polyp region and compared them with the
masked non-polyp images. The results show that the qual-
ity of the endoluminal scene is satisfactorily preserved and
is improved with the increasing epochs.

Besides quantitative outcomes, we observed the qualita-
tive results, shown in Fig. 4. In the initial epochs, especially
in epoch 15, the image details are not precisely generated
and are obstructed by artifacts. Moreover, the color transfer
ability from the input control image to synthetic images is
higher in the later epochs. The randomness in polyp color
and close mapping of the polyp shape and its location with
the custom mask demonstrates our approach’s potential to
achieve data diversity and successful control over synthetic
polyp shape, size and location. Although the results demon-
strate the scope of improvement in color-preservation abil-
ity, structural-preservation outcomes are impressive. Fur-
ther, we compared the outcomes of ControlPolypNet with
that of Pix2Pix [11]. We selected Pix2Pix because it uses a
mechanism to translate images from one domain to another,
suitable for our objective to translate N’ — P’. A qualita-
tive comparison is shown in Fig. 5 where the images in Fig.
5(b)-(e) clearly show that although both ControlPolypNet
and Pix2Pix retained the polyp location and shape, more re-
alistic polyp images with texture were generated by the for-
mer. However, compared to our model, Pix2Pix was better
at retaining the original colors of background regions. Ad-
ditionally, we generated a t-SNE plot (shown in Fig. 5(a))
using a DenseNet-201 that is trained to differentiate polyp
and non-polyp images [27]. Feature embedding plots of real
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Table 2. Performance of the U-Net [24], ColonSegNet [13], and TransNetR[14] models on the downstream task of polyp segmentation. RI
stands for Real Images. The best results are highlighted in bold and the second best are underlined.

Dataset: CVC-ClinicDB

Training sample count (X = 490) U-Net ColonSegNet TransNetR
Jaccard Recall Precision F1-score | Jaccard Recall Precision Fl-score | Jaccard Recall Precision F1-score
RI(X) 0.4682 0.5211  0.8509 0.5523 0.3429 0.3834  0.8256 0.4424 0.6952 0.7431  0.9399 0.7737
RI + Random Rotation (X+X) 0.4748 0.5244  0.8909 0.5568 0.4352 0.4859 0.8161 0.5312 0.7015 0.7450  0.9468 0.7805
RI + Gaussian Blur (X+X) 0.4447 0.4809 0.8705 0.5215 0.3467 0.3779  0.8291 0.4453 0.6960 0.7433  0.9357 0.7762
RI + Vertical Flip (X+X) 0.4589 0.5027  0.9218 0.5354 0.3666 0.3976 0.8412 0.4585 0.6675 0.7094  0.9283 0.7442
RI + Horizontal Flip (X+X) 0.4348 0.5138  0.8447 0.5198 0.4296 0.4696  0.8991 0.5080 0.6991 0.7581 0.9279 0.7823
RI + Elastic Transformation (X+X) 0.4296 0.4696  0.8991 0.5080 0.3867 0.4275 0.8019 0.4874 0.5907 0.6197 0.9439 0.6691
RI + Pix2Pix Synthetic Images (X+X) 0.4493 0.4964 0.7917 0.5474 0.3872 0.4019 0.8343 0.4661 0.7076 0.7406  0.9469 0.7872
RI + ControlPolypNet Synthetic Images (X+X) 0.5356 0.5781 0.9096 0.6232 0.4360 0.4831 0.8211 0.5359 0.7191 0.7731  0.9366 0.7967
RI + Pix2Pix Synthetic Images (X+2X) 0.3363 0.4323  0.6736 0.4429 0.4196 0.4465 0.7680 0.5065 0.6953 0.7299  0.9570 0.7719
RI + ControlPolypNet Synthetic Images (X+2X) | 0.5424 0.6390 0.8292 0.6365 0.4272 0.4828 0.7782 0.5267 0.7322 0.7837 0.9366 0.8113
RI + Pix2Pix Synthetic Images (X+3X) 0.4763 0.4975 0.8752 0.5570 0.4283 04531 0.8683 0.5192 0.6875 0.7174 09571 0.7599
RI + ControlPolypNet Synthetic Images (X+3X) | 0.5375 0.5802 0.8660 0.6149 0.4726 0.5432 0.8093 0.5760 0.6900 0.7287  0.9505 0.7628
RI +5 aug. (X+5X) 0.5518 0.6252  0.9002 0.6353 0.4928 0.5307 0.8623 0.5855 0.7214 0.7639  0.9426 0.7963
RI+5aug. + ControlPolypNet Synthetic Images | o 298 07132 08000 07160 | 0.5928  0.6308 09167  0.6874 | 07486  0.7968 09365  0.8198
(X+5X+2X)
Dataset: Kvasir-SEG
- _ U-Net ColonSegNet TransNetR
Iraining sample count (X = 880) Jaccard Recall Precision Fl-score | Jaccard Recall Precision Fl-score | Jaccard Recall Precision F1-score

