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Abstract

Over the past few decades, convolutional neural net-
works (CNNs) have been at the forefront of the detection
and tracking of various retinal diseases (RD). Despite their
success, the emergence of vision transformers (ViT) in the
2020s has shifted the trajectory of RD model development.
The leading-edge performance of ViT-based models in RD
can be largely credited to their scalability—their ability to
improve as more parameters are added. As a result, ViT-
based models tend to outshine traditional CNNs in RD ap-
plications, albeit at the cost of increased data and compu-
tational demands. ViTs also differ from CNNs in their ap-
proach to processing images, working with patches rather
than local regions, which can complicate the precise lo-
calization of small, variably presented lesions in RD. In
our study, we revisited and updated the architecture of a
CNN model, specifically MobileNet, to enhance its util-
ity in RD diagnostics. We found that an optimized Mo-
bileNet, through selective modifications, can surpass ViT-
based models in various RD benchmarks, including diabetic
retinopathy grading, detection of multiple fundus diseases,
and classification of diabetic macular edema. The code
is available at https://github.com/Retinal-
Research/NN-MOBILENET

1. Introduction
Retinal diseases (RD), such as diabetic retinopathy (DR),
age-related macular degeneration, inherited retinal condi-
tions, myopic maculopathy, and retinopathy of prematurity,
are major contributors to blindness worldwide [37]. Deep
neural networks, particularly convolutional neural networks
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Figure 1. Model size vs average performance (F1, Accuracy
and AUC) on retinal multi-disease abnormal detection using
RFMid dataset. Our method demonstrates superiority over other
CNN/ViT based methods in terms of performance and efficiency.

(CNNs), have been extensively used in retinal image analy-
sis over the past decades, achieving cutting-edge results in
various RD-related tasks [4, 15, 17, 27, 36, 39, 40, 42, 43].
The effectiveness of CNNs in these applications is largely
due to their built-in architectural inductive biases, such
as spatial hierarchies, locality, and translation invariance.
These characteristics enable CNNs to transform local visual
elements like edges and textures into complex, high-level
abstracted features. Building on this approach, numerous
CNN-based RD models [4, 15, 36, 39] have incorporated
disease-specific biases into their designs. However, the spe-
cialized nature of these CNN-based models for RD limits
their versatility across a range of RD tasks.

Recent advancements in RD modeling [14, 16, 30, 35,
38] have largely revolved around the vision transformer [7]
(ViT) since its debut in the 2020s. The prowess of ViT-
based models in RD is primarily due to their capacity to
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scale effectively; their performance improves as the model
size grows [21]. Consequently, ViT-based methods typi-
cally exhibit superior performance over CNNs but with a
cost of computational burden (as evident in Fig. 1). In ad-
dition, ViT-based models are advantageous for capturing
long-range global dependencies via self-attention mecha-
nism. Nonetheless, the quadratic time and memory com-
plexity of self-attention operation make ViTs computa-
tionally intense and data-hungry. Accordingly, ViT-based
RD models typically necessitate pretraining on large-scale
datasets [14, 16, 38]. Furthermore, unlike CNNs, these
models generally lack locality, since they operate at the im-
age patch level [16].

To address these challenges, new iterations of ViT de-
signs bring back convolution-like features to recover local
context sensitivity [16, 20]. This adaptation is particularly
beneficial for RD research since RD lesions are typically
small and have heterogeneous appearances. One represen-
tative example can be found in the DR task, where four
distinct types of lesions (i.e., microaneurysms, soft exu-
dates, hemorrhages, and hard exudates) exhibit variations
in shape, size, structure, and contrast. Among these lesions,
the microaneurysms are too tiny to be easily detected. In ad-
dition, the DR grading task inherently contains hierarchical
information, e.g., a proliferative DR image may consist of
all types of lesions. These intrinsic properties in RD tasks
naturally align with inductive biases in CNNs, where hier-
archical and fine-grained local contexts can be better de-
tected than ViTs. This observation prompts a reconsider-
ation: could CNNs be inherently more suited to RD tasks
than ViTs?

We also note that recent studies have shown well-
tuned CNNs surpassing ViTs in general image classification
tasks [21]. Motivated by these findings, our research recal-
ibrated a CNN, specifically MobileNetV2 [28], for RD ap-
plications, focusing on training strategies and architectural
refinements such as the inverted bottleneck, dropout opti-
mization, and activation functions. To this end, we intro-
duce nnMobileNet (“no-new” MobileNet), a model that im-
plements strategic yet minimal enhancements. Our empiri-
cal results confirmed nnMobileNet’s superiority over many
leading RD models across a spectrum of benchmarks (see
Fig. 1). Our work not only substantiates the potential of
CNNs in RD research but also emphasizes the critical as-
pects of CNN optimization. We anticipate that our findings
will spark a renewed interest in the adaptability and fine-
tuning of CNNs within the field.

2. Related Works

2.1. Diabetic Retinopathy Assessment

In the domain of deep learning, the evaluation of diabetic
retinopathy (DR) encompasses two tasks: DR grading and

the classification of referable DR. The process of DR grad-
ing adheres to a protocol that categorizes the progression of
diabetic retinopathy into distinct stages based on lesion ex-
amination, facilitating a multi-class classification task. This
grading delineates five levels of severity: no retinopathy,
mild non-proliferative DR (NPDR), moderate NPDR, se-
vere NPDR, and proliferative DR (PDR). In contrast, the
task of identifying referable DR focuses on detecting that
may lead to blindness or significant vision loss resulting
from DR, thereby being treated as a binary classification
framework. The framework distinguishes between non-
referable DR, characterized by the absence or mild presence
of NPDR without significant pathological manifestations,
and referable DR (rDR), which encompasses conditions
of moderate severity or higher. In the past decade, deep
learning has achieved state-of-the-art performance in au-
tomating the diagnosis of DR. Following the trend, convo-
lutional neural networks (CNN) dominated the early stage
of development [4, 15, 17, 27, 36, 38, 39]. Among them,
Zoom-in-Net [36] took a biomimetic method (medical ex-
perts utilized the magnification to locate the lesion in the
diagnosis) that incorporated the multiple scale information
into CNN. Zhou et al. proposed a semi-supervised learn-
ing framework, which coordinated lesion segmentation and
classification tasks by utilizing pixel-level supervision [39].
CANet [15] integrated two attention modules to jointly gen-
erate disease-specific and disease-dependent features for
grading DR and diabetic macular edema (DME). Che et
al. [4] achieved good performance via robust disentangled
features of DR/DME. Essentially, These CNN-based DR
classification methods rely on the extra auxiliary task and
prior knowledge, which inevitably introduce more complex
models and specialized multi-task datasets(e.g., DME Clas-
sification and lesion segmentation). Vision Transformers
(ViT) have recently gained much attention in various vi-
sual tasks by leveraging the self-attention mechanism to
capture long-term feature dependencies. Along this direc-
tion, MIL-VT [38] proposed using multiple-instance pool-
ing to aggregate the features extracted by a ViT. Sun et
al. [30] proposed a lesion-aware transformer (LAT) to learn
the diabetic lesion-specific features via a cross-attention
mechanism. Although those methods achieved state-of-
the-art performance, most heavily relied on pretraining on
large-scale datasets due to the data-hungry nature of ViT
whose complexity quadratically grew concerning the in-
put size. In addition, the DR features are localized in na-
ture, e.g..fine-grained lesions such as microaneurysms typ-
ically occupy only a minor fraction of the image area and
are discretely distributed in vessels. It was challenging for
pure transformer-based feature extractors to focus more on
global representations. In this paper, we contend that the
capabilities of CNNs for DR tasks remain underutilized.
We argue that through fine-tuning techniques, CNNs can
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achieve significant performance improvements, potentially
surpassing ViT. To substantiate our claim, we initiate our in-
vestigation with a lightweight framework, MobileNet, and
conduct a series of empirical studies.