RI(X) 0.6668 0.7796  0.8420 0.7508 0.5782 0.7148 0.7610 0.6869 0.7454 0.8273  0.9058 0.8267
RI + Random Rotation (X+X) 0.6852 0.7679  0.8702 0.7669 0.6143 0.7280 0.8045 0.7148 0.7469 0.8289  0.9005 0.8298
RI + Gaussian Blur (X+X) 0.6704 0.7736  0.8521 0.7563 0.5677 0.7116 0.7705 0.6793 0.7596 0.8426 0.8956 0.8399
RI + Vertical Flip (X+X) 0.6738 0.7693 0.8614 0.7580 0.6129 0.7504  0.7965 0.7184 0.7749 0.8552  0.8946 0.8501
RI + Horizontal Flip (X+X) 0.6837 0.7984 0.8390 0.7743 0.6039 0.7202 0.8105 0.7115 0.7629 0.8357 0.9120 0.8370
RI + Elastic Transformation (X+X) 0.6667 0.7996  0.8239 0.7538 0.6163 0.7399  0.8088 0.7208 0.7369 0.8265 0.8806 0.8160
RI + Pix2Pix Synthetic Images (X+X) 0.6550 0.7516  0.8353 0.7357 0.5757 0.6976  0.7920 0.6824 0.7659 0.8482  0.9020 0.8425
RI + ControlPolypNet Synthetic Images (X+X) 0.6795 0.8032  0.8498 0.7688 0.6262 0.7532  0.8098 0.7345 0.7579 0.8497 0.8801 0.8373
RI + Pix2Pix Synthetic Images (X+2X) 0.6127 0.7258 0.8103 0.7060 0.5820 0.7123  0.7783 0.6887 0.7651 0.8539 0.8984 0.8439
RI + ControlPolypNet Synthetic Images (X+2X) | 0.6680 0.8465 0.7971 0.7640 0.6065 0.7508 0.7913 0.7209 0.7797 0.8665 0.9010 0.8523
RI + Pix2Pix Synthetic Images (X+3X) 0.6580 0.7624  0.8440 0.7441 0.6048 0.7353  0.7916 0.7113 0.7747 0.8524 0.9109 0.8497
RI + ControlPolypNet Synthetic Images (X+3X) | 0.6997 0.8331 0.8464 0.7879 0.6326 0.7603  0.8121 0.7379 0.7760 0.8677 0.8938 0.8517
RI + Pix2Pix Synthetic Images (X+4X) 0.6720 0.7665 0.8633 0.7564 0.6021 0.7231 0.7961 0.6986 0.7346 0.8550 0.8441 0.8208
RI + ControlPolypNet Synthetic Images (X+4X) | 0.6750 0.8126  0.8339 0.7651 0.6341 0.7835 0.7967 0.7440 0.7432 0.8139  0.9039 0.8245
RI+5 aug. (X+5X) 0.7069 0.8131 0.8465 0.7912 0.6958 0.8086 0.8515 0.7907 0.7960 0.8518  0.9366 0.8641
gf&iﬁ%&f ControlPolypNet Synthetic Images | 7301 8368 0.8657 08153 | 07215 0.8191 0.8638 08120 | 07861 08622 09024  0.8584

and synthetic polyp images clearly depict the closeness of
our model’s outcomes with real images. Contrarily, the im-
ages generated by Pix2Pix barely overlap with the real data.

4.3.1 Clinical Significance Validation and Downstream
Task Evaluation

The clinical significance validation step employs a detec-
tor, as discussed in Section 3.3. The synthetic images that
YOLOVS8 detected with confidence scores in the range of
0.7 and 0.8 are used to augment the dataset of the down-
stream task. This augmentation approach provides two-fold
benefits: a) It validates the synthetic images’ quality and
clinical significance, and b) It allows enhancing segmenta-
tion outcomes. We experimented with different proportions
of synthetic images and five general augmentations: random
rotation, Gaussian blur, elastic transformation and horizon-
tal and vertical flips. We used three state-of-the-art polyp
segmentation models, U-Net [24], ColonSegNet [13], and
TransNetR [14] to experiment with different augmentation
combinations. The associated results are shown in Table 2.