2.2. Multi Retinopathy abnormal detection

The Multi-Retinopathy delineates a broader subclassifica-
tion of Retinopathy, introducing more precise representa-
tions of lesions. Several fundus images may carry one
or multiple labels, such as asteroid hyalosis, anterior is-
chemic optic neuropathy, age-related macular degeneration,
branch retinal vein occlusion, Choroidal folds, etc. No-
tably, many of these pathological changes are interrelated;
for instance, the presence of cotton wool spots on the retina
is a characteristic ocular manifestation of various medical
conditions, including diabetes mellitus, systemic hyperten-
sion, leukemia, and AIDS [3]. CNNs remain dominant
as the foundational design approach for multi-retinopathy
abnormal detection. A significant portion of the bench-
mark methods based on CNNs originates from DR grading
models. A notable example of such work is the develop-
ment of CANet [15], which leverages multi-task learning
to extract additional semantic information, thereby aiding
the classification model. Most subsequent advancements in
CNN-based methods have followed this conceptual frame-
work [4, 15]. Contrasting with this trend, some studies ar-
gue that establishing long-range dependencies and captur-
ing global semantic information learning is a potentially
more effective strategy for advancing model capabilities.
The MIL-VT introduces the ViT and incorporates multi-
ple instance learning head to force the token to capture the
lesion information [38]. However, this method processes
each individual patch without emphasizing the semantics of
smaller lesions, resulting in a lack of localized information
modeling. Furthermore, they employed extensive external
datasets for pre-training due to data-hangry nature of ViT.
In contrast, SatFormer enhances the ViT framework by in-
tegrating multi-scale CNNs to detect small lesions, such as
microaneurysms and exudates. This approach enriches the
model’s capability to represent features of small lesions and
to capture a wide range of pathological semantics [14]. This
transition and amalgamation from ViT back to CNN prompt
us to ponder whether CNNs are more suited for RD than
ViTs or whether the potential of CNNs remains underex-
ploited. This curiosity underpins our motivation for con-
ducting deeper research into the CNNs in various RD tasks.

2.3. Myopic maculopathy grading

Recent trends show a growing interest in leveraging deep
learning for the automatic diagnosis and analysis of my-
opic macular degeneration, the most prevalent complica-
tion of myopia and the leading cause of vision loss in in-
dividuals with pathological myopia. At the recently con-

Figure 2. The roadmap of modifying a MobileNetV2 to the
proposed no-new MobileNet (nnMobileNet) on the Messidor-2
dataset;

cluded MICCAI 2023, the Automated Detection of Myopic
Maculopathy in MMAC 2023 challenge featured tasks in
myopic maculopathy grading, segmentation, and prediction
of spherical equivalent. Insights from the released solu-
tions reveal that the first-place winner utilized a two-stage
pre-training method with a CNN backbone, incorporating
vision-language pre-training and self-supervised visual rep-
resentation learning. The second-place team employed a
Swin Transformer backbone combined with ArcFace loss.
Interestingly, the third-place entry achieved commendable
results using a lightweight CNN model without needing
external retinal datasets for pre-training or self-supervised
learning [13, 23, 41]. This outcome suggests that CNNs
can still excel in performance, potentially outpacing ViTs
in RD tasks. Moreover, the equitable testing environment
of such challenges lends credibility to the results [8]. These
findings corroborate our initial hypothesis and further pique
our interest in exploring the fine-tuning of CNNs for RD
tasks.

3. Roadmap of a nnMobileNet

Our investigation started with a standard MoblieNetV2 [28]
on the Messidor-2 dataset (see the first row in Fig.2) [6].
We chose MobileNetV2 because of its efficiency, achieved
by replacing the traditional residual bottleneck [10] with an
inverted linear residual bottleneck (ILRB) where channel
attention was included by default (see details in Fig.3). We
conducted empirical studies on its key components, includ-
ing channel configuration, data augmentation, dropout, op-
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Figure 3. The detailed architecture of the no-new MobileNet (Including the Channel configuration) and the inverted linear residual bottle-
neck used in the no-new MobileNet.

Figure 4. Examples of data augmentation (Method III) and details
of three sets of data augmentation we used.

timizer, and activation functions.

3.1. Channel Configuration of ILRB

Recent findings in natural images have revealed that chang-
ing stage-wise channel configuration (primarily computa-

tion distribution between layers) led to a remarkable perfor-
mance gain [9, 21]. This improvement is primarily due to
two factors: first, the expressiveness of a layer is affected by
the rank of its output matrix [9]. Second, ViTs generally use
a different stage ratio from CNNs to change its computation
distribution [21]. Both of these factors indicated the neces-
sity of changing the channel configuration in MobileNetV2.

As consistent with findings in natural images, we empir-
ically found that changing the channel configuration led to
a performance gain of 2.03% in Kappa and 1.30% in AUC
(see the second row in Fig. 2). It is worth noting that we
follow the channel configuration in [9] (see Fig.3 no-new
MobileNet architecture for channel configuration details).

3.2. Data Augmentation

In the field of RD, a common belief was that heavy data
augmentation (e.g., Mixup and CutMix) should be avoided,
as it dramatically distorts structures of images [14, 15, 30].
However, recent research has revealed that heavy data aug-
mentation even boosted the performance in retinal vessel
segmentation [33]. We hypothesize that this finding can be
transferred to the RD tasks because introducing noise from
the heavy data augmentation (e.g., unrealistic images shown
in Fig.4) may help the model generalize better. To validate
those hypotheses, we conducted experiments on three dif-
ferent sets of data augmentation combinations from light to
heavy (as detailed by Methods I, II, III in Fig.4).

Interestingly, we found that the heaviest data augmenta-
tion (i.e., Method III) achieved the best performance com-
pared to the other two strategies (see Fig. 5). We con-
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Figure 5. Empirical studies on Messidor-2 dataset where sub-
panel pictures (a), (b), (c), and (d) represent different experimental
groups, each of which is independent of the others. D and SD-[x]
in subpanel (b) denote Dropout and SpatialDropout in position [x]
as shown in Fig.3(c), respectively.

jectured that different from ViTs which perform classifica-
tion by comparing patches, the lack of non-local context
in CNNs may necessitate heavy data augmentation to find
the most discriminative local feature representation for ab-
stracting heterogeneous RD lesions. Integrating this set of
data augmentation into our nnMobileNet model design can
improve Kappa by 2.36% and AUC by 2.86% (see the third
row in Fig. 2).

3.3. Dropout

Dropout is commonly employed to alleviate overfitting and
enhance the representational capacity of individual layers.
However, we argue that the standard Dropout [12], which
randomly zeros out neurons in a feature map, is unsuitable
for general RD tasks. This is mainly due to the fact that
specific lesion information is primarily encoded in certain
image color channels. An example can be seen in the case
of DR, where the information of microaneurysm predomi-
nantly resides in the red channel, while the exudate infor-
mation is primarily encoded in the green channel. Based on
this observation, we conjecture that spatial Dropout, which
randomly removes channels from a feature map, is a better
choice for RD tasks. Additionally, spatial Dropout naturally
preserves spatial and local structures by randomly dropping
out strongly activated local patterns [32], which is highly
needed in RD. However, where to place spatial Dropout re-

mains an open problem. Here, we conducted experiments
to investigate the strategic placement of spatial Dropout in
ILRB (see Fig.3 inverted linear residual bottleneck).

We observed that i) spatial Dropout is indeed more effec-
tive than standard Dropout for RD tasks and ii) the perfor-
mance varies when placing the spatial Dropout at different
positions (see Fig.5(b)). Integrating spatial Dropout into the
proposed model led to an improvement of 0.06% in Kappa
and 1.16% in AUC (see the forth row in Fig.2).

3.4. Optimizer

The training of ViTs is typically performed by an
AdamW [22] optimizer, which makes us wonder if the per-
formance gain in ViT-based RD models comes from the
more advanced optimizer [21]. Alternatively, would a more
advanced optimizer boost the performance of a CNN-based
RD model ?

Our empirical studies revealed that training the network
with AdamP [11] optimizer, which better accommodates
the step size adaptively, showed better performance com-
pared to other optimizers (see Figure 5(c)). Applying the
AdamP to train nnMobileNet contributed to a performance
gain of 2.2% in Kappa (see the fifth row in Fig. 2).

3.5. Activation Function

ReLU is extensively used in traditional CNNs due to its
simplicity and computational efficiency. However, increas-
ing research indicates that smoother variants of ReLU (e.g.,
SiLU), commonly used in ViTs, can lead to performance
improvements [9, 21]. Based on that, we investigate the
most suitable activation functions within inverted linear
residual blocks (see Fig.3 inverted linear residual bottle-
neck) for retinal disease applications. Here, we consider
four variants of ReLU, including SiLU, ReLU, PReLU, and
ReLU6. As shown in Fig.5(d), the ReLU6 activation was
the best among all options. After we replaced the ReLU
with ReLU6 in each ILRB, it led to an improvement of
0.65% in kappa and 0.39% in AUC (see the sixth row in
Fig. 2).