During augmentation, we increased the ratio of synthetic
images as a multiple of X, where X is the original training

set size. It can be observed that adding synthetic images in
X proportion performs comparable to adding single conven-
tional augmentation. We gradually increased synthetic im-
ages in iX proportion, where i={1,2,3,4}. The results show
that the polyp segmentation performance achieves a signifi-
cant increase with small ratios, and then, with increasing ra-
tios, the improvement is either minimal or absent. The same
can be inferred from Fig. 6(a). The value of i is incremented
until the metrics values start to decrease. The proportion
iX that performs the best is combined further with conven-
tional augmentations. The outcomes from this integration
show that synthetic images complement conventional aug-
mentation techniques as the average performance increased
compared to cases where only conventional augmentations
were used. Additionally, we compared ControlPolypNet
with Pix2Pix using the same proportion of their generated
data for augmentation. An average Jaccard index over all
the different proportions (X, 2X, 3X or 4X) is 5.61% and
2.3% higher using ControlPolypNet compared to Pix2Pix
on CVC-ClinicDB and Kvasir-SEG, respectively. This in-
crease can be observed in Fig. 6(b). Moreover, the individ-
ual performance with different data proportions and models
has reported enhanced performance using our augmentation
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Table 3. Quality assessment of images generated using Pix2Pix and ControlPolypNet. This assessment is conducted using U-Net [24],
ColonSegNet [13], and TransNetR[14] models trained on real images. The best results are highlighted in bold.

Training Generation U-Net ColonSegNet TransNetR
Dataset Method Jaccard Recall Precision Fl-score | Jaccard Recall Precision F1-score | Jaccard Recall Precision F1-score
CVC-ClinicDB Pix2Pix 0.2048 0.6943  0.2562 0.3054 0.2323 0.7129  0.2934 0.3414 0.4517 0.6510  0.6219 0.5662
ControlPolypNet | 0.2613 0.7792  0.3088 0.3802 0.2633 0.7353  0.3328 0.3876 0.4761 0.7729  0.5991 0.6149
Kvasir-SEG Pix2Pix 0.5802 0.6994  0.7450 0.6597 0.4778 0.7508  0.5814 0.5814 0.6037 0.6414  0.9109 0.6657
ControlPolypNet | 0.6285 0.8128 0.7394 0.7362 0.4039 0.7973  0.4842 0.5354 0.7580 0.8537 0.8749 0.8454

U-NET ColonSegNet TransNetR

Ground

Conventional  ControlPolypNet
Image Truth

Augmentation +
Conventional
Augmentation

Conventional  ControlPolypNet

ControlPol; t X ontrolPolypNe’

ontrolPolypNe Augmentation +
Conventional
Augmentation

Pix2Pix Conventional  ControlPolypNet
.

Pix2Pix Pix2Pix  ControlPolypNet ControlPolypNet 4uncntation

Conventional
Augmentation

Figure 7. Qualitative results of polyp segmentation outcomes. The figure illustrates that in most cases, when ControlPolypNet’s output
is combined with conventional augmentation techniques, it predicts a mask closer to ground truth. Also, the masks obtained using Con-

trolPolypNet’s generated images are more appropriate than those obtained using Pix2Pix’s generated images.

approach. It is noteworthy that even though the synthetic
images are generated using a different larger dataset, they
are performing effectively on a small out-of-distribution
dataset. This observation supports both quality and diverse
information possessed by the generated images. Adopting
traditional augmentation techniques is limited by the actual
size of the dataset as they can only be scaled up by its mul-
tiple. Also, this scaling up produces redundant information
in some form. Contrarily, adding our diverse set of syn-
thetic images can complement this information and is inde-
pendent of real dataset size, thus providing enhanced seg-
mentation outcomes. These results are supported by some
qualitative outcomes, shown in Fig. 7. It can be observed
that, in most cases, combining conventional techniques with
ControlPolypNet’s synthetic data provides results closer to
the ground truth. We further tested the synthetic images ob-
tained using ControlPolypNet and Pix2Pix using the three
segmentation models (trained using only real data). The re-
sults shown in Table 3 signify that our approach generates
more realistic images with polyp-specific characteristics.

Although our proposed approach provides an opportu-
nity to obtain customized polyp images using negative im-
ages, some lingering gaps still need to be addressed as
control over colors remains unexplored. In medical im-
ages, color is one of the criteria considered for domain

shift issues, as color variations across inter-hospital and
inter-patient data bring performance drops. Control over
colonoscopy image color can expand the possibility of do-
main transfer and even enhance segmentation outcomes.

5. Conclusion

In this work, we proposed a stable diffusion based frame-
work, ControlPolypNet, to generate polyp frames utilizing
non-polyp frames. We showed that the polyp generation
process can be customized, and a user-configurable con-
trol can be used to get more fine-grained data. The gener-
ated frames also capture pathological features with visually
impressive results and help enhance the downstream task
of polyp segmentation. A detector, introduced in our pro-
posed framework, ensures the retention of pathological fea-
tures. Our approach achieved an average increase of 6.84%
and 1.3% (Jaccard index) over three models on the CVC-
ClinicDB and Kvasir-SEG datasets, respectively.
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