4. Experiments and Results

An optimal set of network structures and training strategies
is summarized in Section 3. We used cross-entropy loss for
training all the models in this work. All models were trained
for 1000 epochs with a batch size of 32. The initial learning
rate was set to 0.001 decayed according to a cosine decay
learning rate scheduler with 20 epochs of linear warm-up.
A weight decay rate of 0.05 was applied to prevent over-
fitting. All experiments were implemented in PyTorch and
were performed on a Nvidia RTX 3090 GPU with a mem-
ory of 24G.
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4.1. Datasets and Evaluation Metrics

Messidor-1 dataset [6] contains 1200 fundus images with
four DR grades. We conducted referral and normal DR clas-
sification in this dataset. In the referral and non-referral DR
classification, Grades 0 and 1 are considered non-referable,
while Grades 2 and 3 are considered referable DR (rDR).
For normal and abnormal classification, only Grade 0 will
be labeled as normal, and the other grades will be rec-
ognized as abnormal. We followed the experimental set-
tings in [15] by using 10-fold cross-validation on the entire
dataset. The area under the curve (AUC) was used as the
evaluation metric.
Messidor-2 dataset [6] contains 1748 fundus images with
five DR grades. As no official split of the training and test-
ing dataset was provided, we used this dataset to conduct
ablation studies to demonstrate the effectiveness of each
component of our proposed method on DR grading eval-
uated by the AUC and quadratic Cohen’s kappa (Kappa).
RFMiD dataset [24] contains 1920 training, 640 valida-
tion, and 640 testing images with 45 different types of
pathologies (central serous retinopathy, central retinal vein
occlusion, asteroid hyalinosis, etc.). Following the protocol
in [14, 38], we performed normal and abnormal binary clas-
sification on this dataset whose performance is measured by
accuracy (ACC), AUC, and F1.
APOTS dataset [1] contains 3662 fundus images for DR
grading with the severity on a grade of 0 to 4 (no DR, mild,
moderate, severe, proliferative DR). Following the experi-
mental setting of 5-fold cross-validation in [38], we evalu-
ated the performance of DR grading in terms of ACC, AUC,
weighted F1, and kappa.
IDRiD dataset [25] contains 413 training and 103 test-
ing images for both DR grading and DME severity grading
tasks. we used the training and testing data provided by the
official split. Different from method [15] that re-labeled DR
grading into two categories, we trained the multi-class DR
grading task and reported the evaluation metrics of ACC,
AUC, and F1. Both grading experiments followed the pro-
tocol in [4].
MICCAI 2023 MMAC (Myopic Maculopathy Analysis
Challenge) contains 1143 fundus images with four myopic
maculopathy grades. There are 404 images for grade 0, 412
images for grade 1, 224 images for grade 2,60 images for
grade 3, and 43 images for grade 4. We used 5-fold strat-
ified cross-validation on the training set. The Quadratic-
weighted Kappa (kappa), F1 score, and Specificity were
used as the evaluation metric. For this experiment, we felt
the raw data was good quality and did not need to apply any
preprocessing.

4.2. Comparison to State-of-the-art Methods

DR task performance. We compared the proposed method
to a variety of existing state-of-the-art (SOTA) methods on

Table 1. Comparison of rDR and normal classification on the
Messidor-1 dataset [6]. Annotations denote whether pixel-level
or patch-level supervision was applied. (†: methods implemented
by us; while the other benchmarks are taken from [15, 30, 34].)

Method Annotations Referral AUC Normal AUC

VNXK [34] - 88.7 87.0
CKML [34] - 89.1 86.2
Comp. CAD [27] - 91.0 87.6
Expert A [27] - 94.0 92.2
Expert B [27] - 92.0 86.5
Zoom-in-Net [36] - 95.7 92.1
AFN [17] patch 96.8 -
Semi + Adv [39] pixel 97.6 94.3
†CANet [15] - 96.3 -
LAT [30] - 98.7 96.3
Ours - 98.7 97.5

Table 2. Performance comparison of multi-disease abnormal de-
tection on the RFMiD dataset [24]. Param are the parameter num-
bers, indicating model complexity of models. (Due to some meth-
ods codes not being made publicly available, †: methods repro-
duced by us; while the other benchmarks are taken from [14].)

Normal/Abnormal

Method ACC AUC F1
† CANet [15] 88.3 91.0 90.4
† EffNet-B7 [31] 88.2 91.0 90.7
† ReXNet [9] 91.3 94.5 93.3
† CrossFormer-L[35] 90.6 94.3 92.0
† Swin-L [16] 89.5 93.8 91.6
† MIL-VT [38] 91.1 95.9 94.4
SatFormer-B [14] 93.8 96.5 95.8
Ours 94.4 98.7 94.4

Table 3. Performance comparison of DR grading on the APOTS
dataset [1]. Due to some methods codes not being made available
in public, † denotes methods reproduce performances at the same
level as reported while the other benchmarks are taken from [38].

DR Grading

Method AUC ACC F1 Kappa

DLI [26] - 82.5 80.3 89.0
† CANet [15] - 83.2 81.3 90.0
GREEN-ResNet50 [19] - 84.4 83.6 90.8
GREEN-SE-ResNext50 [19] - 85.7 85.2 91.2
† MIL-VT [38] 97.9 85.5 85.3 92.0
Ours 97.8 89.1 88.9 93.4

three DR datasets (i.e., Messidor1, APOTS, and IDRID).
The proposed method achieved the best performance on the
IDRID dataset (AUC=91.6, ACC=73.1). Remarkably, the
proposed method outperformed the best model (DETACH-
DAW [4]) by 8% and 23.5% in AUC and ACC (Table 4),
respectively, on the IDRID dataset. We also found that the
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Figure 6. The comparative visualization on the Messidor-1 dataset was performed utilizing CAM [29]. We chose representative CNN/ViT-
based methods with publicly available code, including MIL-VT [38], Swin-L [16], CrossFormer-L [35], CANet [15] and ReXNet [9].

Table 4. Performance comparison of DR and DME grading on the
IDRID dataset [25]. † denote methods implemented by us while
the other benchmarks are taken from [4].

DME DR

Method AUC F1 ACC AUC F1 ACC
† CANet [15] 87.9 66.1 78.6 78.9 42.3 57.3
Multi-task net [5] 86.1 60.3 74.8 78.0 43.9 59.2
† MTMR-net [18] 84.2 61.1 79.6 79.7 45.3 60.2
† DETACH + DAW [4] 89.5 72.3 82.5 84.8 49.4 59.2
Ours 95.3 84.8 86.5 91.6 72.6 73.1

Table 5. The performance comparison in 2023 MMAC Challenge.
The results are tested by the officially challenge platform [2].

Method Kappa F1 SPE Average CPU time (s)

Rank 1st [13] 90.1 78.1 94.5 87.5 2.1283
Rank 2nd [23] 88.9 76.8 94.1 86.6 0.8047
Ours (can reach 3nd) 90.0 75.1 94.1 86.4 0.2750

proposed method had the highest ACC and Kappa on the
APOTS dataset with a similar AUC to the best-performed
model (Table 3). The proposed method achieved an equal
performance to the best model (LAT [30]) on the referral
DR classification task and the best performance on the nor-
mal DR classification task (Table 1). It is worth noting
that most works (i.e., MIL-VT [38], LAT [30], Zoom-in-
Net [36], Semi + Adv [39], and CKML [34]) were pre-
trained on large-scale external datasets. Whereas, the pro-
posed method was trained from scratch using the same
benchmark datasets.

Multi-disease abnormal detection performance. We also
conducted experiments and comparisons to current SOTA
methods on the multi-disease detection task. The proposed
method achieved the best performance in terms of ACC and
AUC, while the SatFormer-B [14] achieved the best perfor-
mance in F1 (Table 2). However, our model (Param=34M)
has fewer than half number of parameters of the SatFormer-
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B [14] (Param=78M). Even though the proposed model had
a similar stem architecture to the RexNet, our heavy data
augmentations and spatial dropout improved the ACC by
3.4% and AUC by 4.4%.
DME classification performance. The DME classifica-
tion task was evaluated on the IDRID dataset following
the protocol in [4]. Table 4 demonstrated that the pro-
posed method surpassed the model with the best perfor-
mance (DETACH+DAW [4]) by 17.3% on F1, 6.5% on
AUC, and 4.8% on ACC. Compared to other SOTA meth-
ods (i.e., CANet [15], Multi-task net [5], MTMR-net [18],
and DETACH-DAW [4]) that were jointly trained on multi-
ple tasks, our proposed model was trained from scratch on
the DME task only.
MICCAI MMAC 2023 Challenge. Our well-calibrated
nnMobileNet secured the third position in MICCAI MMAC
2023 Challenge [2] and was remarkably close to the top-
ranking models (Table 5). Whereas models that won the
first and second places were ViT-based models pre-trined
on large-scale external datasets using self-supervised learn-
ing. Consequently, their models were at least three times
slower than ours’ regarding the inference time on CPU (see
Table 5).

5. Visual Interpretability
We visualize the most discriminative regions of several rep-
resentative methods using the gradient-weighted class ac-
tivation map (Grad-CAM) [29] in the Messidor-1 dataset
for the DR task. As shown in Fig. 6, the proposed method
showed the most accurate localization of diabetic lesions
compared to the other baseline methods, e.g.. hard exu-
dates, and hemorrhages. This observation aligns with our
initial hypothesis that ViTs are typically employed to model
the similarities between different patches. When dealing
with small lesion blocks, localized lesions within many
patches tend to be averaged out and overlooked, with ViTs
favoring semantic comparisons between patches. Conse-
quently, this leads to methods like Swin-L and CrossFormer
producing CAM regions that are overly broad, hindering the
precise localization of smaller lesions. It is noteworthy that
MIL-VT compels each patch token to pass through a MIL
(Multiple Instance Learning) head, essentially engaging in
a pseudo-label learning process. We observed that this MIL
attention mechanism tends to assign a uniform level of im-
portance to all patch tokens, which disrupts the ability of
ViT to learn the relationships between different patches.
Compared with CNN methods, the multi-task network of
CANet presents fitting challenges, indicating that despite
the relatedness of the tasks, DME does not significantly en-
hance lesion localization in DR, possibly due to divergent
interest patterns between the two tasks. Interestingly, The
nn-mobilenet and ReXNet share the same model configura-
tion, but the latter still struggles to accurately learn lesion

representation. This situation underscores the importance
of fine-tuning CNNs for improved performance. Finally,
We observed that the ViT-based methods show inferior lo-
calization performance compared to CNN-based methods.
However, other CNN-based baseline methods (i.e., ReXNet
and CANet) only demonstrate coarse localization of the le-
sions. Whereas, the proposed method can accurately local-
ize diabetic lesions. These findings suggest the importance
of CNN in capturing small localized features for retinal dis-
ease diagnosis.

6. Discussion and Conclusion

In this article, we center our investigation on the question
- Could CNN inherently be more suited to retinal disease
(RD) tasks than ViTs ? To address this, we embarked on
a series of empirical studies, starting with fine-tuning a
lightweight MobileNetV2. Through this process, we pro-
posed a series of modifications to MobileNetV2, culmi-
nating in developing a tailored and lightweight model we
denote as nnMobileNet. The proposed method surpasses
ViT-based and multitask-driven models across various RD
benchmarks. Remarkably, nnMobileNet achieves this supe-
rior performance without applying self-supervised pretrain-
ing on external datasets, highlighting the potential of CNNs
in the domain of RD tasks.

In revisiting CNNs for RD tasks, we do not entirely
negate the value of ViTs. It’s evident from our findings that
ViTs excel at capturing long-range dependencies better than
CNNs. However, ViTs relying on extensive data for pre-
training poses significant challenges for medical datasets
subject to privacy concerns. Meanwhile, patterns of inter-
est in natural images typically occupy a large portion of
the image, and lesions in medical images often constitute
a small fraction, making patch-based ViT relational under-
standing insufficient. Therefore, we offer the following rec-
ommendations for future model development in RD tasks:
(i) CNNs are preferable in scenarios with limited retinal
image data. (ii) CNNs have superior capabilities in cap-
turing fine-grained local features, particularly for RD tasks
focused on small lesions. (iii) Integrating CNNs with ViTs
could be a viable solution. (iv) Emphasize data character-
istics and model fine-tuning. (v) Large-kernel convolutions
could address limitations in capturing long-range dependen-
cies. In the end, we believe that results will challenge sev-
eral widely held views and prompt people to rethink the im-
portance of convolution in RD.
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